大学物理非线性振动讲解

合集下载

非线性振动——精选推荐

非线性振动——精选推荐

非线性振动非线性振动§0.1非线性振动的研究对象在自然界、工程技术、日常生活和社会生活中,普遍存在着物体的往复运动或状态的循环变化。

这类现象称为振荡。

例如大海的波涛起伏、花的日开夜闭、钟摆的摆动、心脏的跳动、经济发展的高涨和萧条等形形色色的现象都具有明显的振荡特性。

振动是一种特殊的振荡,即平衡位置四周微小或有限的振荡。

如声波和超声波、工程技术中的机器和结构物的机械振动、无线电和光学中的电磁振荡等。

从最小的初等粒子到巨大的天体,从简单的摆到复杂的生物体,无处不存在振动现象。

有时人们力图防止或减小振动,有时又力图制造和利用振动。

尽管振动现象的形式多种多样,但有着共同的客观规律和同一的数学表达形式。

因此有可能建立同一的理论来进行研究,即振动力学。

振动力学是力学、声学、无线电电子学、自动控制理论等学科,以及机械、航空、土木、水利等工程学科的理论基础之一。

它应用数学分析、实验量测和数值计算等方法,探讨振动现象的机理和基本规律,为解决与振动有关的实际题目提供理论依据。

根据描述振动的数学模型的不同,振动理论区分为线性振动理论和非线性振动理论。

线性振动理论适用于线性系统,即质量不变、弹性力和阻尼力与运动参数成线性关系的系统,其数学描述为线性常系数常微分方程。

不能简化为线性系统的系统为非线性系统,研究非线性系统的振动理论就是非线性振动理论。

线性振动理论是对振动现象的近似描述,在振幅足够小的大多数情况下,线性振动理论可以足够正确地反映振动的客观规律。

频率、振幅、相位、激励、响应、模态等都是在线性理论中建立起来的基本概念。

实际机械系统中广泛存在着各种非线性因素,如电场力、磁场力、万有引力等作用力非线性,法向加速度、哥氏加速度等运动学非线性,非线性本构关系等材料非线性,弹性大变形等几何非线性等。

因此工程实际中的振动系统尽大多数都是非线性系统。

由于非线性微分方程尚无普遍有效的精确求解方法,而线性常微分方程的数学理论已十分完善,因此将非线性系统以线性系统代替是工程中常用的有效方法,但仅限于一定的范围。

(振动理论课件)非线性振动概述

(振动理论课件)非线性振动概述
➢ 由于处理非线性振动问题的数学工具尚不完备,数 值方法起着非常重要甚至是不可替代的作用。数值 方法在非线性振动中的突出作用是发现新现象,这 已成为非线性振动现代发展的突出特点。
气象学家洛伦兹教授在科学上是敏锐的,他并没有在经典科学 中寻找问题的答案,而是另辟蹊径地解答现象背后的深层次的 科学问题。他认为天气的变化是一个庞大而又复杂的非线性动 力学系统,用传统的线性动力学模型是无法描述那些非周期性 和对初始条件的敏感依赖性。
在复杂系统中,常常存在着系统发生的临界点。用著名的耗散 结构理论的创始人普里高津的话来说,系统存在着分叉点和涨 落机制,任何一个从经典科学来看不足为奇的小小干扰,往往 会导致系统从稳定转向不稳定,或从不稳定趋向稳定
非线性世界的发现
非线性世界是由一位气象学家发现的。
➢千百年以来,关于明天是晴还是雨,人们都是通过对云彩的观 察凭借经验估计。科学家一直希望天气变化的预报,能像日月 食和潮汐那样可以预言。
➢20世纪60年代初,美国麻省理工学院著名气象学家洛伦兹 教授最早尝试用计算机模拟天气。这种尝试完全是凭借着一种 信念:自然是有规律的,规律是可以认识的。一旦人们掌握了 这种规律,知道了初始条件,就可以通过逻辑和数学必然性的 桥梁,模拟过去,预见未来。
➢ 而上述各种实际现象在现代工程技术中愈来愈 频 繁 地 出 现 。 早 在 1940 年 美 国 塔 可 马 (Tacoma)吊桥因风载引起振动而坍塌的事故 就是典型的非线性振动引起破坏的例子。
➢ 有必要发展非线性振动理论,研究对非线性系 统的分析和计算方法,解释各种非线性现象的 物理本质,以分析和解决工程技术中实际的非 线性振动问题。
非线性振动概述
➢几何方法—研究非线性振动的定性分析方法
❖ 传统的几何方法 在常微分方程定性理论的基础上,根据相轨迹的几何 性质判断微分方程解的性质。利用相平面内的奇点和 极限环作为平衡状态和孤立周期运动的几何表述。

