七年级月考上册试题及答案.doc
七年级数学上册月考试卷【含答案】
![七年级数学上册月考试卷【含答案】](https://img.taocdn.com/s3/m/7cfd40a2bb0d4a7302768e9951e79b8968026836.png)
七年级数学上册月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 23厘米C. 17厘米D. 7厘米2. 下列哪个数是质数?A. 21B. 37C. 39D. 273. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少立方厘米?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个角是锐角?A. 120°B. 45°C. 180°D. 90°5. 如果一个数的平方是64,那么这个数可能是多少?A. 8B. -8C. 7D. 9二、判断题(每题1分,共5分)1. 任何两个偶数相加的和都是偶数。
()2. 一个正方形的对角线长度等于它的边长的平方根。
()3. 在三角形中,最大的角对应最长的边。
()4. 任何两个奇数相乘的积都是奇数。
()5. 1是质数。
()三、填空题(每题1分,共5分)1. 如果一个四边形的对边平行且相等,那么这个四边形是______。
2. 一个数的立方根是指这个数乘以自己两次后得到的结果,记作______。
3. 如果一个数既是4的倍数又是6的倍数,那么这个数至少是______。
4. 在平面直角坐标系中,点(3, 4)的横坐标是______,纵坐标是______。
5. 一个圆的半径是5厘米,那么这个圆的直径是______厘米。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是因数分解?请给出一个例子。
3. 请解释什么是算术平均数。
4. 请说明如何计算一个三角形的面积。
5. 请解释什么是比例尺。
五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
2. 如果一个数加上50后等于它的3倍,求这个数。
3. 一个圆锥的底面半径是4厘米,高是6厘米,求这个圆锥的体积。
初中七年级生物(上册)月考试题及答案(完整)
![初中七年级生物(上册)月考试题及答案(完整)](https://img.taocdn.com/s3/m/5ec7540a0a4c2e3f5727a5e9856a561253d32144.png)
初中七年级生物(上册)月考试题及答案(完整)考试说明:本试卷五个大题,满分100分,时间90分钟。
题序一二三四五总分得分一、选择题(共25个小题,每题2分,共50分)1、图是心脏、血管的示意图,“→”表示血流方向,下列表达正确的是()A.甲流出的血液为动脉血B.乙和丙都是静脉血管C.血液流动的方向是甲→乙→丁→丙D.血液流经乙→丁→丙后,静脉血变为动脉血2、人体结构和功能的基本单位是()A.细胞 B.组织 C.器官 D.系统3、克隆羊“多莉”长相与提供细胞核的母羊相像,这一实例说明了细胞核()A.能合成有机物B.控制着生物的遗传C.能控制物质进出D.可将光能转变成化学能4、洋葱根尖的一个细胞经过一次分裂,结果是()A.形成两个细胞,遗传物质减少一半 B.形成两个细胞,遗传物质不变C.形成一个细胞,遗传物质减少一半 D.形成一个细胞,遗传物质不变5、人的鼻不具有的功能是()A.气体进出肺的通道 B.气体交换的场所C.温暖、湿润、清洁进入肺的空气 D.感受气味的刺激6、用豌豆做遗传学实验时,豌豆花未开放前即进行套袋处理,依然可以结出豌豆,说明豌豆花的类型和传粉方式分别为()A.单性花自花传粉B.单性花异花传粉C.两性花自花传粉D.两性花异花传粉7、小刚上课时突然大汗淋漓,头晕眼花,可能的原因是 ( )A.天气太热 B.没吃早饭,出现低血糖现象C.上课想睡觉 D.没写完作业,怕老师批评8、中医说的“望、闻、问、切”中的“切”指的是号脉,这里的“脉”是指()A.动脉B.毛细血管C.静脉D.经络9、血液属于哪种组织()A.上皮组织B.神经组织C.结缔组织D.肌肉组织10、“螳螂捕蝉,黄雀在后”,“一母生九子,连母十个样”中描述的现象体现的生物的基本特征分别是()①生物能生长②生物都有遗传和变异③生物的生活需要营养④生物能对外界刺激做出反应A.①②B.①③C.③②D.③④11、关于绿色植物在生物圈中的作用,下列叙述不正确的是()A.维持生物圈碳﹣氧平衡B.养育了生物圈中的其它生物C.增加降水,调节气候D.提供人类需要的各种能量12、下列各组结构与功能的对应关系不合理的是()A.细胞核----遗传信息库B.叶绿体----光合作用的场所C.液泡----呼吸作用的场所D.细胞壁----支持和保护作用13、下列哪种植物一般没有蒸腾作用?()A.苔藓植物B.藻类植物C.蕨类植物D.种子植物14、以下是对某些血管和血液成分的叙述,正确的是()A.医生为病人抽血时,针头刺入的是动脉B.静脉血管管壁的内面都有静脉瓣C.伤口流血时,使其止血的是白细胞D.血浆中含有大分子蛋白质、水等多种成分15、下列可以作为监测空气污染程度的指示植物的是()A.藻类植物B.苔藓植物C.蕨类植物D.种子植物16、肺是人体呼吸系统的主要器官。
