广西大学一阶倒立摆含观测器实验

合集下载

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告一、实验目的本实验旨在通过模糊控制方法来控制一阶倒立摆系统,实现摆杆保持竖直的稳定控制。

二、实验原理1. 一阶倒立摆系统一阶倒立摆系统由一个垂直的支撑杆和一个在杆顶端垂直摆动的杆组成。

系统的输入为杆的控制力矩,输出为杆的角度。

系统的动力学方程可以表示为:Iθ''(t) + bθ'(t) + mgl sin(θ(t)) = u(t)其中,I为倒立摆的转动惯量,b为摩擦阻尼系数,θ为倒立摆的角度,m为倒立摆的质量,l为杆的长度,g为重力加速度,u为输入的控制力矩。

2. 模糊控制方法模糊控制方法是一种基于模糊逻辑的控制方法,通过将模糊集合与模糊规则相结合,构建模糊控制器来实现对系统的控制。

在本实验中,可以使用模糊控制器来实现倒立摆系统的稳定控制。

三、实验步骤1. 搭建实验平台,包括倒立摆系统、传感器和执行器。

2. 训练模糊控制器a. 定义模糊集合:根据角度误差和角速度误差定义模糊集合,并确定模糊集合的划分方式。

b. 构建模糊规则:根据经验或系统建模,确定模糊规则。

c. 设计模糊控制器:根据模糊集合和模糊规则,设计模糊控制器,包括模糊推理和模糊解模块。

d. 调整模糊控制器参数:根据系统响应实验,根据控制效果调整模糊控制器参数。

3. 实施模糊控制a. 读取传感器数据:获取倒立摆的角度和角速度数据。

b. 计算控制器输出:根据模糊控制器和传感器数据计算控制力矩的输出。

c. 执行控制器输出:将控制力矩作用在倒立摆上。

4. 监测系统响应:实时监测倒立摆的角度和角速度,判断控制效果。

5. 调整模糊控制器参数:根据实验监测结果,调整模糊控制器参数,以提高控制效果。

四、实验结果分析通过实验,我们可以观察到倒立摆系统在模糊控制下的稳定控制效果。

通过实时监测倒立摆的角度和角速度,可以验证控制器的性能。

实验结果可以通过绘制控制力矩输入和倒立摆角度响应曲线,以及观察系统的稳态误差来分析。

倒立摆实验报告(PID控制)

倒立摆实验报告(PID控制)

专业实验报告直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。

图1 一级倒立摆实验硬件结构图对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。

摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。

计算机从I/O设备中实时读取数据,确定控制策略(实际上是电机的输出力矩),并发送给I/O设备,I/O设备产生相应的控制量,交与伺服驱动器处理,然后使电机转动,带动小车运动,保持摆杆平衡。

图2是一个典型的倒立摆装置。

铝制小车由6V的直流电机通过齿轮和齿条机构来驱动。

小车可以沿不锈钢导轨做往复运动。

小车位移通过一个额外的与电机齿轮啮合的齿轮测得。

小车上面通过轴关节安装一个摆杆,摆杆可以绕轴做旋转运动。

系统的参数可以改变以使用户能够研究运动特性变化的影响,同时结合系统详尽的参数说明和建模过程,我们能够方便地设计自己的控制系统。

图2 一级倒立摆实验装置图上面的倒立摆控制系统的主体包括摆杆、小车、便携支架、导轨、直流伺服电机等。

主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数从上图可以看出,系统在1.5秒后达到平衡,但是存在一定的稳态误差。

为消除稳态误差,我们增加积分参数Ki,令Kp=40,Ki=60,Kd=2,得到以下仿真结果:图8 直线一级倒立摆PID控制仿真结果图从上面仿真结果可以看出,系统可以较好的稳定,但由于积分因素的影响,稳定时间明显增大。

双击“Scope1”,得到小车的位置输出曲线为:图9 施加PID控制器后小车位置输出曲线图由于PID 控制器为单输入单输出系统,所以只能控制摆杆的角度,并不能控制小车的位置,所以小车会往一个方向运动,PID控制分析中的最后一段,若是想控制电机的位置,使得倒立摆系统稳定在固定位置附近,那么还需要设计位置PID闭环。

