集团公司大数据平台整体建设方案

合集下载

大数据资产运营平台建设方案

大数据资产运营平台建设方案

推广渠道
通过内部邮件、公告、培 训会议等方式进行推广, 提高平台的使用率和知名 度。
持续运维保障措施
运维团队
建立专业的运维团队,负责平台的日常 维护和故障处理。
应急响应
制定应急响应预案,确保在发生故障时 能够及时响应并快速恢复。
监控与预警
部署监控系统和预警机制,实时监控平 台的运行状态和性能指标。
数据处理技术不断成熟
随着互联网、物联网等技术的快速发展, 数据量呈现爆炸式增长,大数据时代已经 到来。
大数据蕴含着巨大的价值,能够为企业决 策、产品创新、市场营销等方面提供有力 支持。
随着大数据技术的不断发展,数据处理、 分析、挖掘等技术日益成熟,为大数据的 应用提供了有力保障。
企业数据资产现状
数据分散、孤岛现象严重
建立完善的数据安全管理体系和合规性机制 ,保障企业数据安全和合规运营。
02
平台架构设计与技术选型
整体架构设计思路
以业务需求为导向,设计符合大数据处理和分析特点的 平台架构。
强调平台的可扩展性、可维护性和安全性,以适应不断 增长的数据量和业务需求。
采用分层设计思想,明确各层职责,便于管理和维护。
数据采集层技术选型
系统稳定性风险
建立完善的系统监控和应急响应机 制,确保平台在高并发、大数据量 等场景下的稳定运行。
项目管理风险及防范措施
需求变更风险
建立需求变更管理流程,对变更需求进行评估和审核,确保项目 按计划推进。
团队协作风险
制定明确的团队协作规范,加强团队成员间的沟通和协作,确保 项目高效执行。
进度延期风险
机房环境
建设符合标准的机房环境 ,包括电力、空调、消防 等设施,确保硬件设备的 稳定运行。

大数据云平台项目规划建设方案

大数据云平台项目规划建设方案
大数据云平台项目规划建设 方案
汇报人: 2024-01-05
目录
• 项目背景与目标 • 大数据云平台概述 • 建设内容与方案 • 实施计划与时间表 • 资源需求与预算 • 风险评估与应对策略 • 效益评估与预期成果 • 总结与展望
01
项目背景与目标
项目背景
1
随着信息化和数字化的快速发展,企业、政府和 各类组织的数据量呈爆炸式增长,对数据处理和 分析的需求日益迫切。
系统设计与开发
2023年11月-2024年3月,负责人:李四
系统集成与测试
2024年4月-6月,负责人:王五
05
资源需求与预算
人员需求
数据分析师
负责数据清洗、整合、分析和建模,需 要具备统计学、数学和编程知识。
项目经理
负责整体项目的管理和协调,需要有 PMP或类似认证。
系统工程师
负责云平台的搭建、维护和优化,需 要有丰富的系统集成和运维经验。
目标受众
企业和组织的数据处理和分析人员。 业务和管理层决策者。 需要进行数据驱动决策的各类组织和机构。
02
大数据云平台概述
大数据云平台定义
01
大数据云平台是一种基于云计算 的大数据处理和分析平台,它能 够提供大规模数据存储、处理、 分析和可视化等功能。
02
它通过云计算的弹性可扩展性, 实现了对海量数据的快速处理和 实时分析,为企业和组织提供了 高效、可靠的大数据解决方案。
竞争分析
对竞争对手进行深入分析,了解其产品、技术和服务等方面的优劣 势,制定相应的竞争策略。
客户需求
深入了解客户需求,持续优化产品和服务,提高客户满意度和忠诚度 。
07
效益评估与预期成果
经济效益评估

大数据平台建设方案

大数据平台建设方案

大数据平台建设方案随着信息技术的不断发展和智能化时代的来临,大数据已经成为企业及各行业决策的重要依据。

为了更好地应对海量数据的处理和分析,企业需要建设一个完备的大数据平台。

本文将从整体架构、硬件设备、软件工具和安全保障等方面,提出一套完善的大数据平台建设方案。

一、整体架构大数据平台的整体架构决定了数据的处理效率和系统的可扩展性。

在构建大数据平台时,应采用分布式、集群化的架构模式,以满足高并发、高容量的需求。

建议采用以下架构:1. 数据采集层:负责从各种数据源收集数据,包括传感器、数据库、日志等。

可使用相关的数据采集工具进行数据的提取和转换,确保数据的准确性和完整性。

2. 数据存储层:用于存储海量的数据,包括结构化数据和非结构化数据。

建议采用分布式文件系统,如HDFS(Hadoop Distributed File System),保证数据的高可靠性和高可扩展性。

3. 数据处理层:负责对存储在数据存储层中的数据进行分析、挖掘和处理。

使用分布式计算框架,如Hadoop、Spark等,实现高效的数据处理和计算。

4. 数据展示层:提供数据可视化和报表功能,便于用户进行数据分析和决策。

可使用开源的数据可视化工具,如Echarts、Tableau等。

二、硬件设备大数据平台的硬件设备对系统性能和处理能力有着重要影响。

根据数据量和业务需求,建议选择高性能的服务器、存储设备和网络设备,以确保系统的稳定和高效运行。

1. 服务器:选择高性能的服务器,可根据实际需求配置多个节点组成集群,提高系统的并发处理能力。

2. 存储设备:采用高容量、高可靠性的存储设备,如分布式文件系统、网络存储等,以满足海量数据存储的需求。

3. 网络设备:建立高速的网络通信环境,提供数据传输和通信的带宽,确保数据的快速传输和实时处理。

三、软件工具在大数据平台建设中,选择适合的软件工具对于系统的性能和数据处理能力至关重要。

下面列举一些常用的大数据软件工具:1. Hadoop:分布式计算框架,提供高效的数据处理和分布式存储功能。

大数据平台项目实战建设方案

大数据平台项目实战建设方案

满足不同场景下的数据处理需求。
模块化设计
03
各功能模块相互独立,便于扩展和维护。
关键技术组件选型及原因
01 分布式存储
选用HDFS作为分布式文件系统 ,提供高可靠、高扩展性的数 据存储服务。
02 数据处理
采用MapReduce、Spark等计 算框架进行数据处理,提高计 算效率和可扩展性。
03 数据分析
存储设备选型与配置
根据业务需求和数据量增长趋势,评 估存储设备的容量、性能、可扩展性 等需求。
根据解决方案设计,选择性价比高的 存储设备,并进行合理配置,确保存 储系统的稳定性和性能。
存储解决方案设计
选择合适的存储技术和设备,设计高 效、可靠的存储架构,满足大数据处 理和分析的需求。
数据备份、恢复和容灾策略制定
实施效果评估
通过数据分析、用户反馈等方式 ,对推广效果进行评估,不断优
化推广策略。
持续改进方向和目标设定
1 2
改进方向
根据项目实施过程中遇到的问题和用户反馈,确 定持续改进的方向,包括平台性能优化、功能完 善、用户体验提升等。
目标设定
设定明确的改进目标,制定具体的实施计划和时 间表,确保持续改进工作的有效进行。
采用线上、线下相结合的方式,组织专家 授课、案例分析、实践操作等培训活动。
通过考试、问卷调查等方式,对培训效果进 行评估,及时调整培训计划。
平台推广策略及实施效果评估
推广策略
制定切实可行的推广策略,包括 宣传推广、合作推广、案例推广 等,提高大数据平台的知名度和
影响力。
推广渠道
利用社交媒体、行业论坛、展会 等多种渠道进行推广,吸引更多 的用户关注和使用大数据平台。
06