非线性振动理论与现象研究

非线性振动理论与现象研究

非线性振动理论与现象研究振动是物理学中一种重要的现象,广泛存在于自然界和人类生活中的各个领域。

传统的振动理论主要研究线性振动,即振动系统的运动方程是线性的。

然而,在实际应用中,很多振动系统往往具有非线性特征,这就需要非线性振动理论的研究。

非线性振动理论是研究非线性振动系统的运动规律和性质的学科。

与线性振动不同,非线性振动系统的运动方程中包含非线性项,使得系统的运动变得更加复杂和多样化。

非线性振动理论的研究对于理解和预测各种非线性振动现象具有重要意义。

非线性振动系统的一个典型例子是简谐振子。

在线性振动中,简谐振子的运动是以正弦曲线为基础的,而在非线性振动中,简谐振子的运动则可能呈现出更加复杂的现象,如周期倍增、混沌等。

这些非线性现象的出现使得振动系统的行为变得难以预测,也为非线性振动理论的研究提供了丰富的实例。

非线性振动理论的研究方法主要包括解析方法和数值方法。

解析方法是通过数学分析和近似计算来研究非线性振动系统的运动规律和稳定性。

数值方法则是通过计算机模拟和数值计算来研究非线性振动系统的运动特性。

这两种方法相辅相成,为非线性振动理论的研究提供了有效的工具和手段。

非线性振动理论的研究成果在许多领域都得到了广泛的应用。

例如,在机械工程中,非线性振动理论的研究可以帮助设计更加稳定和可靠的机械系统。

在电力系统中,非线性振动理论的研究可以帮助解决电力设备的振动问题,提高电力系统的运行效率。

在材料科学中,非线性振动理论的研究可以帮助理解材料的疲劳和断裂行为,提高材料的性能和寿命。

尽管非线性振动理论在许多领域都取得了重要的进展,但仍然存在许多待解决的问题和挑战。

例如,如何系统地研究非线性振动系统的稳定性和混沌现象,如何开发更加高效和准确的数值方法来模拟非线性振动系统的运动行为等。

这些问题的解决需要不断地深入研究和创新,推动非线性振动理论的发展。

总之,非线性振动理论是研究非线性振动系统的运动规律和性质的学科,具有重要的理论和应用价值。

非线性振动现象的分析与控制

非线性振动现象的分析与控制

非线性振动现象的分析与控制引言:振动是物体在受到外界力的作用下产生的周期性运动。

在很多实际应用中,振动现象是无法避免的。

传统的振动理论常常以线性振动为研究对象,但在实际工程中,由于材料的非线性特性或者复杂的系统结构等因素的影响,一些系统的振动往往表现出非线性特征,这给振动控制带来了挑战。

本文将从非线性振动的基本原理、分析方法和控制策略等方面进行介绍。

1. 非线性振动的基本原理非线性振动的基本原理是指在振动系统中,系统的运动方程中存在非线性项。

非线性项可能来自于系统的非线性弹簧,非线性摩擦力以及非线性扰动等。

这些非线性项会使得系统的运动不再满足叠加原理,产生新的现象。

在非线性振动中,振幅的大小和振动频率之间存在复杂的关系,如倍频现象、相位共振等。

2. 分析非线性振动的方法为了分析非线性振动系统,常常需要采用数值模拟方法。

其中,一种常用的方法是时域分析,即通过求解系统的运动方程,得到系统的时域响应。

另一种方法是频域分析,即通过将时域信号转换到频域,分析系统的频谱特性。

此外,还可以通过相平面分析方法来研究非线性系统的稳定性、受激振动和共振现象等。

3. 非线性振动的控制策略在实际应用中,为了控制非线性振动系统,常常需要采取相应的控制策略。

其中,一种常见的方法是使用非线性控制器,通过引入非线性反馈来补偿系统的非线性特性。

另一种方法是使用自适应控制策略,根据系统的变化实时调整控制参数。

此外,还可以通过参数识别和模型预测控制等方法来实现对非线性振动的控制。

4. 实际应用中的非线性振动现象非线性振动现象在实际应用中普遍存在。

例如在建筑结构中,由于地震或风荷载等外力的作用,结构会发生非线性振动,给结构的安全性和稳定性带来威胁。

在机械系统中,由于轴承的非线性摩擦力或者悬挂系统的非线性特性,机械系统会出现非线性振动,影响其性能和寿命。

因此,对于非线性振动的分析和控制具有重要的理论和实际意义。

结论:非线性振动现象是实际工程中普遍存在的重要问题。

第一章 非线性振动初步

第一章  非线性振动初步

第一章 非线性振动初步第一节 无阻尼单摆的自由振荡1 小角度无阻尼单摆 椭圆点单摆,一个由摆线l 联着的重量为mg 的摆锤所组成的力学系统,是力学教科书中通常都要进行讨论的一个简单的动力学模型。