电气系统综合设计实验报告直线一级倒立摆控制系统设计

电气系统综合设计实验报告直线一级倒立摆控制系统设计

电气控制系统设计——直线一级倒立摆控制系统设计学院轮机工程学院班级电气1111姓名李杰学号 36姓名韩学建学号 35成绩指导老师肖龙海2014 年 12 月 25 日小组成员与分工:韩学建主要任务:二阶系统建模与性能分析,二阶控制器的设计,二阶系统的数字仿真与调试,二阶系统的实物仿真与调试;二阶状态观测器的数字仿真与调试,二阶状态观测器的实物仿真与调试;李杰主要任务:四阶系统建模与性能分析,四阶控制器的设计,四阶系统的数字仿真与调试,四阶系统的实物仿真与调试;四阶状态观测器的数字仿真与调试,四阶状态观测器的实物仿真与调试;前言倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统,倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究;倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展;本报告通过设计二阶、四阶两种倒立摆控制器来加深对实际系统进行建模方法的了解和掌握随动控制系统设计的一般步骤及方法;熟悉倒立摆系统的组成及基本结构并利用MATLAB对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,研究调节器参数对系统动态性能的影响,非常直观的了解控制器的控制作用;目录第一章设计的目的、任务及要求倒立摆系统的基本结构 (4)设计的目的 (4)设计的基本任务 (4)设计的要求 (4)设计的步骤 (5)第二章一级倒立摆建模及性能分析微分方程的推导 (5)系统的稳定性和能控能观性分析 (11)二阶的能观性、能控性分析 (13)四阶的能观性、能控性分析 (18)第三章倒立摆系统二阶控制器、状态观测器的设计与调试设计的要求 (22)极点配置 (22)控制器仿真设计与调试 (23)状态观测器仿真设计与调试 (28)第四章倒立摆系统四阶控制器、状态观测器的设计与调试设计的要求 (26)极点配置 (26)控制器仿真设计与调试 (27)状态观测器仿真设计与调试 (28)心得体会 (31)参考文献 (31)第一章设计的目的、任务及要求倒立摆系统的基本结构与工作原理图倒立摆系统硬件框图图倒立摆系统工作原理框图倒立摆系统通过计算机、I/O卡、伺服系统、倒立摆本体和光电码盘反馈测量元件组成一个闭环系统;以直线一级倒立摆为例,其工作原理框图如图所示;图中光电码盘1由伺服电机自带,小车的位移可以根据该码盘的反馈通过换算获得,速度信号可以通过对位移的差分得到;各个摆杆的角度由光电码盘2测量并直接反馈到I/O卡,而角速度信号可以通过对角度的差分得到;计算机从I/O卡实时读取数据,确定控制决策电机的输出力矩,并发给I/O卡;I/O卡经过电控箱内部电路产生相应的控制量,驱动电机转动,使小车按控制要求进行运动,以达到控制目的;实验过程中需要了解倒立摆装置基本结构;了解编码盘、行程开关等的基本工作原理;进行行程开关、编码盘和电机基本测试;设计的目的本设计要求我们针对设计要求,利用课堂所学知识及实验室实测来的系统数据采用工程设计法进行一级直线倒立摆控制系统设计;绘制原理图,同时在实验室进行实验检验设计结果,分析数据,编写设计报告;目的是使学生掌握随动控制系统设计的一般步骤及方法;设计的基本任务本课程设计的被控对象采用固高科技生产的GLIP2001一级直线倒立摆;通过设计与调试使学生能够:1熟悉倒立摆系统的组成及其基本结构;2掌握通过解析法建立系统数学模型及进行工作点附近线性化的方法;3掌握系统性能的计算机辅助分析;4掌握系统控制器的设计与仿真;5研究调节器参数对系统动态性能的影响;设计的要求1.熟悉倒立摆系统结构,熟悉倒立摆装置的基本使用方法;2.建立系统的数学模型,并在工作点附近线性化;3.分析系统的稳定性、频域性能、能控性与能观性;4.采用状态空间的极点配置法设计控制器,要求系统调节时间ts<=3s,阻尼比ξ>= and ξ<=1;实验步骤1.倒立摆系统基本结构分析2.对象的建模3..系统性能分析4.控制器设计与调试5.设计报告的撰写第二章一级倒立摆建模及性能分析系统建模可以分为两种:机理建模和实验建模;实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出, 应用数学手段建立起系统的输入-输出关系;这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容;机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系;对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难;但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程;下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型;微分方程的推导在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示;我们不妨做以下假设:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量 F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角考虑到摆杆初始位置为竖直向下图是系统中小车和摆杆的受力分析图;其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量;注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向;分析小车水平方向所受的合力,可以得到以下方程:①由摆杆水平方向的受力进行分析可以得到下面等式:②即:③把这个等式代入①式中,就得到系统的第一个运动方程④为了推出系统的第二个运动方程,对摆杆垂直方向上的合力进行分析,可以得到下面方程:⑤⑥力矩平衡方程如下:⑦注意:此方程中力矩的方向,由于θ= π+φ,cosφ= -cosθ,sinφ= -sinθ,故等式前面有负号; 合并这两个方程,约去P 和N ,得到第二个运动方程:⑧设θ=π+φφ是摆杆与垂直向上方向之间的夹角,假设φ与1单位是弧度相比很小,即φ<<1,则可以进行近似处理:用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:⑨对式3-9进行拉普拉斯变换,得到⑩注意:推导传递函数时假设初始条件为0;由于输出为角度φ,求解方程组的第一个方程,可以得到:⑾⑿如果令则有⒀把上式代入方程组的第二个方程,得到:⒁整理后得到传递函数:⒂其中,该系统状态空间方程为:⒃方程组对解代数方程,得到解如下:⒄整理后得到系统状态空间方程:⒅由9的第一个方程为对于质量均匀分布的摆杆有:于是可以得到:化简得到:⒆⒇以小车加速度为输入的系统状态空间方程:稳定性分析P=polyA;r=rootsP;ii=findrealr>0;n=lengthii;ifn>0disp'不稳定';elsedisp'稳定';end不稳定由此得到系统在未加控制器之前是发散的,不稳定的能控能观性分析A= 0 1 0 0;0 0 0 0;0 0 0 1;0 0 0;B= 0 1 0 3';C= 1 0 0 0;0 0 1 0;D= 0 0 ';>> n=4;Uc=ctrbA,B;Vo=obsvA,C;>> ifrankUc==nifrankVo==ndisp'系统状态即能控又能观'else disp'系统状态即能控,但不能观'endelse ifrankVo==ndisp'系统状态能观,但不能控'else disp'系统状态不能控,但也不能观' endend系统状态即能控又能观二阶的能观性、能控性分析>> A=0 1; 0;>> B=0 3';>> C=0 0 ;1 0;>> D=0;二阶能控性分析:>> M=ctrbA,BM =0 33 0>> rankMans =2说明系统是能控的二阶能观性分析:>> N=obsvA,CN =0 11 0>> rankNans =2说明系统是能观的四阶的能观性、能控性>> A=0 1 0 0; 0 0 0 0;0 0 0 1;0 0 0;;>> B=0 1 0 3';>> C= 1 0 0 0;0 0 1 0;>> D=0 0';四阶能控性分析:>> M=ctrbA,BM =0 0 00 0 00 00 0>> rankMans =4说明系统是能控的四阶能观性分析:>> N=obsvA,CN =0 0 00 0 00 0 00 0 00 0 0 00 0 00 0 0 00 0 0>> rankNans =4说明系统是能观的第三章倒立摆系统二阶控制器的设计设计的要求建立以X’’为输入,Φ与Φ’为状态变量,y为输出的模型分析系统的稳定性,能控能观性设计状态反馈控制器进行极点配置,是系统ξ>= ts<=3s极点配置取ξ=,Ts=;则Wn=,极点为±利用MATLAB进行计算:clear;T=input'T=';zeta=input'zeta=';Wn=4/Tzeta;A=0 1; 0;B=0;3;S1=-zetaWn-Wnsqrtzeta^2-1;S2=-zetaWn+Wnsqrtzeta^2-1;P=S1,S2;K=placeA,B,P则:K0=,K1=;控制器的仿真测试与调试图二阶系统结构图以小车加速度为输入,摆杆偏移角度和角速度为状态变量的模型,K值为反馈矩阵,输出为角度的波形图仿真波形图:取 &= 极点为:Wn=则 K0= K1= 图仿真结果波形图有次图可得加入控制器之后系统可以稳定,可见控制器的设计是合理的硬件调试硬件调试结构图以小车加速度为输入,摆杆偏移角度和角速度为状态变量的模型,加入Л模块纠正反馈角度符号通过调试K值,当K取的时候,可使仿真结果较稳定;从摆杆的角度可以看出,角度可以稳定下来,施加一干扰后,摆杆可以很快恢复稳定;状态观测器的仿真测试与调试图二阶状态观测器数字仿真图以小车加速度为输入,摆杆偏移角度和角速度为状态变量的模型,K值为反馈矩阵,输出为角度的波形图仿真波形图:取 &= 极点为:Wn=则 K0= K1= 图仿真结果波形图反馈矩阵G的求法T=input'T=';zeta=input'zeta=';Wn=4/Tzeta;A=0 1; 0;B=0;3;C=1 0;S1=-zetaWn-Wnsqrtzeta^2-1;S2=-zetaWn+Wnsqrtzeta^2-1;P=S1,S2;OP=5P;G=placeA',C',OPG=实物调试由图可知,施加扰动后摆杆能很快恢复,符合系统要求;第四章倒立摆系统四阶控制器的设计设计要求根据设计要求,确定系统闭环极点,设计状态反馈控制器,并进行仿真、调试验证;极点配置取 &= T= Wn= 极点为:±;-20±利用MATLAB进行计算:T=input'T=';zeta=input'zeta=';Wn=4/Tzeta;A=0 1 0 0;0 0 0 0;0 0 0 1;0 0 0;B=0;1;0;3;S1=-zetaWn-Wnsqrtzeta^2-1;S2=-zetaWn+Wnsqrtzeta^2-1;P=,-20+,S1,S2;K=placeA,B,Pk0=,k1=,k2= ,k3=;则K=控制器的仿真测试与调试图四阶系统仿真结构图以小车加速度为输入,摆杆角度、角速度、小车位移、加速度为状态变量,上半部分为位移输出,下半部分为角度输出仿真结果:位移:角度:实物调试:图硬件调试结构图将K1、K2、K3、K4合并后反馈作用系统,系统为单输入双输出四阶一级倒立摆状态空间极点配置实时控制结果平衡时上为位移,下位角度直线一级倒立摆状态空间极点配置实时控制结果施加干扰上为位移,下位角度状态观测器仿真设计与调试图四阶状态观测器数字仿真图四阶系统仿真结构图以小车加速度为输入,摆杆角度、角速度、小车位移、加速度为状态变量,上半部分为位移输出,下半部分为角度输出反馈矩阵G的求法T=input'T=';zeta=input'zeta=';Wn=4/Tzeta;A=0 1 0 0;0 0 0 0;0 0 0 1;0 0 0;B=0;1;0;3;C=1 0 0 0;0 0 1 0;S1=-zetaWn-Wnsqrtzeta^2-1;S2=-zetaWn+Wnsqrtzeta^2-1;P=,-10+,S1,S2;OP=3P;G=placeA',C',OP'G =实物调试反馈矩阵G和增益矩阵K分别调用matlab程序即可实物仿真与结果心得体会通过此次课程设计,使我更加扎实的掌握了有关MATLAB方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足;实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵;课程设计诚然是一门专业课,给我很多专业知识以及专业技能上的提升,同时又是一门讲道课,一门辩思课,给了我许多道,给了我很多思,给了我莫大的空间;同时,设计让我感触很深;使我对抽象的理论有了具体的认识;通过这次课程设计,我掌握了倒立摆装置的识别和测试;熟悉了控制系统的设计原理;了解了现代控制理论的设计方法;以及如何提高倒立摆系统的性能等等,掌握了MATLAB、simulink的使用方法和技术,通过查询资料,对所学知识有了很多新的认识;自己写主要参考文献:1.夏德玲、翁贻方,自动控制理论.北京,北京工业大学出版社,2006年1月2.刘豹、唐万生,现代控制理论.北京,机械工业出版社,2006年6月3.李国勇、谢克明,计算机仿真技术与CAD.北京,电子工业出版社,2009年1月4.Googol Technology直线倒立摆系统GLIP系列安装与使用手册固高科技。

