数字信号滤波的设计要点

合集下载

数字信号处理中的滤波器设计原理

数字信号处理中的滤波器设计原理

数字信号处理中的滤波器设计原理在数字信号处理中,滤波器是一种用于处理信号的重要工具。

它可以通过选择性地改变信号的频率特性,滤除不需要的频率成分或增强感兴趣的频率成分。

滤波器的设计原理可以分为两个方面:频域设计和时域设计。

一、频域设计频域设计是一种以频率响应为初始条件的设计方法。

其基本思想是通过指定理想频率响应来设计滤波器,并将其转化为滤波器的参数。

常见的频域设计方法包括理想滤波器设计、窗函数法设计和频率抽取法设计。

1. 理想滤波器设计理想滤波器设计方法是基于理想滤波器具有理想的频率响应特性,如理想低通滤波器、理想高通滤波器或理想带通滤波器等。

设计过程中,我们首先指定滤波器的理想响应,然后通过傅里叶变换将其转化为时间域中的脉冲响应,最终得到频率响应为指定理想响应的滤波器。

2. 窗函数法设计窗函数法是一种将指定的理想滤波器响应与某种窗函数相乘的设计方法。

常见的窗函数有矩形窗、汉宁窗、汉明窗等。

通过将理想滤波器响应与窗函数相乘,可以获得更实际可行的设计结果。

3. 频率抽取法设计频率抽取法是一种通过对滤波器的选择性抽取来设计的方法。

在该方法中,我们通常先设计一个频域连续的滤波器,然后通过采样抽取的方式,将频域上的滤波器转化为时域上的滤波器。

二、时域设计时域设计是一种以时域响应为初始条件的设计方法。

其基本思想是通过直接设计或优选设计时域的脉冲响应,进而得到所需的滤波器。

常用的时域设计方法包括有限脉冲响应(FIR)滤波器设计和无限脉冲响应(IIR)滤波器设计。

1. FIR滤波器设计FIR滤波器是一种具有有限长度的脉冲响应的滤波器。

在设计FIR滤波器时,我们可以通过多种方法,如频率采样法、窗函数法、最小二乘法等来优化滤波器的设计参数。

2. IIR滤波器设计IIR滤波器具有无限长度的脉冲响应,其设计涉及到环节函数的设计。

常见的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

综上所述,数字信号处理中的滤波器设计原理可以基于频域设计和时域设计。

IIR数字滤波器的设计知识点归纳

IIR数字滤波器的设计知识点归纳

IIR 数字滤波器的设计知识点归纳本章主要讨论无限冲激响应(IIR )数字滤波器的设计。

从设计过程看主要包含两个内容:1、由滤波器技术设计出系统函数()H z ;2、由系统函数()H z 做出其实现结构(信号流图)。

一、IIR 数字滤波器的实现结构根据系统函数()H z 的不同形式共有三种实现结构,分别是直接型,级联型和并联型。

1、 直接型结构将系统函数()H z 整理成标准形式11()()()1Mii i N ii i b zY z H z X z a z -=-===-∑∑这种网络结构流图是最基本的形式,它是级联型和并联型的基础 优点:可根据系统函数标准形式直接画出,简单直观。

缺点:调整零、极点困难,对系统量化效应敏感度高,累计误差较大,运算速度慢。

2、 级联型结构将系统函数()H z 的标准形式分解为多个一级或二级子系统函数的乘积形式,即12()()()()m H z H z H z H z =3、 并联型结构12()()()()m H z H z H z H z =+++二、IIR 数字滤波器设计 IIR 滤波器设计方法有两类,经常用的一类设计方法是借助于模拟滤波器的设计方法进行的。

设计步骤如下:先设计模拟滤波器得到传递函数()a H s ,然后将()a H s 按某种方法转换成数字滤波器的系统函数()H z 。

下面讨论模拟滤波器的设计,再讨论转化方法。

模拟滤波器的设计模拟低通滤波器的设计指标及巴特沃斯逼近设计方法模拟低通滤波器的主要指标有p Ω、s Ω、1δ和2δ。

其中p Ω和s Ω分别称为通带截止频率和阻带截止频率,c Ω为3dB 截止频率,1δ是通带中的最大衰减系数,2δ是阻带的最小衰减系数。

2110lg |()|a p H j δ=-Ω2210lg |()|a s H j δ=-Ω巴特沃斯低通滤波器的幅度平方函数2|()|a H j Ω用下式表示221|()|1()a NcH j Ω=Ω+Ω 巴特沃斯找到了一种逼近滤波器幅度平方的方法而闻名。

数字信号处理中的滤波器设计技术

数字信号处理中的滤波器设计技术

数字信号处理中的滤波器设计技术滤波器是数字信号处理中广泛应用的重要技术之一。

它可以用于去除信号中的噪声、调整信号频率、改善信号质量等。

本文将介绍数字信号处理中常见的滤波器设计技术。

一、低通滤波器低通滤波器可以通过保留低频信号,滤除高频干扰信号。

在数字信号处理中,常见的低通滤波器设计技术有有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR滤波器是一种线性相位滤波器,其特点是稳定性好、易于设计和实现。