其实我们将会看到,它具有非常复杂的动力学行为,是一个复杂系统。

我们研究一个理想的单摆,即忽略摆线l 质量,认为整个系统的质量都集中在摆锤上,是一个具有集中参数的数学摆,如图1-1所示。

因为如果把摆线与摆锤的质量一起计算,单摆就是一个具有分布参数的摆,与此相应的数学模型是偏微分方程,处理起来很复杂。

理想单摆的数学表达是常微分方程,研究起来就要容易得多了。

图1-1 数学摆首先忽略一切阻尼,例如忽略摆锤在运动中受到的空气阻力、摆线与悬挂点之间的摩擦力等等。

由牛顿第二运动定律,摆锤质量为m 的单摆的运动方程为:(1-1-1)式中θ为摆角,g 为重力加速度。

将等式右边项移到到左边,并以ml 相除后有:设 ,它是以单位时间的弧度为单位的角频率,则式(1-1-1)可写为:(1-1-2)由于正弦函数是非线性的,因此这是一个二阶非线性微分方程。

用级数展开正弦函数:(1-1-3)如果x 很小,则可以忽略三次以上的高次项,即。

这就是说当单摆的摆角很小时,式(1-1-2)变为线性微分方程:ml d dtmg 22θθ=−sin 0sin 22=+θθl g dt d l g /0=ω0ω0sin 2022=+θωθdt d L +−+−=!7!5!3sin 753x x x x x x x ≈sin(1-1-4)方程(1-1-4)的解可以通过如下的代换解获得:式中λ为常数。

代入方程(1-1-4)并消去因子后得特征方程:(1-1-5)方程(1-1-5)的特征根为:由此得到方程(1-1-4)的通解为:(1-1-6)式中,为复常数。

由于描述单摆振动的应为实函数,所以常数,必须满足条件:于是得条件:,。

将满足这样条件的系数,写成指数形式:, 其中P 为它们的模,为幅角,则(1-1-6)式写成如下形式:(1-1-7)(1-1-7)式是一个振幅为P ,角频率为的简谐振动表示式,表明单摆在摆角很小时的摆动为简谐振荡,其振动波形可以用正弦曲线来表示。

(振动理论课件)非线性振动概述

(振动理论课件)非线性振动概述
而线性常微分方程的数学理论已十分完善,因此将非 线性系统以线性系统代替是工程中常用的有效方法, 但仅限于一定的范围。 ➢ 至于什么属于线性振动问题,在未说明该系统预期工 作范围之前没有明确答复。因为系统中某些部件响应 与其激励之间的关系可能会依赖与其工作范围
非线性振动概述
➢ 当非线性因素较强时,用线性理论得出的结果 不仅误差过大,而且无法对自激振动、参数振 动、多频响应、超谐和亚谐共振、跳跃现象等 实际现象作出解释。
A
几何非线性
➢几何非线性—例2
单摆振动方程 gsin 0
l 这是一个非线性方程,对于小偏角,sin
可以得到足够精确的线性方程 g 0
l
可得单摆的固有振动周期为 T 2 l 与摆角无关,具有等时性
g
但是对于较大的偏角,必须考虑动非线性的影响。如果偏角并不 十分大,可以对sinθ展开成泰勒级数只取前两项,
非线性振动概述
➢几何方法—研究非线性振动的定性分析方法
❖ 传统的几何方法是利用相平面内的相轨迹作为对运动 过程的直观描述。
❖ 在常微分方程定性理论的基础上,根据相轨迹的几何 性质判断微分方程解的性质。利用相平面内的奇点和 极限环作为平衡状态和孤立周期运动的几何表述。
❖ 因此,关于奇点的类型和稳定性的研究,关于极限环 的存在性和稳定性的研究,以及稳定性随参数变化的 研究,是传统几何方法讨论的主要内容。
➢ 在工程问题中,稳态运动往往对应于机械系统的正常 工作状态。这种工作状态必须是稳定的,因为只有稳 定的运动才是可实现的运动。
非线性振动的定性分析方法
➢ 相平面法是最直观的定性分析方法,它只适用于单 自由度系统
➢ 相平面法利用相轨迹描绘系统的运动性态。相轨迹 的奇点和极限环分别对应于系统的平衡状态和周期 运动。