(最新整理)倒立摆实验报告

(最新整理)倒立摆实验报告

的维数,若 r=n,则系统能控,能够进行极点配置。
第二步:受控系统中引入状态反馈向量 K, K k1 kn 。引入状态反
馈向量后系统特征多项式为: f (s) sI ( A BK ) sn a1sn1 an1s an
(11)
设期望特征根为 1*, 2*,, n* ,则期望特征多项式为:
==
(5) (6)
x 0 1 0 0 x 0
x
x
0 0
0 0
0 0
0
x
1
1 0
0 0 29.4 0 3
x
y
x
1 0
0 0
0 1
0 0
x
0 0
(7) (8)
(9)
2 、PID 控制器设计与调节 PID 整定说明: (1)比例(P 作用)增大,系统响应快,对提高稳态精度有益,但过大易
图 4 PID 控制器参数设计界面
1.4 PID 控制器设计
使用 SISO 界面的
添加零点和极
点,使补偿器 C 为 PID 形式。
1
KDS2 + KPS + KI
(1 + aS)(1 + bS)
GPID = KP + KIS + KDS =
S
=k∗
S
(13)
使用 SISO 界面的“Analysis”选项框中 Response to Step Command 的命 令即可查看被控对象阶跃响应曲线。通过调整 SISO 界面添加的零点,同时观察 单位阶跃输入时的闭环响应曲线,寻找合适的 P、I、D 参数。设合适的补偿器 下的根轨迹和参数以及响应曲线如图 5 和图 6:
x (x, x, ,)

现控实验一级倒立摆状态反馈设计及时间响应实验总结

现控实验一级倒立摆状态反馈设计及时间响应实验总结

现控实验一级倒立摆状态反馈设计及时间响应实验总结
控制实验一级倒立摆的状态反馈设计可以分为以下几个步骤:
1. 系统建模:根据实际倒立摆的物理特性,建立系统的数学模型,包括倒立摆的运动方程和输出方程。