在FIR滤波器的设计中,常用的方法有窗函数法、频率采样法和最小二乘法。

窗函数法主要用于设计线性相位FIR滤波器,可以通过选择不同的窗函数来调整滤波器的频率响应特性。

频率采样法则主要应用于非线性相位FIR滤波器的设计,通过采样输入输出信号的频谱来确定滤波器系数。

最小二乘法则是一种优化问题的求解方法,通过最小化期望输出与实际输出之间的误差来设计FIR滤波器。

IIR滤波器采用递归结构,其特点是具有较窄的转换带宽和较快的滚降特性。

IIR滤波器的设计一般基于模拟滤波器的原型设计,可以通过脉冲响应不变法、双线性变换法和频率变换法实现。

脉冲响应不变法是通过将模拟滤波器的脉冲响应与数字滤波器的单位采样响应相等来设计IIR滤波器。

双线性变换法是通过将模拟滤波器的传输函数与数字滤波器的传输函数进行线性映射来设计IIR滤波器。

频率变换法则通过对模拟滤波器的频率进行变换,再进行离散化得到IIR滤波器。

二、高通滤波器高通滤波器可以通过保留高频信号,滤除低频干扰信号。

常见的高通滤波器设计技术与低通滤波器设计类似,可以采用FIR滤波器和IIR 滤波器。

对于FIR滤波器,可以通过选择适当的窗函数和设计方法来实现高通滤波器的设计。

而对于IIR滤波器,可以采用类似的方法,将低通滤波器的设计进行变换得到高通滤波器。

三、带通滤波器带通滤波器主要用于保留一定频率范围内的信号。

在数字信号处理中,常见的带通滤波器设计技术有窗函数法、频率采样法和最小二乘法等。

数字滤波器的设计方法

数字滤波器的设计方法

数字滤波器的设计方法数字滤波器是一种用于信号处理的重要工具,可以用于信号去噪、频率选择和信号恢复等应用。

本文将介绍数字滤波器的设计方法,包括滤波器的类型、设计步骤和常用的设计工具。

我们需要了解数字滤波器的类型。

数字滤波器可以分为无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器两种。

IIR滤波器的特点是具有无穷长的冲激响应,而FIR滤波器的冲激响应是有限长的。

接下来,我们来看一下数字滤波器的设计步骤。

首先,我们需要确定滤波器的设计要求,包括滤波器的通带和阻带的频率范围,以及在通带和阻带中的衰减要求。

然后,根据这些设计要求选择合适的滤波器类型,比如IIR滤波器或FIR滤波器。

接下来,我们需要进行滤波器的设计和优化,以满足给定的要求。

最后,我们需要对设计的滤波器进行验证和性能评估。

在数字滤波器的设计过程中,我们可以借助一些常用的设计工具来辅助完成。

其中一种常用的工具是Matlab软件,它提供了丰富的信号处理工具箱,可以方便地进行滤波器的设计、分析和仿真。

另外,还有一些开源的信号处理库,如SciPy和Octave,也可以用于数字滤波器的设计。

除了工具之外,还有一些常用的设计方法可以帮助我们实现数字滤波器的设计。

其中一种方法是基于频率响应的设计方法,即通过设定滤波器在不同频率上的增益来满足设计要求。

这种方法可以通过频域分析和优化来实现。

另一种方法是基于时域响应的设计方法,即通过设定滤波器的冲激响应来满足设计要求。

这种方法可以通过时域分析和优化来实现。

在设计数字滤波器时,还需要考虑滤波器的稳定性和实现的复杂度。

稳定性是指滤波器的输出是否有界,即是否会出现无限增长的情况。

实现的复杂度包括滤波器的计算量和存储量等方面的考虑。

通常情况下,FIR滤波器比IIR滤波器更容易设计和实现,但是在一些特定的应用中,IIR滤波器可能更加适用。

总结起来,数字滤波器的设计是一个复杂而关键的过程,需要根据设计要求选择合适的滤波器类型,进行设计和优化,并进行验证和性能评估。

数字滤波器的设计与优化方法

数字滤波器的设计与优化方法

数字滤波器的设计与优化方法数字滤波器是一种用于信号处理的重要工具,广泛应用于通信、图像处理、音频处理等领域。

它能够实现对信号的去噪、平滑、提取等功能,可以有效地改善信号的质量和准确性。

在数字滤波器的设计和优化过程中,有多种方法和技巧可以帮助我们获得更好的滤波效果。

一、数字滤波器的基本原理数字滤波器是利用数字信号处理的方法对模拟信号进行滤波处理的一种滤波器。

它可以通过对信号进行采样、量化、数字化等步骤将模拟信号转换为数字信号,并在数字域上进行滤波处理。

数字滤波器通常由滤波器系数和滤波器结构两部分组成。

滤波器系数决定了滤波器的频率响应特性,滤波器结构决定了滤波器的计算复杂度和实现方式。

二、数字滤波器的设计方法1. 滤波器设计的基本流程(1)确定滤波器的性能指标和要求,如截止频率、通带增益、阻带衰减等;(2)选择合适的滤波器类型和结构,如FIR滤波器、IIR滤波器等;(3)设计滤波器的系数,可以通过窗函数法、最小二乘法、频率采样法等方法来实现;(4)验证滤波器的性能指标是否满足要求,可以通过频率响应曲线、时域响应曲线等方式进行。

2. 滤波器设计的常用方法(1)窗函数法:通过在频域上选择合适的窗函数,在时域上将滤波器的频率响应通过傅里叶变换推导出来。

(2)最小二乘法:通过最小化滤波器的输出与期望响应之间的误差,得到最优的滤波器系数。

(3)频率采样法:直接对滤波器的频率响应进行采样,在频域上选取一组离散频率点,并要求滤波器在这些频率点上的响应与期望响应相等。

三、数字滤波器的优化方法数字滤波器的优化方法主要包括滤波器结构的优化和滤波器性能的优化。

1. 滤波器结构的优化滤波器的结构优化是指通过改变滤波器的计算结构和参数,以降低滤波器的计算复杂度和存储需求,提高滤波器的实时性和运行效率。

常见的滤波器结构包括直接型结构、级联型结构、并行型结构等,可以根据具体需求选择合适的结构。

2. 滤波器性能的优化滤波器的性能优化是指通过选择合适的设计方法和参数,以获得更好的滤波效果。

数字信号处理中的滤波器设计及其应用

数字信号处理中的滤波器设计及其应用

数字信号处理中的滤波器设计及其应用数字信号处理中的滤波器是一种用于处理数字信号的工具,它能够从信号中去除杂音、干扰等不需要的部分,使信号变得更加清晰、准确。

在数据通信、音频处理、图像处理等各种领域都有着广泛的应用。

本文将探讨数字信号处理中的滤波器设计及其应用。

一、滤波器的分类根据滤波器能否传递直流分量,可以将滤波器分为直流通、低通、高通、带通和带阻五种类型。

1.直流通滤波器:直流通滤波器不会滤除信号中的直流分量,只是将信号波形的幅值进行调整。

它主要用于直流电源滤波、电池充电电路等。

2.低通滤波器:低通滤波器可以通过滤除信号中的高频分量来保留低频分量,其截止频率通常指代3dB的频率,低于该频率的信号通过的幅度保持不变,而高于该频率的信号则被削弱。