大数据云平台建设和运营整体解决方案

大数据云平台建设和运营整体解决方案

大数据云平台建设和运营整体解决方案目录一、内容概要 (3)1.1 背景与意义 (4)1.2 目标与范围 (5)二、需求分析 (5)2.1 用户需求调研 (6)2.2 行业需求分析 (7)2.3 竞争对手分析 (8)三、平台架构设计 (9)3.1 总体架构 (10)3.2 数据存储层 (11)3.3 数据处理层 (13)3.4 数据服务层 (14)3.5 应用接口层 (16)四、技术研发 (18)4.1 技术选型 (19)4.2 技术难点及解决方案 (20)4.3 技术实施计划 (22)五、平台运营 (23)5.1 运营策略 (24)5.2 数据安全与隐私保护 (26)5.3 用户体验优化 (27)5.4 持续迭代与升级 (28)六、项目管理 (30)6.1 项目组织结构 (32)6.2 项目进度管理 (33)6.3 项目质量管理 (34)6.4 项目风险管理 (35)七、成本效益分析 (36)7.1 成本预算 (38)7.2 成本控制 (39)7.3 经济效益评估 (41)7.4 社会效益评估 (42)八、案例展示 (43)8.1 国内外成功案例介绍 (44)8.2 案例对比分析 (46)8.3 案例应用场景探讨 (46)九、总结与展望 (48)9.1 方案总结 (49)9.2 发展前景展望 (50)一、内容概要需求分析:详细分析企业在大数据云平台建设方面的需求,包括数据处理能力、存储需求、弹性扩展能力等方面的具体要求。