2. 设计状态反馈控制器:根据系统模型,设计状态反馈控制器的反馈矩阵K,使得系统在闭环下能够稳定并达到期望的性能指标。

3. 实施状态反馈控制器:根据设计好的控制器,对倒立摆系统进行实施。

4. 时间响应实验:进行时间响应实验,观察控制系统在不同输入下的响应情况。

可以通过给定不同的参考输入信号,如阶跃信号、正弦信号或任意波形信号等,来测试控制系统的性能。

根据实验结果进行总结时,需要注意以下几个方面:
1. 稳定性分析:观察控制系统是否能够保持稳定状态,即系统是否能够回到平衡位置并保持在该位置。

2. 超调量和调整时间分析:观察控制系统的过渡过程,检查系统是否出现过大的超调量和调整时间是否满足要求。

3. 鲁棒性分析:考察控制系统对参数变化、不确定性以及外部扰动的鲁棒性能。

4. 性能指标分析:根据实验结果,评估控制系统的性能指标,如误差大小、稳态误差、响应速度等。

总结实验时,尽量基于客观的实验数据和分析,对实验结果进行客观的评价和总结。

请注意,以上回答仅涉及到了一级倒立摆的状态反馈控制设计及时间响应实验总结的一般步骤,具体设计和总结要根据具体情境和实验要求进行。

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。

以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。

一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。

在进行线性化之前,首先需要确定系统的状态变量和输入变量。

对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。

在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。

A、B、C和D是系统的矩阵参数。

二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。

在设计状态反馈控制器之前,首先需要确定系统的可控性。

对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。

如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。

在确定系统可控性之后,可以通过状态反馈控制器来实现控制。

状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。

具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。

状态反馈控制器的输入是状态变量,输出是控制输入变量。

然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。

三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。

在设计观测器之前,首先需要确定系统的可观性。

对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。

如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。

在确定系统可观性之后,可以通过观测器来实现状态估计。

观测器的设计可以通过选择适当的观测增益矩阵L来实现。

具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。

直线一级倒立摆实验报告

直线一级倒立摆实验报告

Gs KDs2 KPs KI
s
相当于给系统增加了一个位于原点的开环极点和两个位置可变的开环零点,因此 对于低阶已知数学模型的系统,根据期望的性能指标可以采用根轨迹法确定PID 参数。
2、频域法确定PID参数 对于已知频率特性曲线的系统,PID控制器相当于 给频率特性曲线增加了积分环节和一个二阶微分环节,通过调整PID参数,可以 改变PID控制器的频率特性,进而改变闭环系统的频率特性。
当摆杆被控时,小车的运动的位移也受到导轨实际长度的限制。因此,输出量除 了摆杆角度外,还有一个小车运动的位移。位移与输入量小车加速度之间的关系 为:
X (s) 1
Rs s2
控制系统结构图:
1
s2
Transfer Fcn1
Pos
3
In1 Out1
Step
s2+-29.4
Addห้องสมุดไป่ตู้
Transfer Fcn
Step 0.08
0.06
0.04
0.02
0
0
1
2
3
4
5
6
7
8
9
10
Pos.
0
-2
-4
0
1
2
3
4
5
6
7
8
9
10
Ang.
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10
由曲线可以看出,系统角度超调量为33.6%,调整时间接近0.55秒,位移变化平 稳,角度输出稳定。故这组参数可以作为PID控制参数;
2、基于计算机MATLAB 平台进行现场倒立摆控制,绘制实验曲线; 直线一级倒立摆系统是小车在光滑的导轨上运动,小车上铰链了一根摆杆,

倒立摆实验报告

倒立摆实验报告

倒立摆实验报告倒立摆实验报告引言:倒立摆是一种经典的力学实验,通过研究倒立摆的运动规律,可以深入理解物理学中的一些基本概念和原理。

本实验旨在通过搭建倒立摆模型并观察其运动过程,探究摆动周期与摆长、质量等因素之间的关系,并分析影响倒立摆稳定性的因素。

一、实验器材和原理实验器材:1. 木质支架2. 杆状物体(作为摆杆)3. 重物(作为摆锤)4. 弹簧5. 电子计时器实验原理:倒立摆实验基于牛顿第二定律和能量守恒定律。