低通滤波器主要用于音频处理、语音识别等。

3.高通滤波器:高通滤波器与低通滤波器相反,它滤除低频分量,只保留高频分量。

其截止频率也指代3dB的频率,高于该频率的信号通过的幅度保持不变。

高通滤波器主要用于图像处理、视频处理等。

4.带通滤波器:带通滤波器可以通过滤除一定频率范围内的信号,使得出现在该频率范围内的信号通过,而其他的信号则被削弱。

带通滤波器主要应用于频率选择性接收和频率选择性信号处理。

5.带阻滤波器:带阻滤波器可以通过滤除一定频率范围内的信号,使得不在该频率范围内的信号通过,而其他的信号则被削弱。

带阻滤波器主要应用于频率选择性抑制和降噪。

二、滤波器设计方法滤波器的设计需要考虑其所需的滤波器类型、截止频率、通/阻带宽度等参数。

现有的设计方法主要有两种:频域设计和时域设计。

1.频域设计:频域设计是一种基于频谱分析的滤波器设计方法,其核心是利用傅里叶变换将时域信号转换为频域信号,进而根据所需的滤波器类型和参数进行滤波器设计。

常见的频域设计方法包括理想滤波器设计、布特沃斯滤波器设计、切比雪夫滤波器设计等。

理想滤波器设计基于理想低通、高通、带通或带阻滤波器的理论,将所需的滤波器类型变换为频率响应函数进行滤波器设计。

数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计数字信号处理技术是现代通信、音频、图像等领域中不可或缺的一门技术。

数字信号处理的核心是数字滤波器设计,本文将介绍一种常用的数字滤波器——数字巴特沃斯滤波器的设计方法。

一、数字滤波器简介数字滤波器是将连续时间信号转换成离散时间信号,实现对离散时间信号的滤波处理,具有实时性好、精度高、可重复性强等优点。

数字滤波器有两种类型:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

二、数字巴特沃斯滤波器数字巴特沃斯滤波器是一种常用的IIR滤波器,其主要特点是具有平坦的通/阻带,通/阻带边缘陡峭。

因此在实际应用中,数字巴特沃斯滤波器应用较为广泛。

数字巴特沃斯滤波器的设计方法一般包括以下步骤:确定滤波器类型、确定通/阻带的截止频率、确定滤波器的阶数、计算滤波器的系数。

1、确定滤波器类型在实际应用中,数字巴特沃斯滤波器有四种类型:低通、高通、带通和带阻滤波器,应根据实际需求选择。

2、确定通/阻带的截止频率通常情况下,固定本例中采用的是低通滤波器,需要确定的就是通带和阻带的截止频率。

对于低通滤波器,通带截止频率ωc应该比信号频率fs的一半小,阻带截止频率ωs 应该比ωc大一些,通常ωs/ωc取0.5~0.7比较好。

滤波器的阶数一般是与滤波器的性能相关的。

阶数越高,性能越好,但同时计算量也会更大。

在实际应用中,一般取4~8的阶数即可。

4、计算滤波器的系数根据上述参数计算滤波器的系数,这里介绍两种常用的方法:一种是脉冲响应不变法(Impulse Invariant Method),另一种是双线性变换法(Bilinear Transformation)。

脉冲响应不变法是一种较为简单的设计方法,但由于其数字滤波器与连续时间滤波器之间的不同,可能会引入一定程度的失真。

双线性变换法可以使二阶系统和一阶系统的增益分别为1和0dB,这是一种比较理想的设计方法。

四、实验步骤本实验采用Matlab软件进行数字滤波器的设计,具体步骤如下:1、打开Matlab软件,新建一个.m文件;2、输入需要滤波的数字信号,此处可以使用Matlab自带的signal工具箱中的一些模拟信号;4、使用filter函数实现数字滤波器对信号的滤波过程;5、通过比较信号的频谱图,评估滤波器的性能。

数字信号处理实验FIR数字滤波器的设计

数字信号处理实验FIR数字滤波器的设计

数字信号处理实验:FIR数字滤波器的设计1. 引言数字滤波器是数字信号处理的关键技术之一,用于对数字信号进行滤波、降噪、调频等操作。

FIR (Finite Impulse Response) 数字滤波器是一种常见的数字滤波器,具有线性相应和有限的脉冲响应特性。

本实验旨在通过设计一个FIR数字滤波器来了解其基本原理和设计过程。

2. FIR数字滤波器的基本原理FIR数字滤波器通过对输入信号的每一个样本值与滤波器的冲激响应(滤波器的系数)进行线性加权累加,来实现对信号的滤波。

其数学表达式可以表示为:y(n) = b0 * x(n) + b1 * x(n-1) + b2 * x(n-2) + ... + bN * x(n-N)其中,y(n)表示滤波器的输出,x(n)表示滤波器的输入信号,b0~bN表示滤波器的系数。