架构设计:设计云平台的整体架构,包括前端展示层、应用层、数据层、存储层及基础设施层等,确保平台具备高性能、高可用性、高扩展性。

基础设施建设:规划并建设云平台所需的基础设施,包括服务器、网络、存储设备等硬件资源,以及操作系统、数据库管理系统等软件资源。

平台搭建与部署:依据架构设计,完成云平台的搭建与部署工作,确保各模块功能正常运行,并实现数据的高效处理与存储。

运营维护与数据管理:制定云平台的运营维护策略,包括系统监控、故障排查、性能优化等,并建立完善的数据管理体系,确保数据安全与隐私。

大数据平台建设方案

大数据平台建设方案

大数据平台建设方案随着互联网的快速发展,我们进入了信息爆炸的时代。

大数据作为新一代的核心驱动力,正逐渐成为各行业的重要资源。

在这个背景下,如何构建一个高效的大数据平台,成为了各个企业与组织亟待解决的问题。

本文将着重探讨大数据平台的建设方案,从不同的角度与维度入手,为读者带来深度思考与新的观点。

一、平台架构设计在构建大数据平台之前,我们首先需要设计一套合理的平台架构。

一个好的平台架构应该具备以下几个要素:1. 数据采集与存储层:这是大数据平台的基础,应该具备高效、稳定的数据采集与存储能力。

在采集层,我们可以使用各种数据采集工具和技术,如Flume、Kafka等,将数据从不同的数据源收集到平台中。

在存储层,我们可以选择使用Hadoop、HBase等分布式存储系统,确保数据的高可靠性和可扩展性。

2. 数据处理与计算层:这是大数据平台的核心,主要用于对数据进行分析与挖掘。

在这一层,我们可以使用各种计算框架和引擎,如MapReduce、Spark等,处理海量的结构化和非结构化数据,提取有价值的信息。

同时,可以采用机器学习和深度学习算法,对数据进行建模和预测,为业务决策提供支持。

3. 数据可视化与应用层:这是大数据平台的最终目标,将处理后的数据以可视化的形式展现出来,并应用于各个业务场景中。

在这一层,我们可以使用各种数据可视化工具和技术,如Tableau、PowerBI等,将数据转化为直观、易懂的图表和报表。

同时,可以开发各种基于大数据的应用程序,实现个性化的服务和精准营销。

二、技术选型与整合在搭建大数据平台时,选择合适的技术和工具非常重要。

不同的技术和工具在处理大数据的能力和效率上存在差异,因此需要进行合理的技术选型与整合。

1. 数据存储技术:在选择数据存储技术时,应考虑数据的类型、规模和访问要求。

如果数据主要为结构化数据,并且需要进行实时查询和分析,可以选择关系型数据库;如果数据主要为非结构化数据,并且需要进行批量处理和分析,可以选择分布式文件系统。

大数据平台数据治理整体解决方案 大数据可视化平台建设方案

大数据平台数据治理整体解决方案 大数据可视化平台建设方案

大数据可视化平台建设方案目录第1章前言 0第2章XXX大数据现状分析 (1)2.1、基本现状 (1)2.2、总体现状 (1)2.2.1、行领导 (1)2.2.2、业务人员 (1)2.3、数据架构方面 (2)2.3.1、业务表现 (2)2.3.2、问题 (2)2.4、数据应用难题 (3)2.4.1、缺少统一的应用分析标准 (3)2.4.1.1、业务表现 (3)2.4.1.2、问题 (3)2.4.2、缺少统一的基础数据标准 (4)2.4.2.1、业务表现 (4)2.4.2.2、问题 (5)2.4.3、缺少反馈机制 (5)2.4.3.1、业务表现 (6)2.4.3.2、问题 (6)2.5、数据应用现状总结 (6)第3章XXX大数据治理阶段目标 03.1、数据平台逻辑架构 (1)3.2、数据平台部署架构 (1)3.3、建设目标 (2)3.3.1、建设大数据基础设施,完善全行数据体系架构 (2)3.3.2、开发大数据资源,支撑全行经营管理创新 (2)3.3.3、培养大数据人才队伍,建立大数据分析能力 (2)3.4.1、发现数据质量问题,推动大数据治理工作的开展,建立数据质量检核系统.. 33.4.2、分析、梳理业务系统,推动数据标准的建立,统一全行口径 (3)3.4.3、建立数据仓库模型框架,优化我行数据架构,建设稳定、可扩展的数据仓库33.5、目标建设方法 (4)3.5.1、建设内容 (4)3.5.2、工作阶段 (4)3.5.2.1、源系统分析阶段 (4)3.5.2.1.1、工作内容 (4)3.5.2.1.2、工作依据 (4)3.5.2.1.3、工作重点 (5)3.5.2.2、数据质量问题检查阶段 (5)3.5.2.2.1、工作内容 (5)3.5.2.2.2、工作依据 (5)3.5.2.2.3、工作重点 (6)3.5.2.3、数据质量问题分析阶段 (6)3.5.2.3.1、工作内容 (6)3.5.2.3.2、工作依据 (6)3.5.2.3.3、工作重点 (6)3.6、预期建设效益 (6)3.6.1、实现数据共享 (6)3.6.2、加强业务合作 (7)3.6.3、促进业务创新 (7)3.6.4、提升建设效率 (7)3.6.5、改善数据质量 (7)第4章XXX大数据建设总体规划 04.1、功能需求 04.1.1、个人和企业画像 04.1.3、为金融业提供风险管控 (3)4.1.4、运营优化 (4)4.2、XXX大数据应用架构远景 (4)4.2.1、XXX需要从“坐商”转型为“行商” (5)4.2.2、客户下沉 (5)4.2.3、与“互联网金融”进行差异化竞争 (5)4.3、XXX大数据平台应用架构 (6)4.4、XXX大数据平台架构 (7)4.5、XXX大数据支撑平台 (7)4.5.1、大数据虚拟化平台 (7)4.5.1.1、设计原则 (8)4.5.1.2、虚拟化平台设计 (10)4.5.1.3、硬件基础设施层 (10)4.5.1.4、虚拟化存储 (11)4.5.1.5、虚拟化计算 (11)4.5.1.6、平台管理 (12)4.5.1.7、数据存储系统设计 (12)4.5.1.8、高性能SAN存储系统 (14)4.5.1.9、存储方案优势 (15)4.5.2、大数据分析管理平台 (16)4.6、大数据分析处理平台 (16)4.6.1、分布式内存分析引擎 (17)4.6.2、数据挖掘引擎 (17)4.6.3、分布式实时在线数据处理引擎 (18)4.6.4、流处理引擎 (18)4.6.5、大数据分析支撑系统 (18)4.6.6、大数据分析节点群 (24)4.6.7、软硬件配置 (25)4.6.8、虚拟化平台关键特性 (27)4.7、安全保障系统 (30)4.7.1、设计原则 (30)4.7.2、总体设计 (31)4.7.3、物理安全设计 (31)4.7.4、网络安全设计 (33)4.7.4.1、外网边界安全 (33)4.7.4.2、网络基础设施安全 (34)4.7.5、主机安全设计 (35)4.7.6、应用安全设计 (35)4.7.7、数据库安全设计 (36)4.7.8、安全制度与人员管理 (37)4.7.9、安全管理体系建设 (37)4.7.10、安全运维 (38)4.7.11、安全人员管理 (39)4.7.12、技术安全管理 (39)4.7.13、安全保障系统配置 (40)4.8、计算机网络系统 (40)4.8.1、设计原则 (40)4.8.2、系统设计 (42)4.8.3、计算机网络系统配置 (45)4.9、基础支撑软件 (45)4.9.1、地理信息软件 (45)4.9.2、操作系统软件 (47)4.9.3、数据库管理软件 (48)4.9.4、机房建设方案 (49)4.9.5、基础支撑系统软硬件配置 (52)第5章系统架构设计 (56)5.1、总体设计目标 (56)5.3、案例分析建议 (58)5.3.1、中国联通大数据平台 (58)5.3.2、项目概述 (58)5.3.2.1、项目实施情况 (60)5.3.2.2、项目成果 (67)5.3.2.3、项目意义 (68)5.3.3、恒丰XXX大数据平台 (68)1.1.1.1项目概述 (69)1.1.1.2项目实施情况 (73)1.1.1.3项目成果 (80)1.1.1.4项目意义 (81)5.3.4、华通CDN运营商海量日志采集分析系统 (83)5.3.5、项目概述 (83)5.3.5.1、项目实施情况 (84)5.3.5.2、项目成果 (89)5.3.5.3、项目意义 (89)5.3.6、案例总结 (90)5.4、系统总体架构设计 (91)5.4.1、总体技术框架 (91)5.4.2、系统总体逻辑结构 (95)5.4.3、平台组件关系 (98)5.4.4、系统接口设计 (104)5.4.5、系统网络结构 (109)第6章系统功能设计 (111)6.1、概述 (111)6.2、平台管理功能 (112)6.2.1、多应用管理 (112)6.2.2、多租户管理 (116)6.2.3.1、Hadoop集群自动化部署 (119)6.2.3.2、Hadoop集群性能监控 (121)6.2.3.3、Hadoop集群资源管理 (125)6.2.3.4、图形界面方式多租户管理 (128)6.2.3.5、系统巡检信息收集 (132)6.2.3.6、系统性能跟踪 (134)6.2.3.7、与集团运维监控平台对接 (135)6.2.4、作业调度管理 (139)6.3、数据管理 (141)6.3.1、数据管理框架 (141)6.3.1.1、结构化数据管理框架 (142)6.3.1.2、半/非结构化数据管理框架 (143)6.3.2、数据采集 (144)6.3.3、数据交换 (147)6.3.4、数据存储与管理 (149)6.3.4.1、数据存储管理功能 (152)6.3.4.2、数据多温度管理 (154)6.3.4.3、生命周期管理 (156)6.3.4.4、多索引模式 (157)6.3.4.5、多数据副本管理 (158)6.3.4.6、数据平衡管理 (159)6.3.4.7、在线节点管理 (160)6.3.4.8、分区管理 (161)6.3.4.9、数据导入与导出 (162)6.3.4.10、多级数据存储 (163)6.3.4.11、多种数据类型支持 (165)6.3.4.12、多种文件格式支持 (167)6.3.4.13、数据自定义标签管理 (171)6.3.4.14、数据读写锁处理 (171)6.3.4.16、表压缩 (172)6.3.5、数据加工清洗 (172)6.3.6、数据计算 (174)6.3.6.1、多计算框架支持 (174)6.3.6.2、并行计算与并行处理能力 (176)6.3.6.3、PL/SQL存储过程 (180)6.3.6.4、分布式事务支持 (184)6.3.6.5、ACID测试案例 (186)6.3.7、数据查询 (196)6.3.7.1、OLAP函数支持 (196)6.3.7.2、分布式 Cube (197)6.3.7.3、SQL兼容性 (200)6.3.7.4、SQL功能 (217)6.4、数据管控 (222)6.4.1、主数据管理 (222)6.4.2、元数据管理技术 (224)6.4.3、数据质量 (227)6.5、数据ETL (235)6.6、数据分析与挖掘 (238)6.6.1、数据分析流程 (241)6.6.2、R语言开发环境与接口 (242)6.6.3、并行化R算法支持 (243)6.6.4、可视化R软件包 (247)6.6.5、编程语言支持 (249)6.6.6、自然语言处理和文本挖掘 (249)6.6.7、实时分析 (250)6.6.8、分析管理 (251)6.6.8.1、需求管理 (252)6.6.8.2、过程管理 (253)6.6.9、分析支持 (256)6.6.10、指标维护 (256)6.6.11、分析流程固化 (257)6.6.12、分析结果发布 (257)6.6.13、环境支持 (257)6.7、数据展现 (258)6.7.1、交互式报表 (260)6.7.2、仪表盘 (267)6.7.3、即席查询 (268)6.7.4、内存分析 (269)6.7.5、移动分析 (270)6.7.6、电子地图支持 (271)第7章技术要求实现 (272)7.1、产品架构 (272)7.1.1、基础构建平台 (277)7.1.2、大数据平台组件功能介绍 (278)7.1.2.1、Transwarp Hadoop分布式文件系统 (278)7.1.2.2、Transwarp Inceptor内存分析交互引擎 (280)7.1.2.3、稳定的Spark计算框架 (282)7.1.2.4、支持Memory+SSD的混合存储架构 (283)7.1.2.5、完整SQL功能支持 (283)7.1.2.6、Transwarp Discover机器学习引擎 (289)7.1.2.7、并行化统计算法库 (291)7.1.2.8、机器学习并行算法库 (293)7.1.2.9、Transwarp Hyperbase列式存储数据库 (300)7.1.2.10、智能索引 (311)7.1.2.11、全局索引 (312)7.1.2.12、全文索引 (313)7.1.2.14、图数据库 (315)7.1.2.15、全文数据处理 (316)7.1.2.16、Transwarp Stream数据实时处理分析 (318)7.1.2.17、分布式消息队列 (322)7.1.2.18、流式计算引擎 (323)7.1.2.19、流式SQL执行 (324)7.1.2.20、流式机器学习 (325)7.1.3、系统分布式架构 (325)7.2、运行环境支持 (328)7.2.1、系统操作支持以及环境配置 (328)7.2.2、与第三方软件平台的兼容说明 (329)7.3、客户端支持 (330)7.3.1、客户端支持 (330)7.3.2、移动端支持 (331)7.4、数据支持 (331)7.5、集成实现 (333)7.6、运维实现 (336)7.6.1、运维目标 (336)7.6.2、运维服务内容 (337)7.6.3、运维服务流程 (340)7.6.4、运维服务制度规范 (342)7.6.5、应急服务响应措施 (343)7.6.6、平台监控兼容 (344)7.6.7、资源管理 (345)7.6.8、系统升级 (348)7.6.9、系统监控平台功能 (348)7.6.9.1、性能监控 (348)7.6.9.2、一键式收集 (352)7.6.9.3、系统资源监控图形化 (354)7.6.9.5、消息队列监控 (355)7.6.9.6、故障报警 (356)7.6.9.7、告警以及统巡检以及信息收集 (356)7.7、平台性能 (358)7.7.1、集群切换 (358)7.7.1.1、主集群异常及上层业务切换 (358)7.7.1.2、从集群异常及上层业务切换 (359)7.7.2、节点切换 (360)7.7.3、性能调优 (361)7.7.3.1、图形化性能监控 (361)7.7.3.2、图形化调优工具 (362)7.7.3.3、调优策略 (366)7.7.4、并行化高性能计算 (367)7.7.5、计算性能线性扩展 (370)7.8、平台扩展性 (372)7.9、可靠性和可用性 (374)7.9.1、单点故障消除 (374)7.9.2、容灾备份优化 (375)7.9.2.1、扩容、备份、恢复机制 (375)7.9.2.2、集群数据容灾优化 (377)7.9.2.3、数据完整性保障和方案 (378)7.9.2.4、主集群异常及上层业务切换 (380)7.9.2.5、从集群异常及上层业务切换 (380)7.9.3、系统容错性 (381)7.10、开放性和兼容性 (383)7.10.1、高度支持开源 (388)7.10.1.1、PMC-HaoyuanLi (388)7.10.1.2、Committor-AndrewXia (390)7.10.1.3、Committor-ShaneHuang (392)7.10.1.5、Committor-JasonDai (397)7.10.1.6、Committor-WeiXue (400)7.10.2、操作系统支持以及软件环境配置 (401)7.10.3、兼容性与集成能力 (402)7.11、安全性 (404)7.11.1、身份鉴别 (404)7.11.2、访问控制 (405)7.11.3、安全通讯 (413)7.12、核心产品优势 (413)7.12.1、高速运算、统计分析和精确查询 (413)7.12.1.1、Spark引擎结合分布式内存列存提供高性能计算 (413)7.12.1.2、多种索引支持与智能索引 (415)7.12.2、有效的资源利用 (416)7.12.3、高并发、低延迟性能优化 (417)7.12.4、计算资源有效管控 (418)7.12.5、API设计和开发工具支持 (420)7.12.6、友好的运维监控界面 (422)7.12.7、扩容、备份、恢复机制 (427)7.12.8、集群自动负载均衡 (429)7.12.9、计算能力扩展 (429)7.13、自主研发技术优势 (430)7.13.1、高稳定、高效的计算引擎Inceptor (430)7.13.2、完整的SQL编译引擎 (432)7.13.3、高性能的SQL分析引擎 (433)7.13.4、SQL统计分析能力 (433)7.13.5、完整的CURD功能 (435)7.13.6、Hyperbase高效的检索能力 (436)7.13.7、基于Hyperbase和SQL引擎的高并发分布式事务 (438)7.13.8、Hyperbase非结构化数据的支持 (440)7.13.9、机器学习与数据挖掘 (440)7.13.10、Transwarp Stream (445)7.13.11、内存/SSD/磁盘混合存储 (448)7.13.12、MR/Spark/流处理统一平台 (450)7.13.13、多租户支持能力 (452)7.13.14、多租户安全功能 (453)7.13.15、标准JDBC与ODBC接口 (454)第8章系统性能指标和测试结果说明 (455)8.1、性能测试报告 (455)8.1.1、测试目标 (455)8.1.2、测试内容 (455)8.1.3、测试环境 (456)8.1.4、测试过程和结果 (457)8.2、TPC-DS测试报告 (460)8.2.1、测试目标 (460)8.2.2、测试内容 (461)8.2.3、测试环境 (463)8.2.4、测试过程和结果 (464)8.3、量收迁移验证性测试报告 (465)8.3.1、测试目标 (465)8.3.2、测试内容 (465)8.3.3、测试环境 (466)8.3.4、串行执行情况 (467)8.3.5、并行执行情况 (469)8.3.6、生产表数据规模 (471)8.3.7、测试结果 (475)8.4、某XXX性能测试报告 (475)8.4.1、测试目标 (475)8.4.2、测试内容 (475)8.4.4、测试过程和结果 (477)第9章系统配置方案 (491)9.1、硬件系统配置建议 (491)9.1.1、基础Hadoop平台集群配置规划 (491)9.1.2、数据仓库集群配置规划 (494)9.1.3、集群规模综述 (496)9.1.4、开发集群配置建议 (497)9.1.5、测试集群配置建议 (498)9.2、软件配置建议 (498)9.3、软硬件配置总表 (500)9.4、网络拓扑 (503)第10章系统测试 (504)10.1、系统测试方法 (504)10.2、系统测试阶段 (505)10.3、系统测试相关提交物 (507)第11章项目实施 (508)11.1、项目实施总体目标 (508)11.2、项目管理 (509)11.3、业务确认 (510)11.4、数据调研 (511)11.5、系统设计阶段 (512)11.6、集成部署阶段 (513)11.7、ETL过程设计 (513)11.8、ETL开发与测试 (515)11.9、系统开发阶段 (516)11.10、系统测试阶段 (516)11.11、系统上线及验收 (518)11.13、系统的交接与知识转移 (523)第1章前言随着信息化程度的加深,以及移动互联网、物联网的崛起,人们产生的数据急剧膨胀,传统的数据处理技术难以支撑数据大量的增长和处理能力。