非线性振动概述

非线性振动概述
非线性振动概述
一、关于非线性振动
1、什么是非线性振动: 指不能用线性微分方程所能描述的运动。
2、发生非线性振动的根本原因是:振动系统由于某种因素而处于非线性状态。
(1)内在的非线性因素
※ 例如振动系统由于振幅过大,而出现了非线性恢复力
例如单摆: 恢复力矩为
当 50 时
sin 1 3 1 5
2、参数振动: 漏摆,荡秋千等可作为参数振动的实例;而航天器液体燃料
自由面的振荡对飞行的影响则是当代科研的前沿;对圆柱容器中 的水面上、下铅直振动时所发生的参量振动既是古老的话题,(1831年法拉第研究过) 也是当今热极一时的“混沌”的一个例子。
4
0
A x
X 0/
/
例10-12 轻质弹簧下挂一个小盘,小盘
以小物体与盘相碰时为计时零点,以新平衡位置为原点,即当t=0时,x>0, v>0。 可知,与之对应的位相角在第四相象限,所以选(D)
6
例10-11 一质点在x轴上作简谐振动,振幅A=4cm,周期 T=2s,其平衡位置取作坐标原点。若t=0时质点第一次通过x=-2cm处且向X轴负 方向运动,则质点第二次通过x=-2cm处的时刻为
F x, x2 v, v2
对以上所述的非线性因素中,只要出现其中一种,系统的振动就是非线性的。即使振 动系统本身是线性的(或说所有内在的非线性因素都可忽略),若受到外来的非线性策 动力的作用,其振动也是非线性的。
针对具体的非线性因素,系统的振动形式是完全不同的。 3、非线性系统的本质特点是:
3! 5!
M mgl sin mgl( 1 3 1 5)
6 120
弹簧振子,当振幅过大,亦出现非线性现恢复力,即
F k1x k2 x 2 k3 x3

非线性振动.ppt

非线性振动.ppt

t 0 x 2 V (t, x1, x2, x3) 2 x 2
这里,a( x ) x 2 ,b( x ) 2 x 2 。
注意: 设 V(t, x) 是具有无穷小上界的正定函数,
即 a( x ) V (t, x) b( x )
则 V(t, x) 的变化范围如图(手绘图)。
e t x1
取正定函数
V
x12

e
t
x
2 2
[注:V x12 x22 x,2 V (t,0) 0]
求得:V. et x22 (2a(t) 1)
。 根据定理(1),如果对一切 t
t0
,有a(t)
1 2
,则无扰运动是稳定的
定义4 如果存在K类函数b(r) ,使得函数V (t, x)在区域 t 0, x h, (h H)内, 满足:V (t, x) b( x ),则函数 V (t, x)具有无穷小上界。
(1) V (t, x) a( x ), V (t,0) 0 (正定的)
(2)
.
V (t, x)

0,
(常负的)
则非驻定系统(1)的无扰运动是稳定的。

求单自由度系统,q..
a(t)
.
q
e
t
q

0
无扰运动 q 0的稳定条件
解:化成标准形式

.
x1

x2

.
x2

a(t ) x 2
解析方法: 摄动法(小参数法) 渐进法(KBM法) 谐波法 多重尺度法
(3)数值解法
摄动法(小参数法)
L-P方法的基本概念由天文学家A. Lindstedt于1883年提出,

第一章非线性振动初步讲解

第一章非线性振动初步讲解

2 任意角度无阻尼单摆振动
单摆周期数学表达式
对方程
d 2 2 sin 0 0 2 dt
双曲点
乘以 d / dt 后积分 其中 E 2 2 cos 0 0
d 2 E 20 cos dt
2
积分 d [2(cos cos )1 / 2 0 0
势能曲线
• 基本方程 若取 0 1后积分得
d 2 2 sin 0 0 dt2
2
1 d cos E 2 dt 左边第一项是单摆动能 K, 左边第二项是势能 V 右边积分常数E是单摆总能
势能曲线是余弦函数
V ( ) cos
3 无阻尼单摆的相图与势能曲线
2 dt 2
2 任意角度无阻尼单摆振动
单摆周期
周期与摆角无关? 看看实验结果:
T/T0
双曲点
T0 2 / 0 2 l g ? T
0 1.0000 5 1.0005 10 1.0019 20 1.0077 30 1.0174 45 1.0369
定性结论: 1. 周期随摆角增加而增加 2. 随摆角增加波形趋于矩形
dt
0t
d [2(cos cos0 )]1/ 2
设t = 0时, 0 ,周期为 T,在 t T / 4时应有 0 ,故有:
0T / 4
0
0
2 sin 2 0 / 2 sin得:
1 2 2 0 1 3 2 4 0 T T0 1 sin sin 2 2 4 2 2
0 0
该式是振幅为P,角频率为 0 的简谐振动,其振动波形为正弦曲线。角频 率只与摆线 l 得长度有关,与摆锤质量无关,称为固有角频率。