当摆杆倾斜一定角度时,重力将产生一个力矩,使摆杆产生转动。

而弹簧的作用则是提供一个恢复力,使摆杆回到竖直位置。

通过调整摆杆长度、质量和弹簧的初始拉伸量,可以控制倒立摆的运动。

二、实验步骤1. 搭建实验装置:将木质支架固定在平稳的桌面上,将摆杆固定在支架上,并在摆杆的一端挂上重物。

2. 调整初始条件:调整摆杆的长度和重物的位置,使摆杆处于平衡位置。

同时,将弹簧的一端固定在摆杆上。

3. 测量实验数据:使用电子计时器记录倒立摆的摆动周期,重复多次测量,取平均值。

4. 改变实验参数:分别改变摆杆的长度、重物的质量和弹簧的初始拉伸量,再次进行测量和记录。

5. 数据分析:根据实验数据,绘制摆动周期与摆杆长度、重物质量、弹簧初始拉伸量之间的关系曲线,并进行分析和讨论。

三、实验结果与讨论根据实验数据,我们可以得出以下结论:1. 摆动周期与摆杆长度成正比:当摆杆长度增加时,摆动周期也随之增加。

这是因为较长的摆杆需要更多的时间来完成一次摆动。

2. 摆动周期与重物质量无直接关系:在一定范围内,重物质量的增加并不会显著影响摆动周期。

这是因为重物的质量只会影响倒立摆的稳定性,而不会改变其运动速度。

3. 弹簧初始拉伸量对摆动周期的影响:当弹簧的初始拉伸量增加时,摆动周期减小。

这是因为较大的初始拉伸量会提供更大的恢复力,使摆杆回到竖直位置的速度更快。

通过实验结果的分析,我们可以得出以下结论:1. 摆杆长度是影响倒立摆运动周期的主要因素。

状态观测器的倒立摆

状态观测器的倒立摆

系统建模可以分为两种:机理建模和实验建模。 实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。 机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
渐近状态观测器 : 状态观测器的状态方程为: 状态观测器的设计: 状态逼近的速度取决于G的选择和(A-GC)的配置,通过对误差反馈阵G的设计,调节 渐近于x的速度。
带状态观测器的状态反馈系统 闭环系统的基本特性: 闭环极点设计的分离性 传递函数矩阵的不变性 观测器反馈与直接状态反馈的等效性
输出反馈的仿真结果:
倒摆的角度 小车的位置
3、状态反馈设计:
具体设计步骤如下:
系统可控性判别。应用可控性判别矩阵CM=ctrb(A,B) 判别. 闭环系统的极点配置。根据系统的动态性能,确定闭环系统期望极点clp。 确定反馈增益。应用MATLAB的place函数Ks=place(A,B,clp),确定反馈增益Ks 。
1、建立倒立摆的数学模型
动力学数学模型 (非线性微分方程形式)
状态空间表达式(非线性)
状态空间表达式(线性)
状态空间表达式(线性)
2、倒立摆的状态空间分析法设计
采用状态反馈进行极点配置
基于全维观测器,用状态反馈进行极点配置
3、基于MATLAB的倒立摆系统仿真设计 (MATLAB语言程序设计和SIMULINK模型建立)
Simulink结构图:
仿真结果:
状态反馈下状态变量的时间曲线
具体设计步骤如下:
系统的可观性判别。应用可观性判别矩阵OM=obsv(A,C)判别可观性。 闭环极点配置。适当选择观测器的极点,使观测器的动态速度是系统的两倍以上,所观测器的极点op=2*clp。 指定极点的观测器增益G。同样应用place函数:G=place(A’,C’,op),G=G’。

一阶倒立摆实验报告(实验)

一阶倒立摆实验报告(实验)

一、实验介绍:1、背景介绍 (3)2、倒立摆简介 (3)3、实验目的 (5)4.预备知识 (5)二、实验内容:1.自学掌握MATLAB软件的基本使用方法 (6)2.自学掌握倒立摆的基本知识 (6)3.在MATLAB编程环境下完成以下实验操作 (6)4.在proteus环境下,完成倒立摆电机控制算法的仿真 (6)三、实验步骤:1.直线一阶倒立摆数学模型的推导‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.一阶倒立摆的微分方程模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 3.一阶倒立摆的传递函数模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 4.一阶倒立摆的状态空间模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10 5.实际系统的传递函数与状态方程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 6.用MATLAB的Simulink进行仿真‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥13四、实验总结:1、实验结论 (18)2、实验收获 (19)五、参考文献:一、实验介绍:1、背景介绍倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中不可多得的典型物理模型。

它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。

通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。

在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。

2、直线一阶倒立摆简介:倒立摆是进行控制理论研究的典型实验平台,可以作为一个典型的控制对象对其进行研究。

最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。

近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

一阶倒立摆双闭环PID控制实验报告

一阶倒立摆双闭环PID控制实验报告

一阶倒立摆双闭环PID控制实验报告一、实验目的1. 学习并掌握一阶倒立摆原理及其数学模型;2. 了解反馈控制理论,学习PID控制原理及其在一阶倒立摆控制中的应用;3. 熟悉MATLAB/Simulink软件的使用,能够建立一阶倒立摆的模型,并进行控制仿真。

二、实验原理一阶倒立摆是指在一根杆上挂一个质量小于杆的质量的小球,通过控制杆上电动机的电流来控制小球的倾斜角度,实现倒立控制。

2. 数学模型根据机械臂的动力学方程,可以得到一阶倒立摆的状态方程:其中,θ为小球倾斜的角度,M为电机的转矩,l为杆的长度,g为重力加速度,J为小球和杆组成的转动惯量。

3. PID控制PID控制是目前最常用的控制方法之一,包括比例控制、积分控制和微分控制。

PID控制器的控制对象通常是一个差值,由控制器在比例、积分和微分的作用下不断调整输出,使差值达到期望设定值。

其中,比例作用是根据误差的大小进行调整,积分作用是积累误差从而消除静差,微分作用是根据误差的变化率进行调整,消除系统震荡和过冲。

三、实验步骤1. 建立模型首先建立一阶倒立摆的模型,输入电机的转矩,输出小球的倾斜角度。

模型如下所示:2. 设计控制器在模型基础上,设计PID控制器,控制小球的倾斜角度达到预定值。

3. 进行仿真四、实验结果根据一阶倒立摆的数学模型,建立了如下图所示的Simulink模型:输入变量为电机的转矩M,输出变量为小球的倾斜角度θ。

根据反馈控制理论和PID控制原理,设计了如下的PID控制器:其中,Kp、Ki和Kd分别为比例、积分和微分增益。

利用上述模型和控制器进行仿真,得到了小球的倾斜角度随时间的变化曲线如下图所示:可以看出PID控制器在控制小球倾斜方面表现良好,小球在稳态时达到了预定角度,并在稳定范围内波动。

五、结论1. 本次实验成功建立了一阶倒立摆的数学模型;。

倒立摆实验报告1

倒立摆实验报告1

倒立摆实验报告1倒立摆实验报告1倒立摆(Inverted Pendulum)是一种经典的控制系统实验对象,由于其简洁和直观的物理模型,被广泛用于控制理论和控制实验的研究中。