大数据支撑平台建设方案

大数据支撑平台建设方案

大数据支撑平台建设方案XXX科技股份有限公司20XX年XX月XX日目录一系统概述 (3)二系统框图 (3)三大数据集成 (4)3.1 数据源管理 (5)3.2 数据通道 (5)3.3 实时同步 (5)3.4 离线同步 (5)3.5 数据源监控 (6)四大数据运维 (6)五大数据治理 (7)5.1 数据地图 (7)5.2 数据综合治理 (7)5.3 数据安全 (7)5.3.1 权限管理 (7)5.3.2 使用审计 (8)5.4 数据质量管理 (8)5.4.1 数据质量监控 (8)5.4.2 数据质量效验 (8)六大数据服务 (9)七大数据应用 (9)7.1 模型设计 (9)7.2 脚本取数 (10)7.3 自助取数 (10)7.4 Easy BI (10)7.4.1 数据源管理 (10)7.4.2 数据集管理 (10)7.4.3 仪表板 (11)7.4.4 数据门户列表 (11)一系统概述大数据支撑平台定位于统一的政务大数据管理平台,以数据为基础,以全链路加工为核心,提供数据汇聚、研发、治理、服务等多种功能。

既能满足大数据汇聚、管理的各类需求,又能为上层应用提供各种数据支撑。

大数据支撑平台统一管理、集中存储政府大数据资源,满足高并发、海量数据对高性能计算能力和大容量存储能力的需求,提供数据集成、数据存储、数据运维、数据治理、数据服务、数据质量管理等大量开放能力,支撑政务大数据应用开发和上线,承载政府大数据运营和服务,为挖掘数据价值提供技术支撑。

大数据支撑平台对不同来源(政务外网、专网、物联网、互联网等)的信息资源进行统一归集,对不同类型(关系型数库、电子文件、多媒体数据、物联网数据等)的大数据资源池进行监测、调度和管理,可以线性扩展计算和存储能力,提供海量数据可视化展示工具和通用开发接口。