非线性振动研究非线性系统振动的学科

非线性振动研究非线性系统振动的学科

非线性振动研究非线性系统振动的学科非线性振动研究:非线性系统振动的学科非线性振动研究是物理学、工程学和应用数学中一个重要的学科领域。

它涉及到非线性系统中的振动现象,对于理解和分析各种实际问题具有重要意义。

本文将基于该主题,介绍非线性振动研究的基本概念和方法,以及它在各个学科中的应用。

引言振动是自然界中广泛存在的物理现象,从机械振动到电磁振动,都是非常重要的。

然而,在实际问题中,线性系统往往无法完全揭示振动行为。

非线性系统中的振动特性往往更为复杂,涉及到非线性的力学、电磁学和流体力学等多个领域。

因此,非线性振动研究成为了一个独立的学科领域,其目的是研究非线性系统中的振动现象以及相关的动力学行为。

非线性振动的基本概念非线性振动是指系统在受到激励或扰动后,不呈线性关系的振动现象。

与线性振动相比,非线性振动的特点在于其振幅与激励信号之间的关系不再是比例关系。

常见的非线性振动现象包括剧烈摆动、混沌振动以及非周期振荡等。

非线性振动的研究方法研究非线性振动的方法包括理论分析和数值模拟两种主要途径。

1. 理论分析理论分析是非线性振动研究的基础。

常见的理论方法包括广义福克斯-普朗克方程、极限环理论和多尺度分析等。

通过建立系统的数学模型,可以通过解析推导的方式研究其振动行为,得到系统的稳定性条件和振动特性。

2. 数值模拟数值模拟是研究非线性振动的重要手段之一。

借助计算机的计算能力,可以模拟非线性系统的振动行为。

常见的数值方法有有限元法、有限差分法和谱方法等。

这些方法可以通过离散化系统的动力学方程,利用计算机进行数值求解,从而得到系统的振动特性和动态响应。

非线性振动的应用非线性振动研究不仅在学术领域具有重要意义,还在实际工程和科学研究中得到了广泛应用。

1. 结构动力学非线性振动理论在结构动力学中有广泛的应用。

对于高层建筑、大型桥梁和飞机等结构,非线性振动的研究可以更准确地预测其动态响应和受力情况。

这对结构的设计、安全评估和损伤检测具有重要意义。

非线性振动现象

非线性振动现象

非线性振动现象振动是物体围绕平衡位置做周期性的来回运动,它是自然界中普遍存在的现象。

在很多实际问题中,我们会遇到非线性振动现象,即振动系统不满足线性的回复力定律。

非线性振动现象在物理学、工程学以及生物学等领域都有广泛的应用和重要的研究价值。

一、什么是非线性振动现象非线性振动现象是指振动系统的受力律不满足线性回复力定律,即系统力与位移之间的关系不是线性的。

与线性振动相比,非线性振动显示出更加丰富的运动特性和行为。

非线性振动现象的出现主要归结为以下几个方面的原因:1.回复力律的非线性:通常线性振动系统受到的回复力与振动的位移成正比,但在某些情况下,回复力可能随着位移的增加而变化速率不等,导致非线性振动现象的出现。

2.系统参数的非线性:振动系统的参数非线性,如刚度、阻尼系数、质量等的变化,也会导致系统的振动特性发生变化。

3.外部扰动的非线性:外界对振动系统的扰动如果不规律、不可逆,也会导致系统出现非线性振动现象。

二、非线性振动的种类非线性振动现象的种类繁多,下面介绍几种常见的非线性振动现象:1.硬度非线性:当振动系统的回复力不仅与位移的大小有关,还与位移的变化率有关时,就会出现硬度非线性。

硬度非线性表现为振动系统的频率与振幅的关系非线性,通常存在频率间跳变、倍频和次谐波等特点。

2.阻尼非线性:振动系统受到非线性阻尼时,会出现振幅的跃变、突变等非线性现象。

3.非线性共振:当振动系统的频率接近系统的特征频率时,振幅会出现非线性的迅速增大,达到共振峰值。

4.受迫非线性振动:当振动系统受到非线性外力激励时,振幅和频率会发生非线性变化。

三、非线性振动的应用非线性振动现象在各个领域都有广泛的应用和研究价值:1.物理学:非线性振动现象的研究在物理学领域中有重要的地位。

例如,非线性振动现象的研究为材料的性能评估和电磁波的传播提供了重要依据。

2.工程学:非线性振动的研究对于工程结构的设计和优化至关重要。

例如,建筑结构和桥梁的振动特性分析需要考虑非线性振动的影响。

振动理论及工程应用10第十章 非线性振动

振动理论及工程应用10第十章 非线性振动


sin sin A sin
则上式可写成 2
2
T 4
2
d
0 0 1 sin A sin 2
2
令 k sin A 1 ,则上式展开后积分得
2
T 4
2
1
1
k2
sin2