本文主要介绍了倒立摆实验的基本原理、实验装置和实验步骤,并通过实验结果分析了不同控制策略对倒立摆系统动态响应的影响。

一、实验原理倒立摆是一个由一个竖直的杆和一个可以沿杆轴方向移动的小车组成。

杆的一端固定在小车上,通过一个旋转关节连接,在倒立摆的平衡位置时,杆竖直向上。

小车上安装有一个电机,可以通过控制电机的转速来实现小车在杆轴方向的移动。

在倒立摆的运动过程中,需通过控制小车运动的速度和方向,使得摆杆保持竖直,并能够在摆杆偏离竖直位置时及时做出修正,以实现摆杆的倒立运动。

为了实现这一控制目标,需要设计合适的控制系统,并通过不同的控制策略来改变系统的动态响应。

二、实验装置倒立摆机械装置由一个竖直的杆和一个可以沿杆轴方向移动的小车组成。

杆的一端固定在小车上,通过一个旋转关节连接。

小车上安装有一个电机,可以通过控制电机的转速来实现小车在杆轴方向的移动。

电机驱动系统包括电机和驱动电路,通过改变电机的转速和方向来控制小车的运动。

传感器用于检测倒立摆系统的状态,包括杆的角度和小车的位置。

控制器通过接收传感器的反馈信号,并根据预定义的控制策略来控制电机的转速和方向。

三、实验步骤1.搭建实验装置。

按照实验装置说明书的要求,搭建倒立摆实验装置,并连接电机驱动系统、传感器和控制器。

2.系统校准。

通过控制小车运动,使摆杆保持竖直。

根据传感器的反馈信号,对系统进行校准,使传感器可以准确测量杆的角度和小车的位置。

3.设计控制策略。

根据倒立摆系统的特性和控制目标,设计合适的控制策略。

可以使用PID控制器、模糊控制器或神经网络控制器等方法。

4.实施控制策略。

将控制策略编码到控制器中,并启动控制器。

控制器将根据传感器的反馈信号和预定义的控制策略,控制电机的转速和方向,实现小车的运动和摆杆的倒立。

自动控制原理实验倒立摆

自动控制原理实验倒立摆

直线型倒立摆一、微分方程的建立倒立摆系统是直立双足机器人、火箭垂直姿态控制的研究基础,它涉及各个领域包括控制理论、机器人理论等,其被控系统本身有一个绝对不稳定、高阶次、多变量、强耦合的非线性系统。

本次实验分析一阶直线型倒立摆直线型倒立摆装置如下图所示系统受力分析示意图如下所示M 小车质量 1.096 Kg m 摆杆质量0.111 Kg b 小车摩擦系数0 .1N/m/secl 摆杆转动轴心到杆质心的长度 0.2 5m J 摆杆惯量0.0034 kg*m*x 小车位置θ 摆杆与垂直方向的夹角 应用牛顿定律剪力方程如下:水平方向:N bx F x --='''M由摆杆水平方向的受力情况得:22dt )θsin (N l x d m +=对摆杆垂直方向上的合力进行分析,可以得到如下方程22)cos (m mg -P dtl d θ= 综合可得力矩平衡方程为''cos sin θθθJ Nl Pl =--设θ=π+β,β远小于1,所以得线性化后的两个运动方程''lg ''m l J 2mlx m =-+ϕϕ)(F ml bx x m M =-++'''''ϕ)( 二、传递函数模型由上式化简得,以小车加速度为控制量,摆件角度为被控对象,不考虑其他因素得传递函数为G (s )=lg s 4343l2-,化简得G (s )=29.4-s 32三、采用PID 控制对于倒立摆系统输出量为摆杆的角度和小车的位移,它的平衡位置为垂直向上的情况。

PID 系统控制结构框图如下图所示其包括比例环节·积分环节·微分环节,其中Gc(s)是控制器的传递函数,G(s)是被控对象的传递函数其中sK K s K s G IP D c ++=)(,需要调节PID 控制器的参数,得到满意的控制效果。

本次实验中系统的控制量仅为摆杆的角度,不考虑小车的位移。

(完整版)倒立摆实验报告

(完整版)倒立摆实验报告

机械综合设计与创新实验(实验项目一)二自由度平面机械臂三级倒立摆班级:姓名:学号:指导教师:时间:综述倒立摆装置是机器人技术、控制理论、计算机控制等多个领域、多种技术的有结合,被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中不可多得的典型物理模型。

倒立摆的典型性在于:作为实验装置,它本身具有成本低廉、结构简单、便于模拟、形象直观的特点;作为被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的复杂被控系统,可以有效地反映出控制中的许多问题;作为检测模型,该系统的特点与机器人、飞行器、起重机稳钩装置等的控制有很大的相似性[1]。

倒立摆系统深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。

通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科,即力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。

在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁[2]。

因此对倒立摆的研究具有重要的工程背景和实际意义。

从驱动方式上看,倒立摆模型大致可分为直线倒立摆模型、旋转倒立摆模型和平面倒立摆模型。

对于每种模型,从摆杆的级数上又可细分为一级倒立摆、二级倒立摆和多级倒立摆[3]。

目前,国内针对倒立摆的研究主要集中在运用倒立摆系统进行控制方法的研究与验证,特别是针对利用倒立摆系统进行针对于非线性系统的控制方法及理论的研究。

而倒立摆系统与工程实践的结合主要体现在欠驱动机构控制方法的验证之中。

此外,倒立摆作为一个典型的非线性动力系统,也被用于研究各类非线性动力学问题。

在倒立摆系统中成功运用的控制方法主要有线性控制方法,预测控制方法及智能控制方法三大类。

其中,线性控制方法包括PID控制、状态反馈控和LQR 控制等;预测控制方法包括预测控制、分阶段起摆、变结构控制和自适应神经模糊推理系统等,也有文献将这些控制方法归类为非线性控制方法;智能控制方法主要包括神经网络控制、模糊控制、遗传算法、拟人智能控制、云模型控制和泛逻辑控制法等。

一阶倒立摆系统模型分析、状态反馈与观测器设计

一阶倒立摆系统模型分析、状态反馈与观测器设计
v
u b +
x
+
y

A G
c
b
+ +
ˆ x

A-GC
ˆ x
K
5.仿真分析
• 基于全维状态观测器下的倒立摆控制系统仿真:
• 仿真结果
• 状态估计值与系统状态比较
• 从仿真结果看,控制性能满足系统要求的性能指 标。
• 全维观测器状态跟踪误差仿真结果:
降维观测器设计
• 在实际工程实践中,系统的输出是能够测量的, 因此可以考虑用输出量直接产生响应的部分状态 变量,其余状态变量则通过构造观测器来实现, 所构造的观测器为降维观测器。本实验的倒立摆 系统采用P变换方法设计降维观测器。