FIR数字滤波器的脉冲响应为有限长度的序列,故称为有限冲激响应滤波器。

3. FIR数字滤波器的设计步骤FIR数字滤波器的设计主要包括以下几个步骤:步骤1: 确定滤波器的阶数和截止频率滤波器的阶数决定了滤波器的复杂度和性能,而截止频率决定了滤波器的通带和阻带特性。

根据实际需求,确定滤波器的阶数和截止频率。

步骤2: 选择滤波器的窗函数窗函数是FIR滤波器设计中常用的一种方法,可以通过选择不同的窗函数来实现不同的滤波器特性。

常用的窗函数有矩形窗、汉宁窗、汉明窗等。

根据实际需求,选择合适的窗函数。

步骤3: 计算滤波器的系数根据选择的窗函数和滤波器的阶数,使用相应的公式或算法计算滤波器的系数。

常见的计算方法有频率采样法、窗函数法、最小二乘法等。

步骤4: 实现滤波器根据计算得到的滤波器系数,可以使用编程语言或专用软件来实现滤波器。

步骤5: 评估滤波器性能通过输入测试信号,观察滤波器的输出结果,评估滤波器的性能和滤波效果。

常见评估指标有滤波器的幅频响应、相频响应、群延迟等。

4. 实验步骤本实验将以Matlab软件为例,演示FIR数字滤波器的设计步骤。

数字信号滤波器设计

数字信号滤波器设计

数字信号滤波器设计滤波器是数字信号处理中常用的工具,用于去除信号中的噪声或不需要的频率成分。

数字信号滤波器设计旨在找到适合特定信号处理任务的最佳滤波器参数。

本文将介绍数字信号滤波器的基本原理、滤波器设计的步骤以及常用的滤波器类型。

一、数字信号滤波器的基本原理数字滤波器可以通过不同的方式实现滤波功能,但其基本原理是相同的。

数字滤波器将输入信号分成若干个离散的样本,然后对每个样本进行滤波处理。

滤波器通常由一组加权系数和延时单元组成,其输入和输出通过这些延时单元进行连接。

数字滤波器可以分为时域滤波器和频域滤波器。

时域滤波器在时域内对信号进行滤波,而频域滤波器则通过将信号变换到频域进行滤波。

常见的时域滤波器包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器,而频域滤波器则包括离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。

二、数字信号滤波器设计的步骤设计数字信号滤波器需要经过以下几个步骤:1. 定义滤波器的需求和规格:确定所需滤波器的截止频率、通带增益和阻带衰减等参数。

2. 选择滤波器类型:根据实际需求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器。

3. 设计滤波器的传递函数:根据所选滤波器类型的特点,设计合适的滤波器传递函数。

4. 确定滤波器的结构:选择适当的滤波器结构,如直接结构、级联结构或并联结构。

5. 计算滤波器参数:根据所选滤波器结构和传递函数,计算滤波器的参数,如加权系数和延时单元数量。

6. 实现滤波器:将滤波器参数应用到滤波器结构中,实现数字信号滤波器。

7. 评估滤波器性能:通过模拟或实际信号测试,评估设计的滤波器在不同频率下的性能。

三、常用的数字信号滤波器类型1. FIR滤波器:有限脉冲响应滤波器是一种常见的数字信号滤波器类型,其特点是具有线性相位响应和稳定性。

FIR滤波器通过有限数量的延时单元和加权系数对信号进行滤波处理。

2. IIR滤波器:无限脉冲响应滤波器是另一种常用的数字信号滤波器类型,其特点是具有非线性相位响应和较高的滤波效率。

模拟信号处理中的数字滤波器设计思路

模拟信号处理中的数字滤波器设计思路

模拟信号处理中的数字滤波器设计思路数字滤波器在模拟信号处理中起着至关重要的作用,可以有效地去除信号中的噪声和干扰,提高信号的质量和准确性。

设计一个高效可靠的数字滤波器需要综合考虑信号的特性、滤波器的类型和参数设置等多个因素。

首先,确定信号的特性是设计数字滤波器的关键。

需要分析信号的频率范围、幅度范围以及所含的噪声类型,这些信息可以帮助选择合适的滤波器类型和参数。

常见的数字滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器,每种类型有不同的特性适用于不同的信号。

其次,根据信号的特性选择合适的数字滤波器类型。

如果信号包含高频噪声,可以选择低通滤波器;如果信号包含低频噪声,可以选择高通滤波器;如果信号需要保留一定频率范围,可以选择带通滤波器;如果信号需要去除某个频率范围,可以选择带阻滤波器。

合理选择滤波器类型可以有效地去除信号中的噪声和干扰。

在选择滤波器类型的基础上,需要确定滤波器的参数设置。

包括截止频率、通带波动和阻带衰减等参数。

截止频率是指滤波器开始起作用的频率,通带波动是指在通带范围内信号的波动情况,阻带衰减是指在阻带范围内信号的减弱情况。

合理设置这些参数可以使滤波器在有效去除噪声的同时尽可能保留原始信号的特性。

另外,数字滤波器的设计还需要考虑实现方式和计算复杂度。

常见的数字滤波器实现方式包括FIR滤波器和IIR滤波器,它们各有优劣。

FIR滤波器具有线性相位和稳定性优点,适用于需要保持信号相位信息的场合;IIR滤波器具有较高的滤波效率和计算速度,适用于计算资源有限的场合。

根据实际需求选择合适的实现方式。

最后,在设计数字滤波器时需要进行系统性能评估和优化。

可以通过频率响应、时域响应、幅频响应和群延迟等指标对滤波器性能进行评估,根据评估结果对滤波器进行优化。

一般来说,希望滤波器具有较窄的过渡带宽、较高的阻带衰减和较小的相位失真。

通过不断调整参数和算法,可以使滤波器达到最佳性能。

综上所述,设计数字滤波器是模拟信号处理中的重要任务,需要综合考虑信号特性、滤波器类型、参数设置、实现方式和系统性能等多个因素。

数字信号处理讲义第7章滤波器的设计方法

数字信号处理讲义第7章滤波器的设计方法

第7章滤波器的设计方法教学目的1.掌握由连续时间滤波器设计离散时间IIR滤波器的方法,包括冲激响应不变法,双线性变换法等;2.了解常用的窗函数,掌握低通IIR滤波器的频率变换法、用窗函数法设计FIR滤波器的方法;3.掌握FIR滤波器的逼近原理与设计方法。

教学重点与难点重点:本章是本课程的重中之重,滤波器的设计是核心内容之一。

1.连续时间滤波器设计离散时间IIR滤波器的方法,包括冲激响应不变法,双线性变换法等;2.常用的窗函数,掌握低通IIR滤波器的频率变换法、用窗函数法设计FIR滤波器的方法;3.掌握FIR滤波器的逼近原理与设计方法。

难点:1.冲激响应不变法,双线性变换法2.用窗函数法设计FIR滤波器FIR滤波器的逼近原理与设计方法基本概念7.0.1 选频滤波器的分类数字滤波器是数字信号处理的重要基础。