3
k4
sin4

d
0 0 2
8

2 1 1 k 2 9 k 4
对于平衡点(0,0),按式求得
x y Xx, y, y Y x, y 20y 02 sin x
a 0,b 1,c 02,d 20
特征方程为
2 20 02 0
特征值为
1 0 2 1 ,
2 0 2 1
其它平衡点可类似讨论。一般来说 平衡点(0,0), ( 2,0) ,(4,0) …
为同类型平衡点。
(0,0)点 稳定结点 非正常结点
稳定焦点
大阻尼
临界阻尼
小阻尼
1
=1
1
摆的相平面示意图
由摆的相图可见,摆的最低位置(=0)是稳定的 ,而摆的最高位置(=)是不稳定的(同为鞍点 )。
S0
以x0为新的坐标原点,其位移为x,由坐标变换
x

x1

x0

x1

F
S0 k
则运动方程式可表示为
mx Gx kx 0
其中令 Gx gS0 g S0 x
则函数 Gx 的图形如图所示。
若将此系统的运动在相平 面(x,y)上表示,则由任意初 始状态确定的相点P0( x0,y0)出 发,绘制成相轨迹。

第一部分非线振动初步教学课件

第一部分非线振动初步教学课件

将范德玻耳方程写为
d 2x dt 2
02x
e (x 2
1) dx dt
仿照单摆方程的解,设范德玻耳方程的解为:
x A cos t
两次微分
dx A sint
dt
d 2x dt 2
A 2 cos t
一起代入方程得: (02 2 )A cost
eA 1 A 2 1sin t+ 1 eA 3 sin 3 t
dx dt
A sint
就有:
e (x 2 -1) dx
e
1
A
2
1
dx
dt 4
dt
就可将范德玻耳方程化为线性化方程:
d 2x dt 2
02x
e (x 2
1) dx dt
d 2x dt 2
e(1 A2 4
1) dx dt
02x
0
其解为 x(t) A e t cost
02
2
1/ 2
在分界线内的轨线是闭合回线 单摆作周期振动。分界线以外
单摆能量E 超过势能曲线的极
大值,轨道就不再闭合,单摆 作向左或向右方向的旋转运动
3 无阻尼单摆的相图与势能曲线
柱面上的单摆相轨线
相图横坐标θ是以2为周期的, 摆角 是同一个倒立位置,
把相图上G点与G‘点重迭一起 时,就把相平面卷缩成一个柱 面。所有相轨线都将呈现在柱 面上。因此,平面上的相轨线 是柱面上的相轨线的展开图。
非线性振动初步
第一节 无阻尼单摆的自由振荡 第二节 阻尼振子 第三节 相图方法 第四节 受迫振荡
第一节 无阻尼单摆的自由振荡
1 小角度无阻尼单摆 椭圆点 2 任意角度无阻尼单摆振动 双曲点 3 无阻尼单摆的相图与势能曲线

第6章非线性振动-1

第6章非线性振动-1

鞍点
第6章 非线性振动
u 1 u 10 e l 1 t l t u 2 u 20 e 2
6. 2 非线性振动的定性分析方法
当 > 0,即两个特征值同号时,奇点为结点。当 两个特征值都为负时,当 t → ∞时,所有的轨线趋向于 原点,因此,奇点是稳定结点,系统的运动是渐近稳定 的。而当特征值同为正时,奇点是不稳定结点。

材料非线性 几何非线性 非线性阻尼 负刚度负阻尼
非线性特性
振幅过大超出材 料线弹性范围 位移或变形过大使结 构几何形状显著变化 材料内摩擦阻尼、流体 阻尼等都是非线性阻尼 有些情况下会存在 负刚度和负阻尼
第6章 非线性振动 非线性振动研究的内容
6.1 非线性振动概述
则有
l
1
l1
ln
u1 u 10

1
l
ln
2
u2 u 20

2
l1
ln
u1 u 10
ln
u2 u 20
设 = l 2 / l 1 ,则有 ln
ln u1

u1 u 10
ln
u2 u 20

u 10

ln
u2 u 20
第6章 非线性振动 从式 ln
u1

6. 2 非线性振动的定性分析方法 可得到相轨迹方程 u
设e1和e2是在原点的领域中小到可以忽略,则可以用
下列线性化方程讨论非线性方程在原点附近的稳定性:
x Ax
作非奇异线性变换
x B u
则方程可以写为
u Ju
其中
J B
1
AB