• 知系统是完全能控的,满足特征值可任意配置的 极点配置定理。
• (3)可观测性分析 • 由
1 0 0 C CA 0 rank rank 2 0 CA 3 CA 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 4 0 0 0 0 58.6118 0.6747 0 0 0 0 39.5454 59.067
• (2)取期望的特征值为 30,30 ,则特征多项 式为a (s) s 2 10s 37 ,解方程 det(sI A A K ) a (s) 0 • 得 K 30
T T 22 12
0
29.3253
• 进一步计算 • 30 LK
T
0
u x m gl sin c m l u cos J J J
• 根据以上系统方程可以看出倒立摆模型是非线性 的。为了应用线性系统理论,可在倒立摆平衡位 置附近对系统进行线性化,取 - ,令 • sin , cos 1 并忽略高次项,可得如下方程: u x • m gl c mlu J J J

倒立摆仿真及实验报告

倒立摆仿真及实验报告

倒立摆仿真及实验报告倒立摆是一种经典的机械系统,它具有丰富的动力学特性,在控制理论和工程应用中得到广泛研究和应用。

本文将对倒立摆的仿真及实验进行详细介绍,并给出相关结果和分析。

1.倒立摆的仿真模型倒立摆的运动可以用以下动力学方程表示:ml^2θ'' + mgl sin(θ) = u - cθ' - Iθ'其中,m是摆杆的质量,l是摆杆的长度,θ是摆杆与垂直方向的夹角,u是外力输入,c是摩擦系数,I是摆杆的转动惯量,g是重力加速度。

为了实现对倒立摆的仿真,我们借助MATLAB/Simulink软件,建立了倒立摆的仿真模型。

模型包括两个部分:倒立摆的动力学模型和控制器。

倒立摆的动力学模型采用上述动力学方程进行描述。

控制器采用经典的PID控制器,其中比例系数Kp、积分系数Ki和微分系数Kd分别用于角度误差的比例、积分和微分控制。

2.倒立摆的仿真结果采用上述模型进行仿真,我们可以得到倒立摆的运动轨迹和角度响应等结果。

根据参数的不同取值,我们可以观察倒立摆的不同运动特性。

首先,我们观察了倒立摆的自由运动。

设置初始条件为摆杆静止且在平衡位置上方一个小角度的偏离。

在没有外力输入的情况下,倒立摆经过一段时间的摆动后最终回到平衡位置,这个过程中摆杆的角度和角速度都发生了变化。

接下来,我们考虑了加入PID控制器后的倒立摆。

设置初始条件为摆杆位于平衡位置上方,并施加一个恒定的外力。

通过调节PID控制器的参数,我们可以使倒立摆保持在平衡位置上方,实现倒立的稳定控制。

当外力发生变化时,控制器能够及时响应并调整摆杆的角度,使其再次回到平衡位置。

3.倒立摆的实验研究为了验证倒立摆的仿真结果,我们进行了实验研究。

实验中,我们采用了具有传感器的倒立摆装置,并连接到PC上进行实时数据采集和控制。

首先,我们对倒立摆进行了辨识。

通过在实验中施加一系列不同的外力输入,我们得到了倒立摆的自由运动数据。

通过对数据进行处理和分析,我们获得了倒立摆的动力学参数。

一级倒立摆控制系统状态方程的建模及全维观测器设计

一级倒立摆控制系统状态方程的建模及全维观测器设计

一级倒立摆控制系统状态方程的建模及全维观测器设计作者:罗力铭来源:《科学与财富》2016年第10期摘要:本文对一级倒立摆系统的状态方程建模及观测器设计进行了研究,对于系统建立了数学模型并进行了分析,调整其极点配置后设计出一种稳定的系统结构,同时利用MATLAB完成仿真。

最后基于先前的结果设计了一种全维观测器并进行了仿真,结果表明,仿真得到稳定的响应。

关键词:倒立摆;数学建模;全维观测器中图分类号:TP273 文献标志码:AAbstract: The system state equations and design of full-dimensional observer for first-order inverted pendulum is probed in this paper while analyzing its mathematics model for this system. Then designed a stable system structure after adjusting the pole assignment of this system and used MATLAB to complete the simulation. Finally, based on previous results designed a full-order observer and simulated to obtain stable response.Keywords: first-order inverted pendulum; mathematics modeling;full-dimensional observer倒立摆是一个经典的多变量、非线性、不稳定的系统,又具有强耦合、自然不稳定等特点。

因此常常出现在控制理论课程教学中和各种控制策略的验证里。

其目标就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。

在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。

因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。

ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。

在仿真过程中,需要设定摆杆的初始位置和速度。

一般而言,初始位置设为0,初始速度设为0。

边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。

利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。

通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。

在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。

在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。

在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。

然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。

因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。

为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。

例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。

可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。

本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:黄宇指导老师:胡立坤成绩:学院:电气工程学院专业:自动化班级:自133------年------月-------日实验内容:一阶倒立摆含观测器的状态反馈控制系统综合与设计其他组员:黄育尚【实验时间】 2016年1月18日星期五【实验目的】1.理解并掌握线性状态反馈控制的原理和方法;2.理解并掌握线性观测器的设计方法;3.练习控制性能的比较与评估的方法。

【实验设备与软件】倒立摆实验平台MATLAB/Simulink【实验原理】1.被控对象模型极其线性化。

图一直线一阶倒立摆系统图参数大小摆杆质量m 0.109kg小车质量M 1.096kg 摆杆转动轴心到摆杆质心的长度l 0.25m摆杆绕其重心的转动惯量J 0.0034kg.m2摆杆与小车间的摩擦系数b1 0.001N.m.s.rad−1小车水平运动的摩擦系数b2 0.1N.m.s.m−1摆杆与垂直向上的夹角φθ—π2.分析小车水平方向所受的合力,可以得到以下方程:-=NM-x bFx由摆杆水平方向的受力进行分析可以得到下面等式:)sin (22θl x dtd m N +=即:θθθθsin cos 2 ml ml xm N -+= 把这个等式代入式(3-1)中,就得到系统的第一个运动方程:F ml ml x b xm M =-+++θθθθsin cos )(2 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:)cos (22θl dtd m mg P =-θθθθcos sin 2 ml ml mg P --=- 力矩平衡方程如下:θθθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。

合并这两个方程,约去P 和N ,得到第二个运动方程:θθθcos sin )(2xml mgl ml I -=++ 设φπθ+=(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即1<<φ,则可以进行近似处理:0)(,sin ,1cos 2=-=-=dtd θφθθ。