在对信号的过滤、检测与参数的估计等处理中, 数字滤波器是使用最广泛的线性系统。

数字滤波器是对数字信号实现滤波的线性时不变系统。

它将输入的数字序列通过特定运算转变为输出的数字序列。

因此,数字滤波器本质上是一台完成特定运算的数字计算机。

我们已经知道,一个输入序列x(n),通过一个单位脉冲响应为h(n)的线性时不变系统后,其输出响应y(n)为∑∞-)(y))()()(n(nn=m*=xmhnhx将上式两边经过傅里叶变换,可得式中,Y (e j ω)、X (e j ω)分别为输出序列和输入序列的频谱函数, H (ejω)是系统的频率响应函数。

可以看出,输入序列的频谱X (e j ω)经过滤波后,变为X (e j ω)H (e j ω)。

如果|H (e j ω)|的值在某些频率上是比较小的,则输入信号中的这些频率分量在输出信号中将被抑制掉。

因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择H (ej ω),使得滤波后的X (e j ω)H (e j ω)符合人们的要求,这就是数字滤波器的滤波原理。

和模拟滤波器一样,线性数字滤波器按照频率响应的通带特性可划分为低通、高通、带通和带阻几种形式。

fir数字滤波器的设计指标

fir数字滤波器的设计指标

fir数字滤波器的设计指标FIR数字滤波器的设计指标主要包括以下几个方面:1. 频率响应:FIR数字滤波器的频率响应是指滤波器对不同频率信号的响应程度。

设计时需要根据应用场景确定频率响应特性,例如低通、高通、带通等。

低通滤波器用于消除高频噪声,高通滤波器用于保留低频信号,带通滤波器则用于限制信号在特定频率范围内的传输。

2. 幅频特性:FIR数字滤波器的幅频特性是指滤波器在不同频率下的幅值衰减情况。

设计时需要根据频率响应特性调整幅频特性,以满足信号处理需求。

例如,在通信系统中,为了消除杂散干扰和多径效应,需要设计具有特定幅频特性的滤波器。

3. 相位特性:FIR数字滤波器的相位特性是指滤波器对信号相位的影响。

设计时需要确保滤波器的相位特性满足系统要求,例如线性相位特性。

线性相位特性意味着滤波器在不同频率下的相位延迟保持恒定,这对于许多通信系统至关重要。

4. 群延迟特性:FIR数字滤波器的群延迟特性是指滤波器对信号群延迟的影响。

群延迟是指信号通过滤波器后,各频率成分的延迟时间。

设计时需要根据应用场景调整群延迟特性,以确保信号处理效果。

例如,在语音处理中,需要降低滤波器的群延迟,以提高语音信号的清晰度。

5. 稳定性:FIR数字滤波器的稳定性是指滤波器在实际应用中不发生自激振荡等不稳定现象。

设计时需要确保滤波器的稳定性,避免产生有害的谐波和振荡。

6. 计算复杂度:FIR数字滤波器的计算复杂度是指滤波器在实现过程中所需的计算资源和时间。

设计时需要权衡滤波器的性能和计算复杂度,以满足实时性要求。

例如,在嵌入式系统中,计算资源有限,需要设计较低计算复杂度的滤波器。

7. 硬件实现:FIR数字滤波器的硬件实现是指滤波器在实际硬件平台上的实现。

设计时需要考虑硬件平台的特性,如处理器速度、内存容量等,以确定合适的滤波器结构和参数。

8. 软件实现:FIR数字滤波器的软件实现是指滤波器在软件平台上的实现。

设计时需要考虑软件平台的特性,如编程语言、算法库等,以确定合适的滤波器设计和实现方法。

数字滤波器的设计方法

数字滤波器的设计方法

数字滤波器的设计方法数字滤波器是一种用于信号处理的重要工具,可以从输入信号中提取出特定的频率成分或者对信号进行去噪。

数字滤波器的设计方法包括滤波器类型选择、频率响应设计和滤波器参数计算等。

选择合适的滤波器类型是数字滤波器设计的第一步。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

根据信号处理的需求,选择适合的滤波器类型可以有效地提取或者去除特定的频率成分。

接下来,设计滤波器的频率响应是数字滤波器设计的关键。

频率响应描述了滤波器在不同频率下的增益特性。

常见的频率响应形状包括理想频率响应、巴特沃斯频率响应和切比雪夫频率响应等。

根据信号处理的要求,选择合适的频率响应形状可以满足滤波器的性能要求。

在设计滤波器的过程中,需要确定滤波器的参数。

这些参数包括截止频率、通带最大衰减、阻带最小衰减等。

通过选择合适的参数,可以调整滤波器的性能以满足信号处理的要求。

在实际的数字滤波器设计中,可以使用各种工具和方法来辅助设计过程。

其中,数字滤波器设计软件是一种常用的工具,可以根据输入的设计要求自动生成滤波器的参数和频率响应。

此外,还可以使用模拟滤波器的设计方法来设计数字滤波器,例如使用模拟滤波器的频率转换方法将模拟滤波器转换为数字滤波器。

需要注意的是,在数字滤波器设计中,经常会遇到一些问题和挑战。

例如,滤波器的设计目标可能会与实际应用中的信号相冲突,需要在设计过程中进行权衡。

此外,数字滤波器的设计也需要考虑计算量和存储量等资源的限制,以保证设计的可实现性。

数字滤波器的设计方法涉及滤波器类型选择、频率响应设计和滤波器参数计算等步骤。

通过选择合适的滤波器类型、设计合理的频率响应和确定适当的滤波器参数,可以设计出满足信号处理要求的数字滤波器。

在设计过程中,可以借助各种工具和方法来辅助设计,同时需要考虑实际应用中的问题和挑战,以确保设计的可行性和有效性。

数字滤波器的原理和设计方法

数字滤波器的原理和设计方法

数字滤波器的原理和设计方法数字滤波器是一种用于信号处理的重要工具,其通过对输入信号进行滤波操作,可以去除噪声、改变信号频谱分布等。

本文将介绍数字滤波器的原理和设计方法,以提供对该领域的基本了解。

一、数字滤波器的原理数字滤波器是由数字信号处理器实现的算法,其原理基于离散时间信号的滤波理论。

离散时间信号是在离散时间点处取样得到的信号,而数字滤波器则是对这些取样数据进行加工处理,从而改变信号的频谱特性。