非线性振动

非线性振动
g sin 0
l
/ rad
t/s
Testing Techniques
工程振动与测试
质量m在拉紧着的钢丝中的振动。设质量m附着在 长度为2l的钢丝中间,钢丝两端的拉力为S。当质点从 其平衡位置侧向移动距离x时,钢丝产生恢复力,
运动微分方程为
mx 2 S AEl sin 0
l
其中A, E和l分别表示钢丝的横截面 积,弹性模量和长度增量; 为钢丝 与竖直线的偏角。
Testing Techniques
工程振动与测试
10.1 非线性振动的例子
单摆的有限振幅振动是最简单的一个例子
运动微分方程为
g sin 0
l
对于微小振动,sin
g 0
l
如果振幅不是很小
线性系统
g l
3
6
0
非线性系统
Testing Techniques
工程振动与测试 单摆运动特性
m
它是x和 x 的非线性函数。
如果函数 f 不显含t,则称这个系统为自治系统, 否则称为非自治系统。
Testing Techniques
工程振动与测试
10.2 相平面
设自治系统可表示为

x f x, x 0
x y, y f x, y
对于更一般的情形,方程可表示为
x X x, y, y Y x, y
Testing Techniques
工程振动与测试
运动微分方程为
其中
mx 2 S AEl sin 0
l
l l 2 x2 l x2 2l
代入整理得
sin
x
x
l2 x2 l
mx
2S l

非线性振动

非线性振动

x (t, ) x0 (t ) x1 (t ) x2 (t )
2
第5章 非线性振动
5. 3.1 非线性振动的近似解析方法
)在 将原系统周期解的表达式代入原方程两端,并将f(x, x
0)的领域内展开成泰勒级数: 基本解(x0, x
2 0 x x F (t ) x (t, ) x0 (t ) x1 (t ) 2 x2 (t )
(4) 某些有阻尼的非线性振动系统会出现自激振动,振幅不 衰减 • 线性系统中自由振动总是衰减的
x Aent sin(t )
(5) 强迫振动系统有超谐波响应和次谐波响应成分 • 简谐激振力作用下的非线性系统 响应波形除了与激振力频 率相同的谐波外,还含有频率为激振频率的几分之一.
纽马克法来自于梯形法,它按照泰勒级数展开式,保留 到二阶导数加速度项,并引入两个参数 和对截去的高阶小 量作修正。
Duffing方程的倍周期分叉现象与混沌运动
5.3 非线性振动问题的研究方法
实物或模型实验— —结合计算机处理数据 实验方法: 空间平面法) 定性方法(几何法或相 在相平面上研究解或平 衡点的性质,即相轨迹 在相平面上分布 情况;确定奇点、极限 环、特殊轨线,解的全 局性态。 法) 初值法(如Rouge kut t a 边值法(Shoot ingMot hed) 数值解法: 直接 点映射法 胞映射法 跌代法 分析方法: (小参数法) 摄动法 定量方法 渐进法(平均法) 多尺度法 (近似法)解析法: 伽辽金法 谐波平衡法 等价线性化法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f=1.15,相轨迹分布看似没有规律,反映了某种内在的结构特征;
f=1.35,相轨迹又呈现比较简单分布, 恢复单倍周期状态,但此 时单摆并非作来回振动,而是作单向的旋转;
f =1.45,单摆运动出现2倍的周期,作单向旋转;
f=1.47,单摆出现4倍的周期,作单向旋转; f=1.50, 又出现貌似无规则的运动,但比 f=1.15,时更为混乱.
说明鞍点是不稳定的平衡点,
因为与之相连的四条相轨迹中
两条指向它,两条背离它,而
附近相轨迹呈双曲线状.
Ep
o

d
dt
o

势能曲线、相图、鞍点
假定存在阻尼和驱动力,让摆作受迫振动.这样一来, 双曲点就成了敏感区.能量稍大,单摆就会越过势垒的 顶峰,跨到它的另一侧;能量稍小,则为势垒所阻,滑 回原来的一侧单摆向回摆动。
g 4 2 64 2
式中θm是最大角位移,即单摆振动的角摆幅。
当m 时,T→∞,T/T’随摆幅θm变化关系如图所示。
可见单摆的周期是一个向无
穷大发展的非线性变化。
T T
单摆线性振动的相图
d2 g sin
2
dt 2 L
1
两边积分得
( d
dt
)2
2
2

C1

(d dt)2
§8.3 非线性振动
一、非线性振动系统
由非线性微分方程所描述的振动,称其为非线性振动。
下面以单摆做自由振动为例进行分析
单摆的线性振动
d2
mL dt 2
mg sin
d 2
dt 2

g sin
L
将sinθ按泰勒级数展开可得
d 2
dt 2

g (
L
3
3!
5
5!
)