用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:2(+)()I ml mgl mlx M m x bx ml u ϕϕϕ⎧-=⎨++-=⎩对式(3-9)进行拉普拉斯变换,得到⎪⎩⎪⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(22222s U s s m l s s bX s s X m M s s m lX s m gls s m l I 注意:推导传递函数时假设初始条件为0。

由于输出为角度φ,求解方程组的第一个方程,可以得到:)(])([)(22s sgml ml I s X Φ-+=或mgls ml I mls s X s -+=Φ222)()()( 如果令x v=,则有: mgls ml I mls V s -+=Φ22)()()( 把上式代入方程组的第二个方程,得到:)()()()()()(2222s U s s ml s s s g ml ml I b s g mlml I m M =Φ-Φ⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡-++整理后得到传递函数:sqbm gl s q m gl m M s q m l I b s sqm l s U s -+-++=Φ23242)()()()( 其中[]22)())((ml ml I m M q -++= 设系统状态空间方程为:DuCX y Bu AX X+=+=方程组对φ ,x解代数方程,得到解如下: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++-==++++++++++-==u Mm l m M I m l Mm l m M I m M m gl x Mm l m M I m lb u Mm l m M I m l I Mm l m M I gl m x Mm l m M I b m l I x x x 2222222222)()()()()()()()()(φφφφφ整理后得到系统状态空间方程:u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡2222222222)(0)(00)()()(010000)()()(00010φφφφu x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 代入倒立摆系统的参数z = 0000100000029.4010z + 0130vY= 10000010z+ 00 v 判断系统能控性和能观性在MATLAB 中,可以利用ctrb()和obsv()函数直接求出能控性和能观性矩阵 >> A=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0];B=[0;1;0;3];C=[1 0 0 0;0 0 1 0];D=[0;0];Uc=tcrb(A,B);rc=rnak(Uc); n=size(A); ifrc==ndisp('system is controlled.') elseifrc<ndisp('system is uncontrolled.') endVo=obsv(A,o); ro=rank(Vo); ifro==ndisp('system is observable.') elseifro~=ndisp('system is no observable.')end运行情况如下:判断系统的稳定性:>>A=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 9.4 0];>> B=[0;1;0;3];>> C=[1 0 0 0;0 0 1 0];>> D=[0;0];Uc=ctrb(A,B);rc=rank(Uc);>> P=poly(A),v=roots(P)特征值为0(二重),极点为5.4222,-5.4222,显然,其中一个极点在右半平面,该系统不稳定。

3 系统设计极点配置与控制器设计极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法 ,将闭环系统的极点配置到任意期望的位置。

()()()X t Ax t Bu t =+ ,其中x 是状态变量(n 维),u 是控制信号,这里选取控制信号为uKx =-,()()()xt A BK x t =-? ,该方程的解为()()(0)A BK t x t e x -=?, 系统的稳态响应和瞬态响应特性由矩阵 A - B K 的特征决定。

()1234K K K K K x =-?,闭环系统的方程为()xAx Bf A BK x =+=- ,选取所希望的极点值为,1234p p p p设计状态反馈阵时,要使系统的极点设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定。

最大超调量小于等于5%,调节时间为≤1.5S , 运用超调量的计算公式, ε%=e−επ 2∗100%,其中ε为阻尼系数,有该公式可求得,阻尼ε系数=0.69,小于1,是欠阻尼。

t s =3εωn,可以求得n w ≥2.17则极点公式为p 1,2=−εω+iω 1−ε2.-2±2.098i 配置非主导极点p3=-10,p4=-10. 运用matlab 算出k 值,程序如下:>> A=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0]; >> B=[0;1;0;3]; >> C=[1 0 0 0;0 0 1 0];>> D=[0;0];Uc=crtb(A,B);rc=rnak(Uc); >>rc=rank(crtb(A,B));>> p=[-2+2.08j,-2-3.098j,-10,-10]; >> K=acker(A,B,p) 运行结果:在matlab上用siumlink搭建仿真程序如下:仿真结果如下:然后到实验室进行实时控制,利用如下实施控制模型:控制效果如下:无干扰:有干扰:降维观测器的设计:在Matlab中的M文件里输入下列程序,求出降维观测器有待设计的矩阵H、T、F、L 。

程序如下:>>spole=[-4+2.0981*i;-4-3.0981*i]spole =-4.0000 + 2.0981i-4.0000 - 2.0981i>> H=place(A11,A21,spole);??? Error using ==> placeCan't place eigenvalues there.>>spole=[-4+2.0981*j;-4-2.0981*j]spole =-4.0000 + 2.0981i-4.0000 - 2.0981i>>spole=[-4+2.0981*j;-4-2.0981*j]spole =-4.0000 + 3.0981i-4.0000 - 3.0981i>> H=place(A11,A21,spole);??? Error using ==> placeCan't place eigenvalues there.>> A11=[0 0;1 0];A21=[0 0; 0 29.4]; >>spole=[-4+2.0981*j;-4-2.0981*j]spole =-4.0000 + 2.0981i-4.0000 - 2.0981i>> H=place(A11,A21,spl0e); ??? Error using ==> placeCan't place eigenvalues there.>> A11=[0 0;0 0];>> A21=[1 0;0 1]A21 =1 00 1>>spole=[-4+2.0981*j;-4-2.0981*j] spole =-4.0000 + 2.0981i-4.0000 - 2.0981i>> H=place(A11,A21,spl0e)H =4.0000 2.0981-2.0981 4.0000>> B11=[1 ;3];B22=[0;0];>> T=A11+H*A21 ; F=B11+H*B22; >> T=A11+H*A21 ; F=B11+H*B22; >>>> A12=[0 0;0 9.4]A12 =0 00 29.4000>> A22=[0 0;0 0]A22 =0 00 0>> L=(A11-H*A21)*H+A12-H*A22L =-11.5980 -16.784816.7848 17.8020T= 【-4 -2.0981;2.0981 -4】F=[1;3]据求得的矩阵H、T、F、L建立以下仿真图形:模型封装图状态观测器为:仿真波形然后到实验室进行实时控制,利用如下实施控制模型:。

相关文档
最新文档