二系统框图大数据平台承载了大数据管理中心数据的管理,为上层应用提供数据支撑。

它统一管理、集中存储了政府数据、社会数据、互联网数据、物联网数据等各种数据,保证数据质量。

大数据平台建设方案

大数据平台建设方案

大数据平台建设方案随着信息技术的不断发展,大数据已经成为了各行各业发展中不可或缺的一部分。

大数据的处理能力与分析能力可以帮助企业更好地理解数据,挖掘出其中蕴藏的商机,提升决策效率。

因此,建设一个合适的大数据平台对于企业的发展至关重要。

本文将就大数据平台建设方案进行探讨。

一、基础架构设计在建设大数据平台时,首先需要设计一个稳定可靠的基础架构。

这包括硬件设备的选择、网络环境的配置等。

在硬件设备方面,需要考虑到数据存储、处理速度等因素,可以选择高性能的服务器、存储设备等。

同时,为了保证数据的传输和处理效率,需要构建高速、稳定的网络环境。

二、数据采集与清洗建设大数据平台的第二步是数据的采集与清洗。

在这一步,需要设计数据采集的方式和规则,确保所采集的数据准确完整。

同时,对于原始数据的清洗也是至关重要的一步,可以采用数据清洗软件或自行编写程序来清洗数据,以确保数据的质量。

三、数据存储与处理建设大数据平台的第三步是数据的存储与处理。

数据存储的方式有很多种,可以选择分布式数据库、云存储等方式。

在数据处理方面,可以利用分布式计算框架对数据进行处理,提高数据处理效率。

同时,还可以利用机器学习算法、数据挖掘技术等对数据进行分析,挖掘出其中的规律和价值。

四、数据可视化与应用建设大数据平台的最后一步是数据的可视化与应用。

数据可视化可以帮助用户更直观地了解数据,发现数据之间的关联性和规律,提升数据分析效率。

同时,可以开发相应的应用程序,将数据应用到实际业务中,为企业的发展提供更多的支持。

综上所述,建设一个合适的大数据平台需要考虑到基础架构设计、数据采集与清洗、数据存储与处理、数据可视化与应用等方面。

只有综合考虑这些因素,才能建设一个稳定可靠、高效率的大数据平台,为企业的发展提供更多的支持。

希望本文所述内容对大数据平台的建设有所启发,并能为读者带来一些帮助。

如何进行大数据平台的建设

如何进行大数据平台的建设

如何进行大数据平台的建设随着信息化技术的不断发展,大数据已成为企业数据处理、分析和应用的重要工具。

越来越多的企业开始关注大数据平台的建设与应用。

但是,如何进行大数据平台的建设是一个复杂的问题,需要综合考虑技术、人员和管理等多个方面因素。

一、技术建设技术建设是大数据平台建设的核心。

以下是一些常见的技术要素:1. 数据采集:大数据平台建设的第一步是数据采集。

采集方式包括文件采集、网络采集、日志采集等。

2. 存储技术:大数据平台需要存储海量的数据,因此存储技术是最为重要的。

根据实际需要选择适合的存储技术,如关系数据库、NoSQL、Hadoop 等。

3. 数据处理技术:数据处理技术包括数据清洗、数据挖掘、机器学习、数据可视化等。

根据需求选择相应的技术。

4. 平台架构:选择适当的大数据平台架构,如分布式计算平台、分布式存储平台、数据处理平台等。

根据实际情况进行设计,不同行业和企业的需求存在差异。

5. 安全技术:大数据平台所涉及的数据量很大,难以进行人工管理,因此安全技术非常重要。

包括访问授权、数据脱敏、日志审计、加密等。

二、人员建设人员建设是大数据平台建设的另一个非常重要的方面。

大数据平台需要涉及多个职能角色,包括架构师、数据工程师、数据科学家、数据分析师等。

以下是一些必备的人员建设:1. 专业技术人才:大数据平台建设需要专业技术人才进行技术开发、测试、维护和升级等工作。

2. 数据科学家和数据分析师:数据科学家和数据分析师是进行数据分析和决策的关键人员。

3. 大数据架构师:大数据架构师负责设计和构建大数据平台的整体架构,协调各种技术和人员,确保系统高效稳定。

4. 项目经理:项目经理负责整个大数据平台建设项目的规划、执行、控制和落地。

三、管理建设除此之外,大数据平台建设还需要进行相应的管理建设。

以下是一些管理建设方案:1. 制定明确的目标和计划:大数据平台建设需要明确的目标和计划,将整个项目分为几个阶段逐一实施,从而达到最终目的。

大数据平台建设方案

大数据平台建设方案

大数据平台建设方案随着互联网和科技的发展,大数据成为了当今社会和企业中不可或缺的一部分。

通过对海量的数据进行分析和挖掘,企业可以获取有价值的信息来辅助决策和优化运营。

为了更好地利用大数据,许多企业开始建设自己的大数据平台。

本文将为您介绍一套适用的大数据平台建设方案。

一、需求调研在开始建设大数据平台之前,首先需要进行需求调研。

这包括与相关部门或业务负责人沟通,了解他们对大数据平台的需求和期望。

在调研阶段,我们可以采用面谈、问卷调查等方式,收集用户反馈和建议。

通过需求调研,可以更加清晰地了解用户的需求,为后续的建设提供方向和依据。

二、技术选型在进行大数据平台建设之前,需要对相关技术进行选型。

大数据平台通常需要包括数据采集、数据存储、数据处理和数据可视化等功能。

针对不同的需求,可以选择不同的技术方案。

以下是一些常用的大数据技术:1. 数据采集:可以使用Apache Flume、Kafka等技术,实现对各类数据源的实时采集和传输。

2. 数据存储:可以选择Hadoop HDFS、Apache Cassandra、MongoDB等分布式文件系统或数据库,用于存储海量的结构化和非结构化数据。

3. 数据处理:可以使用Apache Spark、Apache Flink等技术,实现大规模数据的批处理和流式处理。

同时还可以结合机器学习和人工智能等算法,进行数据挖掘和分析。

4. 数据可视化:可以使用Tableau、Power BI等可视化工具,将分析结果以图形化的方式展示,便于用户理解和使用。

根据实际需求和技术实力,选择适合的技术方案,以确保平台的稳定性和可扩展性。

三、系统架构设计在进行大数据平台建设时,需要设计合理的系统架构,满足业务需求并兼顾性能和可维护性。

以下是一个常用的大数据平台架构设计:1. 数据采集层:负责数据从各类数据源的采集和传输,可以使用Flume、Kafka等技术实现。

2. 数据存储层:负责海量数据的存储和管理,可以使用Hadoop HDFS、Cassandra等技术实现。

企业数据平台建设方案四种企业数据平台建设方案介绍精选全文完整版

企业数据平台建设方案四种企业数据平台建设方案介绍精选全文完整版

可编辑修改精选全文完整版企业数据平台建设方案四种企业数据平台建设方案介绍导读在企业中,数据平台一直都有存在。

但自进入到数据爆发式增长的大数据时代,传统的企业级数据库在满足数据管理应用上,明显满足不了各项需求。

故此,需要更加符合企业需求的数据平台建设方案。

在企业中,数据平台一直都有存在。

但自进入到数据爆发式增长的大数据时代,传统的企业级数据库在满足数据管理应用上,明显满足不了各项需求。

故此,需要更加符合企业需求的数据平台建设方案。

企业数据平台建设方案从市场主流选择来看,企业数据平台建设方案,目前大致有以下几种:一、常规数据仓库数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。