C1

2 C1 / 2
1
0 2 5 m
6 323 6
T/T’随摆幅θm变化关系
可见,线性振动的相轨迹为椭圆, 中心点是稳定的奇点. 初始条件确定后,单摆运动过程就 对应于其中一个椭圆,单摆的运动 是一系列的同周期运动,且运动状 态完全确定。
单摆非线性振动的相图
d
dt
双曲点的存在,预示着混沌运动的可能.
二、非线性振动系统的混沌行为
仍以单摆为例, 前面已经讨论过它的自由振动,下面分析
其阻尼振动和受迫振动
y
有阻尼、无策动力的振动
小摆幅时运动方程为
oபைடு நூலகம்
x
d2
dt 2
2
d
dt
02
sin

0
单摆阻尼振动的相图(小摆幅)
小摆幅时,按阻尼的大小其运动状态可分为过阻尼、临界 阻尼、和阻尼振动.从相图可知,无论单摆从什么初始状态 出发,最后都要静下来.其状态最终要落到中央焦点处,这一 点好象能把相空间的点逐渐地吸引起来,称为“吸引子”
由此可见,在受迫阻尼振动中,单摆的运动反映出如下特征:
描述运动特征的动力学方程是非线性的;
这些非线性方程是确定性的,不包含任何随时间变化的 随 机项; 在某些情况下,单摆出现了貌似无规则的运动.此时系统对 初始条件特别敏感,初始条件的微小差异可能导致面目全 非的结果.这就是单摆的混沌行为.
混沌: 系统出现的一种貌似随机的运动。 混沌现象具有如下特征: 对初值敏感依赖——最初的微小差别会随时间逐渐放大 而导致明显的巨大差别。 运动不可重现,不可预报;
3

3

2
2
1
o

1
o

1
1
2
2
3 3 2 1 o 1 2 3 3 3 2 1 o 1 2 3
有策动力、有阻尼时单摆的相图 0.25,D 2 3, f 1.025
保持其他两个参量不变, f 逐渐增加时,单摆的相图会产生如下 变化:
f=1.07,出现2倍的周期, f 变化两个周期后单摆才恢复原状;
相轨迹显示混沌运动收敛于“奇怪吸引子”;
一般无法用解析的方法求解,只能在给定参量和初值条 件下用计算机进行数值计算。
混沌现象
研究表明,混沌仅出现在非线性系统中,是非线性引起 的随机性。而自然界中绝大多数实际过程都是非线性的, 因此,混沌是一种普遍存在而又极其复杂的现象。
自70年代以来,许多科学家都在各自的领域内发现了混 沌现象,如湍流、非线性振荡电路、激光运行系统、超 导中的约瑟夫逊结系统等都存在混沌现象。
m
mg
单摆
θ 很小时,θ 3以上可忽略不计,同时令ω2=g/L可得
d2 2
dt 2
由上式可知,小角度下单摆的运动是简谐振动,其周期为
T 2 L
g
单摆的非线性振动
随着θ 的增大,摆球的运动方程为一个非线性微分方程。 可以证明单摆的周期变为
T ' 2 l (1 1 sin 2 m 9 sin 4 m )
o

单摆无阻尼线性振动的相图
如果对摆角不加限制,微分方程变成非线性微分方程,对方 程两边积分可得
1 2
( d
dt
)2

g L
cos

C2
当t=0时,θ =θ 0
d 0
dt C2 g / L cos0
d
dt

o

d
dt
2g L
(cos

cos0
)
单摆无阻尼非线性振动的相图
大摆幅时运动方程是非线性的
此时,从其相图上可以看出, 相平面被分成不同的区域, 相轨迹都收敛与该区域中心 的吸引子.
有阻尼、并有策动力的振动
y
o
x
单摆阻尼振动的相图(大摆幅)
振动方程为
d2
dt 2
2
d
dt
02 sin

f
cos Dt
这是非线性微分方程,此时单摆的运动情况变得非常复杂, 可以对三个参量在不同组合情况下进行数值计算,画出相 图来分析.
混沌不仅是数理学科的理论,而是遍布各个领域.如化学反 应中的混沌行为、股票市场的混沌现象、生态学中的“虫 口模型” 等等.
混沌并不是完全无序,而是无序中隐含着有序;
比如天气预报中存在混沌现象,虽然不能准确预报几年后的 天气情况,但可以很好地预报明后几天的天气情况;
这说明,混沌现象的内在随机性与随机系统中的随机性有 着本质区别。 总之,混沌的随机性是一种内在的随机性,它将使我们永 远不能对系统的长期行为进行准确的预报和预测。
可见,其相图不再是一椭圆,相轨迹两端凸出略呈尖角状, 但仍是封闭曲线,表示运动仍是周期性往复摆动。
当摆幅增大π 到时,相迹线上出现了两个分支点,我们称 之为鞍点,如上图.
鞍点和中心点一样也是一个奇点,
但是在鞍点上
m
d 0
dt
d2
dt2
0
从势能曲线和相图上可知
处势能最大,
相关文档
最新文档