数字滤波器的原理可以分为两大类:时域滤波和频域滤波。

时域滤波器是通过对信号在时间域上的加工处理实现滤波效果,常见的时域滤波器有移动平均滤波器、巴特沃斯滤波器等。

频域滤波器则是通过将信号进行傅里叶变换,将频谱域上不需要的频率成分置零来实现滤波效果。

常见的频域滤波器有低通滤波器、高通滤波器等。

二、数字滤波器的设计方法数字滤波器的设计是指根据特定的滤波要求来确定相应的滤波器参数,以使其能够满足信号处理的需求。

下面介绍几种常见的数字滤波器设计方法。

1. IIR滤波器设计IIR滤波器是指具有无限长单位响应的滤波器,其设计方法主要有两种:一是基于模拟滤波器设计的方法,二是基于数字滤波器变换的方法。

基于模拟滤波器设计的方法使用了模拟滤波器的设计技术,将连续时间滤波器进行离散化处理,得到离散时间IIR滤波器。

而基于数字滤波器变换的方法则直接对数字滤波器进行设计,无需通过模拟滤波器。

2. FIR滤波器设计FIR滤波器是指具有有限长单位响应的滤波器,其设计方法主要有窗函数法、频率采样法和最优化法。

窗函数法通过选择不同的窗函数来实现滤波器的设计,常见的窗函数有矩形窗、汉宁窗、海明窗等。

频率采样法则是基于滤波器在频率域上的采样点来设计滤波器。

最优化法是通过将滤波器设计问题转化为一个最优化问题,使用数学优化算法得到最优解。

3. 自适应滤波器设计自适应滤波器是根据输入信号的统计特性和滤波器自身的适应能力,来实现对输入信号进行滤波的一种方法。

iir数字滤波器的设计方法

iir数字滤波器的设计方法

iir数字滤波器的设计方法IIR数字滤波器的设计方法IIR数字滤波器是一种常用的数字信号处理工具,用于对信号进行滤波和频率域处理。

其设计方法是基于传统的模拟滤波器设计技术,通过将连续时间滤波器转换为离散时间滤波器来实现。

本文将介绍IIR数字滤波器的设计方法和一些常见的实现技巧。

一、IIR数字滤波器的基本原理IIR数字滤波器是一种递归滤波器,其基本原理是将输入信号与滤波器的系数进行加权求和。

其输出信号不仅与当前输入值有关,还与之前的输入和输出值有关,通过不断迭代计算可以得到最终的输出结果。

二、IIR数字滤波器的设计步骤1. 确定滤波器的类型:低通滤波器、高通滤波器、带通滤波器或带阻滤波器。

2. 确定滤波器的阶数:阶数决定了滤波器的陡峭度和性能。

3. 选择滤波器的截止频率或通带范围。

4. 根据所选的滤波器类型和截止频率,设计滤波器的模拟原型。

5. 将模拟原型转换为数字滤波器。

三、IIR数字滤波器的设计方法1. 巴特沃斯滤波器设计方法:- 巴特沃斯滤波器是一种最常用的IIR数字滤波器,具有平坦的通带特性和陡峭的阻带特性。

- 设计方法为先将模拟滤波器转换为数字滤波器,然后通过对模拟滤波器进行归一化来确定截止频率。

2. 阻带衰减设计方法:- 阻带衰减设计方法是一种通过增加滤波器的阶数来提高滤波器阻带衰减特性的方法。

- 通过增加阶数,可以获得更陡峭的阻带特性,但同时也会增加计算复杂度和延迟。

3. 频率变换方法:- 频率变换方法是一种通过对滤波器的频率响应进行变换来设计滤波器的方法。

- 通过对模拟滤波器的频率响应进行变换,可以得到所需的数字滤波器。

四、IIR数字滤波器的实现技巧1. 级联结构:- 将多个一阶或二阶滤波器级联起来,可以得到更高阶的滤波器。

- 级联结构可以灵活地实现各种滤波器类型和阶数的设计。

2. 并联结构:- 将多个滤波器并联起来,可以实现更复杂的频率响应。

- 并联结构可以用于设计带通滤波器和带阻滤波器。

数字滤波器的原理与设计

数字滤波器的原理与设计

数字滤波器的原理与设计数字滤波器(Digital Filter)是一种用数字信号处理技术实现的滤波器,其主要作用是对输入的数字信号进行滤波处理,去除或弱化信号中的某些频率成分,从而得到期望的输出信号。

数字滤波器可应用于音频处理、图像处理、通信系统等多个领域。

本文将详细介绍数字滤波器的原理与设计。

数字滤波器的原理基于数字信号处理技术,其主要原理是将连续时间的模拟信号经过采样和量化处理后,转换成离散时间的数字信号,再通过数字滤波器对数字信号进行频域或时域的滤波处理。

以下是数字滤波器的设计流程:1. 确定滤波器的性能要求:首先需要明确设计滤波器的性能要求,例如滤波器类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的增益或衰减等。

2. 选择滤波器结构:根据性能要求选择滤波器的结构,常见的数字滤波器结构包括IIR滤波器(Infinite Impulse Response)和FIR滤波器(Finite Impulse Response)。

IIR滤波器基于差分方程实现,具有较好的频率响应特性和较高的计算效率;FIR滤波器基于冲激响应实现,具有较好的稳定性和线性相位特性。

3. 设计滤波器传递函数:根据选择的滤波器结构,设计滤波器的传递函数。

对于IIR滤波器,可以采用脉冲响应不变法(Impulse Invariant)或双线性变换法(Bilinear Transform)等方法,将模拟滤波器的传递函数转换成数字滤波器的传递函数。

对于FIR滤波器,通常采用窗函数设计法或最优化设计法等方法得到滤波器的冲激响应。

4. 数字滤波器实现:根据设计好的传递函数,采用离散时间卷积的方法实现数字滤波器。

对于IIR滤波器,可以通过递归差分方程的形式实现,其中需要考虑滤波器的稳定性;对于FIR 滤波器,可以利用冲激响应的线性卷积运算实现。

5. 数字滤波器的优化与实现:对于滤波器的性能要求更高或计算资源有限的情况,可以对数字滤波器进行优化与实现。

FIR滤波器程序设计要点

FIR滤波器程序设计要点

FIR滤波器程序设计要点FIR(Finite Impulse Response)滤波器是一类常用的数字滤波器,其设计过程涉及到理论知识、算法选择以及实现方式等多个要点。