数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。

二、敏捷型数据集市数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。

数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。

三、MPP(大规模并行处理)架构进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。

大家所熟悉的HadoopMapReduce框架以及MPP计算框架,都是基于这一背景产生。

MPP架构的代表产品,就是Greenplum。

Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。

四、Hadoop分布式系统架构当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。

雅虎、Facebook、百度、淘宝等国内外大企,最初都是基于Hadoop来展开的。

Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。

集团企业大数据治理分析平台建设方案

集团企业大数据治理分析平台建设方案

集团企业大数据治理分析平台建设方案随着大数据技术的快速发展和企业对数据价值的认识逐渐增强,越来越多的企业开始关注和重视大数据治理分析平台的建设。

一个完善的大数据治理平台能够帮助企业快速发现数据的价值,提高决策的准确性,增强企业的竞争力。

下面是一个集团企业大数据治理分析平台建设的方案:1.平台架构设计-数据集成层:搭建数据采集、数据传输、数据清洗和数据集成等组件,实现对各种数据源的集成。

-数据存储层:构建数据仓库和数据湖,用于存储和管理大规模的数据。

-数据处理层:建立数据处理和分析的计算引擎,支持实时计算和离线计算。

-数据服务层:提供数据服务接口,支持数据的查询、分析和挖掘。

-数据安全层:搭建数据的安全管理系统,保护数据的安全性和隐私性。

2.数据采集与清洗-采用实时采集和批量采集相结合的方式,满足不同数据源的需求。

-设计完善的数据清洗和转换规则,确保数据的质量和准确性。

3.数据存储与管理-选择合适的数据存储技术,如关系型数据库、NoSQL数据库、分布式文件系统等。

-设计合理的数据模型和数据表结构,提高数据的存取效率。

-实施数据备份和容灾策略,确保数据的安全性和可靠性。

4.数据处理与计算- 选择适合业务需求的计算引擎和数据处理框架,如Hadoop、Spark 等。

-构建数据处理流程,实现数据的实时计算和离线计算。

-设计数据仓库和数据湖的数据调度和任务调度机制,确保数据处理的高效性和准确性。

5.数据服务与分析-开发符合业务需求的数据服务接口,支持数据的查询、分析和挖掘。

-建立数据分析和挖掘的模型和算法,提供高效和准确的分析结果。

-构建可视化分析平台,展示数据分析和挖掘的结果,支持用户自定义报表和可视化配置。

6.数据安全与隐私保护-实施数据的加密和脱敏措施,保护数据的安全性和隐私性。

-设计完善的用户权限管理和数据权限控制功能,实现对数据的合理使用和访问控制。

-建立数据的审计机制,监控数据的访问和使用情况,发现异常行为并及时处理。

大数据治理平台与数据运营体系建设方案

大数据治理平台与数据运营体系建设方案

大数据治理平台与数据运营体系建设方案随着数字化时代的到来,企业面临着海量数据的挑战和机遇。

如何高效地管理和利用这些数据,成为了企业发展的关键问题。

为了解决这一难题,许多企业开始积极建设大数据治理平台与数据运营体系。

本文将探讨大数据治理平台和数据运营体系的建设方案,并提供一些建议来帮助公司顺利实施。

一、大数据治理平台建设方案1. 技术平台选择在建设大数据治理平台之前,企业需要根据自身的实际情况选择合适的技术平台。

常见的大数据技术平台包括Hadoop、Spark、Hive等。

根据公司规模和需求,选择适当的技术平台可以提高数据处理效率和准确性。

2. 数据采集与清洗数据采集是大数据治理平台的第一步。

企业可以通过数据采集工具,如Flume、Logstash等,从各个数据源中提取数据。

同时,对采集到的数据进行清洗,排除无效或错误数据,确保数据的准确性和一致性。

3. 数据存储与管理对于大规模的数据处理,建立高效的数据存储与管理系统非常重要。

常见的数据存储技术包括HDFS、MongoDB等。

同时,企业需要建立完善的数据分类和命名规范,以便于数据的管理和检索。

4. 数据安全和隐私保护在建设大数据治理平台的过程中,数据安全和隐私保护是不可忽视的问题。

企业需要采取适当的安全措施,如加密和权限管理,来保护敏感数据的安全。

此外,遵守相关的法律法规,合规处理用户隐私数据,是企业建设大数据治理平台的基本要求。

二、数据运营体系建设方案1. 数据治理与质量管理在数据运营体系中,数据治理和质量管理是关键环节。

企业需要建立数据治理机构和流程,明确数据责任人和流转路径。

同时,制定数据质量管理策略,进行数据清洗、校验和修复,确保数据的高质量和一致性。

2. 数据分析与挖掘大数据运营体系的目标是通过数据分析与挖掘产生有价值的洞见。

企业可以利用机器学习、数据挖掘等技术来对数据进行分析,发现其中蕴藏的业务机会和风险。

同时,制定相应的数据分析策略,为企业的决策提供科学依据。

大数据平台建设方案

大数据平台建设方案

大数据平台建设方案一、引言随着信息技术的快速发展和数据规模的快速增长,大数据平台成为了企业提高竞争力和决策水平的重要工具。

本文将介绍一个大数据平台的建设方案,旨在帮助企业充分利用大数据资源,加强业务决策能力。

二、需求分析1. 数据采集需求在建设大数据平台之前,需要明确各种数据采集渠道和方式。

这些数据可以来自于企业内部的业务系统、传感器设备、智能设备等,也可以来自于外部的社交媒体、舆情监测等。

通过采集这些数据,我们可以获取到丰富的信息,为后续的分析和决策提供支持。

2. 数据存储和处理需求大数据平台的核心是数据存储和处理。

在建设过程中,我们需要选择适合企业需求的存储技术和处理框架。

例如,可以选用分布式文件系统如Hadoop HDFS来存储海量数据,采用Apache Spark等框架以实现高速数据处理和分析。

3. 数据安全与隐私需求在大数据平台建设过程中,必须重视数据的安全和隐私保护。

这包括加密传输、访问控制、权限管理、数据备份等方面的措施,确保数据不会被未授权的人员访问和使用。

4. 数据可视化与分析需求建设大数据平台的目的之一是为了更好地进行数据分析和决策。

因此,平台应提供友好的可视化界面,帮助用户直观地理解数据,并支持各种常见的数据分析技术,如数据挖掘、机器学习等。

三、技术架构设计在满足以上需求的基础上,我们可以设计一个大数据平台的技术架构,具体如下:1. 数据采集层该层负责从各种数据源采集数据,并将其转化为统一的数据格式。

可以使用Flume、Kafka等工具来简化数据采集的过程。

此外,还需要考虑数据质量的检验和清洗,确保数据的准确性和完整性。

2. 数据存储层在这一层,我们使用Hadoop HDFS作为主要的分布式存储技术,将数据以文件的形式存储在集群中。

另外,可以使用NoSQL数据库如HBase、MongoDB等来存储非结构化数据或实时数据。

3. 数据处理层这一层使用Apache Spark作为主要的数据处理框架,通过其提供的强大的分布式计算能力,对存储在HDFS中的数据进行处理和分析。

大数据云平台项目规划建设方案

大数据云平台项目规划建设方案

人力资源配置与分工
专业团队
01
建立由大数据专家、云平台架构师、项目经理等组成的专业团
队,负责项目规划、实施和运维。
培训计划
02
为团队成员提供相关技能和知识培训,提高团队整体素质和项
目执行能力。
分工明确
03
根据项目需求,明确团队成员职责和分工,确保项目顺利进行