下面将从这些方面逐一进行论述,以便于全面理解FIR滤波器程序设计的要点。

一、理论知识1.了解FIR滤波器的原理:FIR滤波器采用有限长的冲激响应作为滤波器的特性,并且在滤波过程中只涉及输入信号和滤波器的参数,不涉及状态的保存。

2.掌握FIR滤波器的频率响应:FIR滤波器的频率响应是通过滤波器的冲激响应和输入信号的傅里叶变换得到的,可以通过频率响应来评估滤波器的性能和设计参数。

3.理解FIR滤波器的设计方法:FIR滤波器的设计方法有窗函数法、频率采样法和优化法等多种,了解不同方法的特点和应用场景,能够选择合适的设计方法。

二、算法选择1.窗函数法:窗函数法是设计FIR滤波器最常用的方法之一,其基本思想是在频域对滤波器的频率响应进行加权,在时域通过傅里叶变换得到滤波器的冲激响应。

2.频率采样法:频率采样法是通过指定一组滤波器的频率响应值,在频域中采样点上满足所需频率响应要求,最终在时域得到滤波器的冲激响应。

3. 优化法:优化法是通过优化算法对滤波器的冲激响应进行优化,以达到所需的频率响应要求,常见的优化算法包括最小二乘法和Chebyshev优化法等。

三、实现方式1.直接实现:直接实现是将滤波器的冲激响应和输入信号一一对应相乘,再求和得到输出信号,并且可以通过循环实现。

2.快速实现:快速实现是通过快速傅里叶变换(FFT)算法将滤波器的冲激响应转换为频域,在频域上进行乘法操作,再通过逆变换得到输出信号。

3.级联实现:级联实现是将滤波器分解成若干个较短的子滤波器,再将子滤波器连接起来,可以减少滤波器的复杂度和实现过程中所需的计算量。

总结起来,FIR滤波器程序设计的要点包括理解FIR滤波器的原理和频率响应、选择适合的设计方法和算法、熟悉不同实现方式的特点和应用场景,以及根据实际需求进行合理的设计和优化。

数字信号处理中滤波器设计的使用教程

数字信号处理中滤波器设计的使用教程

数字信号处理中滤波器设计的使用教程数字信号处理(DSP)是一门广泛应用于通信、音频、图像、雷达等领域的技术。

滤波是其中一种常见的操作,用于去除或改变信号中的某些成分。

本文将介绍数字信号处理中滤波器的设计与使用方法。

一、滤波器概述滤波器是数字信号处理中的重要组成部分,它通过改变信号的频谱来实现信号的特定处理目标。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

低通滤波器(Low-pass Filter)用于去除高频噪声并保留低频成分,适用于信号平滑处理。

高通滤波器(High-pass Filter)则相反,保留高频成分并去除低频部分,常用于去除直流偏移和低频噪声。

带通滤波器(Band-pass Filter)通过保留一定范围的频率成分来滤除其他频率的信号,常用于信号频带选择和精确查找特定频率。

带阻滤波器(Band-stop Filter)则是保留某一范围的频率成分并去除其他频率,常用于消除干扰信号或特定频率的噪声。

二、滤波器设计方法滤波器的设计目标是根据具体需求确定滤波器类型,并设计出相应的滤波器参数。

下面将介绍两种常见的设计方法。

1. IIR滤波器设计无限脉冲响应(IIR)滤波器根据系统的差分方程来设计,具有较为复杂的频率响应。

常见的IIR滤波器设计方法包括巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器和椭圆(Elliptic)滤波器。

(1)巴特沃斯滤波器是一种常见的IIR滤波器,具有近似的平坦频率响应和宽的过渡带宽度。

滤波器的设计包括选择滤波器阶数、截止频率和滤波器类型等参数。

(2)切比雪夫滤波器是一种IIR滤波器,除了具有平坦的频率响应外,还可实现更陡峭的过渡带。

切比雪夫滤波器的设计包括选择滤波器阶数、截止频率、过渡带宽度和纹波等参数。

(3)椭圆滤波器是一种IIR滤波器,具有最陡峭的过渡带和最小的滤波器阶数。

椭圆滤波器的设计包括选择滤波器阶数、截止频率、过渡带宽度、纹波和阻带衰减等参数。

数字信道化 滤波器设计

数字信道化 滤波器设计

数字信道化滤波器设计
数字信道化是指将模拟信号转换为数字信号的过程,其中滤波
器设计起着至关重要的作用。

滤波器用于信号处理中,可以帮助去
除不需要的信号成分,以及增强感兴趣的信号成分。

在数字信道化中,滤波器设计需要考虑以下几个方面:
1. 信号特性,在设计滤波器之前,需要对信号的特性进行分析。

这包括信号的频率范围、带宽、幅度和相位等特性。

根据信号特性
的不同,选择合适的滤波器类型和参数。

2. 滤波器类型,常见的数字滤波器类型包括低通滤波器、高通
滤波器、带通滤波器和带阻滤波器。

根据信号在频域中的特性,选
择合适的滤波器类型。

3. 滤波器设计方法,滤波器设计方法包括基于频域的设计方法
和基于时域的设计方法。

频域设计方法包括巴特沃斯、切比雪夫和
椭圆等方法,时域设计方法包括有限脉冲响应(FIR)滤波器和无限
脉冲响应(IIR)滤波器。

4. 数字滤波器参数,在设计数字滤波器时,需要确定滤波器的
参数,如截止频率、通带波纹、阻带衰减等。

这些参数的选择会直接影响滤波器的性能。

5. 实现和优化,设计好滤波器后,需要考虑滤波器的实现方式和优化方法。

常见的实现方式包括直接形式、级联形式和并行形式等。

优化方法可以通过改进算法和参数调整来提高滤波器的性能。

总之,数字信道化中的滤波器设计需要综合考虑信号特性、滤波器类型、设计方法、参数选择、实现和优化等多个方面,以确保设计出满足要求的数字滤波器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告
课程名称数字信号处理
课题名称数字滤波器的设计
专业通信工程
班级
学号
姓名
指导教师
2011年12月25日
湖南工程学院
课程设计任务书
课程名称数字信号处理
课题数字滤波器的设计
专业班级
学生姓名
学号
指导老师
审批
任务书下达日期2011年12月19日
任务完成日期2011年12月25日
《数字信号处理》课程设计任务书
(1)加高斯白噪声的程序如下:
x2=awgn(x1,10);
y2=fft(x2,32768);
subplot(221)
plot(x2);
title('加高斯白噪声语音信号的时域波形')
subplot(222)
plot(abs(y2));
title('加高斯白噪声语音信号的频谱')
(2)加单频余弦噪声程序如下:
构造希望逼近的频率响应函数H (e ),即
H (e )=H (w)e
计算h (n)。
加窗得到设计的结果:h(n)=h (n)w(n)。
6
对滤波后的语音信号进行回放,感觉滤波前后语音信号的变化。
三、主要功能的实现
1
语音信号的采集是利用Windows中的录音机或者使用其它专业的录音软件,录制时需要配备录音硬件(如麦克风),为便于比较,需要在安静、干扰小的环境下录音。Windows附件的娱乐中有个录音机程序,简称录音机,通过它可以驱动声卡采集、播放和简单处理语音信号,语音信号的采集可以通过麦克风直接录制人的声音,可通过对文件属性设置文件的格式、采样频率、位数等。
plot(x4)
title('加多频余弦信号的语音信号时域波形')
plot(abs(y3));
subplot(2,1,2)
title('加多频余弦信号的语音信号频谱')
4
对于不同的加躁波我们对滤波器的设计是不同的。对于加高斯白噪声的信号,噪声在每个部分都有故无论用什么滤波器都无法将噪声完全滤去,所以选择用带通滤波器;对于低频的加单频余弦信号的语音信号用高通滤波器时只有高频的通过,低频的则被滤去;对于高频的加单频余弦信号的语音信号用低通滤波器时只有低高频的通过,高频的则被滤去;对于加多频余弦信号的语音信号分析其噪声分布在什么地方就用什么波滤去,若高频低频都有则用带阻和带通比较适合,若集中在高频或者低频则用低通或带通。
2
使用MATLAB绘出采样后的语音信号的时域波形和频谱图。在MATLAB中,[y,fs,bits]=wavread('d:/lij’)用于读取语音信号,采样值放在y中,fs表示采样频率,bits表示采样位数。Sound(y)表示对声音的回放,向量y就代表了一个信号,也即一个复杂的“函数表达式”,也可以说像处理一个信号的表达式一样处理这个声音信号信号。

1
录制一段课程设计学生的语音信号并保存为文件,要求长度不小于10秒,并对录制的信号进行采样;录制时可以使用Windows自带的录音机,或者使用其它专业的录音软件,录制时需要配备录音硬件(如麦克风),为便于比较,需要在安静、干扰小的环境下录音。
3、
语音信号处理可以分为时域分析和频域分析,使用MATLAB可绘出采样后的语音信号的时域波形和频谱图。
4、TLAB设计FIR和nR数字滤波器的方法。
5、用MATLAB对信号进行分析和处理
6、计报告4000以上,含程序设计说明,用户使用说明,源程序清单及程序框图。
7、机演示。
8、有详细的文档。文档中包括设计思路、设计仿真程序、仿真结果及相应的分析与结论。
三、进度安排
第一周星期一:课题讲解,查阅资料
星期二:总体设计,详细设计
星期三:编程,上机调试、修改程序
星期四:上机调试、完善程序
星期五:答辩
星期六-星期天:撰写课程设计报告

熟悉并掌握利用窗函数法设计FIR滤波器(低通、高通、带通、带阻中的至少3种类型)来对叠加噪声前后的语音信号进行滤波处理,绘出滤波器的频域响应,绘出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化。利用MATLAB工具箱函数,fir1是利用窗函数法设计的线性相位FIR数字滤波器的工具箱函数,实现线性相位FIR数字滤波器的标准窗函数法设计。
[x1,fs,bits]=wavread('e:/肖彬2');
y1=fft(x1,32768);
subplot(221)
plot(x1);
title('原始语音信号时域波形');
subplot(222)
plot(abs(y1));
title('原始分析模块功能图:
title('加单频余弦信号的语音信号频谱')
(3)添加多频噪声
N=length(x1)-1;
t=0:1/fs:N/fs;
d1=[0.8*cos(2*pi*1200*t)]';%单频余弦噪声
d2=[0.8*cos(2*pi*1500*t)]';%单频余弦噪声
x4=x1+d1+d2;
subplot(2,1,1)
N=length(x1)-1;
t=0:1/fs:N/fs;
d=[0.8*cos(2*pi*5000*t)]';
x3=x1+d;
subplot(3,2,3)
plot(x3)
title('加单频余弦信号的语音信号时域波形')
y3=fft(x3,32768);
subplot(3,2,4)
plot(abs(y3));
一、设计目的
综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。
二、设计要求
1、MATLAB的使用,掌握MATLAB的程序设计方法。
2、Windows环境下语音信号采集的方法。
3、数字信号处理的基本概念、基本理论和基本方法。
3
在MATLAB软件平台下,给原始的语音信号叠加上噪声,噪声类型分为如下几种:(1)白噪声;(2)单频噪色(正弦干扰);(3)多频噪声(多正弦干扰);绘出叠加噪声后的语音信号时域和频谱图,在视觉上与原始语音信号图形对比,也可通过Windows播放软件从听觉上进行对比,分析并体会含噪语音信号频谱和时域波形的改变。
4
在MATLAB下,给原始的语音信号叠加上噪声,噪声的类型分为以下几种:(1)单频噪声(正弦干扰);(2)高斯随机噪声;(3)多频噪声。
5
窗函数设计FIR滤波器的步骤
根据对阻带衰减以及过渡带的指标要求,选择窗函数的类型,并估计窗口长度N。原则是在保证阻带衰减满足要求的情况下,尽量选择主瓣窄的窗函数,然后根据过渡带宽估计窗口长度N。
相关文档
最新文档