软硬件资源需求与预算
硬件资源
根据项目需求,配置适量的高性能服务器、存储设备和网络设备 等硬件资源。
项目投资回报预测
投资金额
根据项目规模和需求, 预测项目总投资金额。
回报来源
分析项目收益来源,包 括但不限于广告收入、 数据服务费、政府补贴 等。
回报周期
预测项目投资回收期, 即项目开始盈利的时间 。
业务效益分析与评估
用户增长
预测项目完成后用户数量及活跃度的增长趋势 。
市场规模
评估项目所在市场的规模及增长潜力。
软件资源
选择合适的大数据平台、云计算平台及相关软件资源,如操作系 统、数据库、中间件等。
预算合理
根据项目规模和需求,制定合理的软硬件资源采购预算,确保项 目成本可控。
合作伙伴与供应商选择
01
合作伙伴
选择具有丰富经验和技术的合作 伙伴,共同推进项目实施,降低 项目风险。
02
03
供应商选择
合作机制
选择具有良好信誉和品质保障的 供应商,确保软硬件资源的质量 和售后服务。
意义
提高决策效率和经营 效益:通过大数据分 析技术,提取有价值 的信息,为决策者提 供科学决策依据,提 高决策效率和准确性 。
促进企业可持续发展 :通过大数据云平台 的建设,提高企业信 息化水平,增强企业 核心竞争力,为可持 续发展奠定坚实基础 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集团公司大数据平台整体建设方案目录1项目概述 (11)1.1建设背景 (11)1.1.1集团已有基础 (11)1.1.2痛点及需提升的能力 (11)1.1.3大数据趋势 (12)1.2建设目标 (12)1.2.1总体目标 (12)1.2.2分阶段建设目标 (13)1.3与相关系统的关系 (13)1.3.1数据分析综合服务平台 (13)1.3.2量收系统 (14)1.3.3金融大数据平台 (15)1.3.4各生产系统 (15)1.3.5CRM (15)1.4公司介绍和优势特点 (15)1.4.1IDEADATA (15)1.4.2TRANSWARP (17)1.4.3我们的优势 (18)2业务需求分析 (21)2.1总体需求 (21)2.2数据管理 (22)2.2.1数据采集 (23)2.2.2数据交换 (23)2.2.3数据存储与管理 (23)2.2.4数据加工清洗 (24)2.2.5数据查询计算 (24)2.3数据管控 (25)2.4数据分析与挖掘 (26)2.6量收系统功能迁移 (27)3系统架构设计 (28)3.1总体设计目标 (28)3.2总体设计原则 (28)3.3案例分析建议 (29)3.3.1中国联通大数据平台 (29)3.3.2恒丰银行大数据平台 (36)3.3.3华通CDN运营商海量日志采集分析系统 (48)3.3.4案例总结 (53)3.4系统总体架构设计 (54)3.4.1总体技术框架 (54)3.4.2系统总体逻辑结构 (57)3.4.3平台组件关系 (59)3.4.4系统接口设计 (64)3.4.5系统网络结构 (68)4系统功能设计 (70)4.1概述 (70)4.2平台管理功能 (70)4.2.1多应用管理 (70)4.2.2多租户管理 (74)4.2.3统一运维监控 (75)4.2.4作业调度管理 (94)4.3数据管理 (96)4.3.1数据管理框架 (96)4.3.2数据采集 (98)4.3.3数据交换 (101)4.3.4数据存储与管理 (102)4.3.5数据加工清洗 (120)4.3.6数据计算 (121)4.4数据管控 (155)4.4.1主数据管理 (155)4.4.2元数据管理技术 (157)4.4.3数据质量 (160)4.5数据ETL (167)4.6数据分析与挖掘 (169)4.6.1数据分析流程 (171)4.6.2R语言开发环境与接口 (172)4.6.3并行化R算法支持 (173)4.6.4可视化R软件包 (176)4.6.5编程语言支持 (178)4.6.6自然语言处理和文本挖掘 (178)4.6.7实时分析 (179)4.6.8分析管理 (179)4.6.9分析支持 (183)4.6.10指标维护 (183)4.6.11分析流程固化 (184)4.6.12分析结果发布 (184)4.6.13环境支持 (184)4.7数据展现 (185)4.7.1交互式报表 (187)4.7.2仪表盘 (192)4.7.3即席查询 (193)4.7.4内存分析 (194)4.7.5移动分析 (195)4.7.6电子地图支持 (195)5技术要求实现 (197)5.1产品架构 (197)5.1.1基础构建平台 (200)5.1.2大数据平台组件功能介绍 (201)5.1.3系统分布式架构 (239)5.2运行环境支持 (241)5.2.1系统操作支持以及环境配置 (241)5.2.2与第三方软件平台的兼容说明 (242)5.3客户端支持 (243)5.3.1客户端支持 (243)5.3.2移动端支持 (243)5.4数据支持 (243)5.5集成实现 (245)5.6运维实现 (247)5.6.1运维目标 (247)5.6.2运维服务内容 (248)5.6.3运维服务流程 (250)5.6.4运维服务制度规范 (252)5.6.5应急服务响应措施 (253)5.6.6平台监控兼容 (253)5.6.7资源管理 (254)5.6.8系统升级 (256)5.6.9系统监控平台功能 (257)5.7平台性能 (265)5.7.1集群切换 (265)5.7.2节点切换 (267)5.7.3性能调优 (268)5.7.4并行化高性能计算 (273)5.7.5计算性能线性扩展 (276)5.8平台扩展性 (277)5.9可靠性和可用性 (279)5.9.1单点故障消除 (279)5.9.2容灾备份优化 (281)5.9.3系统容错性 (285)5.10.1高度支持开源 (290)5.10.2操作系统支持以及软件环境配置 (302)5.10.3兼容性与集成能力 (303)5.11安全性 (304)5.11.1身份鉴别 (305)5.11.2访问控制 (305)5.11.3安全通讯 (311)5.12核心产品优势 (311)5.12.1高速运算、统计分析和精确查询 (311)5.12.2有效的资源利用 (313)5.12.3高并发、低延迟性能优化 (314)5.12.4计算资源有效管控 (315)5.12.5API设计和开发工具支持 (316)5.12.6友好的运维监控界面 (318)5.12.7扩容、备份、恢复机制 (322)5.12.8集群自动负载均衡 (324)5.12.9计算能力扩展 (324)5.13自主研发技术优势 (324)5.13.1高稳定、高效的计算引擎Inceptor (325)5.13.2完整的SQL编译引擎 (326)5.13.3高性能的SQL分析引擎 (326)5.13.4SQL统计分析能力 (327)5.13.5完整的CURD功能 (328)5.13.6Hyperbase高效的检索能力 (329)5.13.7基于Hyperbase和SQL引擎的高并发分布式事务 (331)5.13.8Hyperbase非结构化数据的支持 (332)5.13.9机器学习与数据挖掘 (332)5.13.10Transwarp Stream (337)5.13.11内存/SSD/磁盘混合存储 (339)5.13.12MR/Spark/流处理统一平台 (340)5.13.14多租户安全功能 (342)5.13.15标准JDBC与ODBC接口 (343)6系统性能指标和测试结果说明 (344)6.1性能测试报告 (344)6.1.1测试目标 (344)6.1.2测试内容 (344)6.1.3测试环境 (344)6.1.4测试过程和结果 (346)6.2TPC-DS测试报告 (349)6.2.1测试目标 (349)6.2.2测试内容 (349)6.2.3测试环境 (351)6.2.4测试过程和结果 (352)6.3量收迁移验证性测试报告 (353)6.3.1测试目标 (353)6.3.2测试内容 (353)6.3.3测试环境 (354)6.3.4串行执行情况 (354)6.3.5并行执行情况 (356)6.3.6生产表数据规模 (357)6.3.7测试结果 (359)6.4某银行性能测试报告 (359)6.4.1测试目标 (359)6.4.2测试内容 (359)6.4.3测试环境 (359)6.4.4测试过程和结果 (360)7系统配置方案 (372)7.1硬件系统配置建议 (372)7.1.1基础Hadoop平台集群配置规划 (372)7.1.3集群规模综述 (376)7.1.4开发集群配置建议 (377)7.1.5测试集群配置建议 (377)7.2软件配置建议 (378)7.3软硬件配置总表 (379)7.4网络拓扑 (381)8系统测试 (382)8.1系统测试方法 (382)8.2系统测试阶段 (383)8.3系统测试相关提交物 (384)9项目实施 (386)9.1项目实施总体目标 (386)9.2项目管理 (386)9.3业务确认 (387)9.4数据调研 (388)9.5系统设计阶段 (389)9.6集成部署阶段 (390)9.7ETL过程设计 (390)9.8ETL开发与测试 (391)9.9系统开发阶段 (392)9.10系统测试阶段 (393)9.11系统上线及验收 (394)9.12提交物 (396)9.13系统的交接与知识转移 (398)10项目管理 (400)10.1项目总体管理 (400)10.1.1项目实施总流程 (400)10.1.2项目实施中各阶段的主要任务 (400)10.1.3项目组织架构 (404)10.1.4项目负责人及主要成员 (409)10.1.5项目管理制度 (476)10.2项目质量管理 (479)10.2.1范围 (480)10.2.2过程目标 (480)10.2.3角色与职责 (480)10.2.4过程活动 (482)10.3项目计划 (485)11安全保密 (495)12知识产权 (497)13技术服务 (499)13.1现场支持服务 (499)13.2标准售后技术服务 (500)13.2.1提供预防性维护 (500)13.2.2系统升级服务 (501)13.2.3系统性能优化 (501)13.2.4提供系统完整文档 (501)13.2.5定期系统健康检查服务 (502)13.2.6应急预案 (503)13.3承诺 (503)13.3.1我方对集团的承诺 (503)13.3.2关于开发队伍的承诺 (503)13.4技术保证 (504)13.4.1方案实用性保证 (504)13.4.2应用系统的运行能力的保证 (504)13.4.3预防性维护检修内容 (504)13.4.4服务响应 (505)13.4.5关于软件维护的保证 (505)13.4.6专业服务保证 (506)13.4.7售后服务流程及时限 (506)14人员培训 (507)14.1H ADOOP系统培训 (508)14.2业务使用培训 (509)14.3分析挖掘培训 (510)14.4运行维护培训 (512)14.5开发培训 (513)14.5.1培训目标 (516)14.5.2培训方式 (517)14.5.3培训资源 (517)1项目概述1.1建设背景1.1.1集团已有基础经过十几年的信息化建设,集团已经积累了覆盖邮务、速递物流、金融三大板块的海量生产和经营数据,这些数据分布在集团各类应用系统和数据库中,支撑着集团业务的发展。

集团初步搭建了由名址系统、量收系统、速递平台系统、数据分析平台组成的初步的数据仓库,为数据分析挖掘工作打下了一定的技术基础。

组建了专业的组织架构促进企业数据管理与应用的规范化与制度化。

集团已成立数据中心,集团数据中心和各省的数据分析团队已经进行了多个专题的数据分析与成果应用的尝试。

相关文档
最新文档