七年级上册数学第一册月考试卷(含答案)
![七年级上册数学第一册月考试卷(含答案)](https://img.taocdn.com/s3/m/fde48432bb4cf7ec4bfed0c8.png)
一、选择题(本大题共10小题,共30.0分)1.若x与3互为相反数,则等于()A. 0B. 1C. 2D. 32.已知a<0、b>0且|a|>|b|,则a、b、−a、−b的大小关系是()A. b>−a>a>−bB. −b>a>−a>bC. a>−b>−a>bD. −a>b>−b>a3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A. 1.496×107B. 14.96×108C. 0.1496×108D. 1.496×1084.一种巧克力的质量标识为“100±0.25克”,则下列合格的是()A. 99.80克B. 100.30克C. 100.51克D. 100.70克5.下列各对数中,互为相反数的是()A. −(−2)3与|−2|3B. (−2)3与−23C. −22与+(−2)2D. −(−2)与|−2|6.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是()A. 2B. 4C. 8D. 67.按一定规律排列的单项式:a,−a2,a3,−a4,a5,−a6,……,第n个单项式是()A. a nB. −a nC. (−1)n+1a nD. (−1)n a n8.下列说法正确的是()A. 1和−0.125不互为相反数 B. −m不可能等于08C. 正数和负数互为相反数D. 任何一个数都有相反数9.如图,数轴上有A、B、C、D四个整数点(即各点均表示整数),且3AB=BC=2CD。
若A、D两点所表示的数分别是−6和5,则线段AC的中点所表示的数是()A. −3B. −2C. −1D. +110.若有理数a,b,c满足abc=2003,a+b+c=0,则a,b,c中负数的个数是()A. 3B. 2C. 1D. 0二、填空题(本大题共3小题,共9.0分)11.−21和它的相反数之间的整数有______个.212.如图,数轴上A、B两点所表示的数分别为a、b,下列各式中:①(a−1)(b−1)>0;②(a−1)(b+1)>0;③(a+1)(b+1)>0.其中,正确式子的序号是____.13.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是______.三、计算题(本大题共2小题,共12.0分)14.先在数轴上表示下列各数,再把它们按从小到大的顺序用“<”连接起来.|−3|,−|−2|,0,−1.5,−(−4),112.15.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)第一次第二次第三次第四次x−12x x−52(9−x)(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置.(3)这辆出租车一共行驶了多少路程?四、解答题(本大题共7小题,共56.0分)16.已知数轴上三点M、O、N对应的数分别为−1、0、3.点P为数轴上任意一点,且表示的数为x.(1)则MN的长为______个单位长度;(2)如果点P到点M、点N的距离相等,那么x的值是______;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值:若不存在,请说明理由.17.观察下列各式:……(1)猜想________.(2)根据上面的规律,计算18.小欢和小樱都十分喜欢唱歌,她们两个一起参加社区的文艺会演,在会演前,主持人让她们自己确定出场顺序,可她们俩都争着先出场,最后主持人出了一个主意(如图所示):19.如图,将边长为a的小正方形和边长为b的大正方形放在同一水平面上(b>a>0)(1)用a,b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.已知a,b互为相反数,c,d互为倒数,m−3的相反数是−4,求a+b+m的值.cd21.观察下面三行数:−2、4、−8、16、−32、64、……①0、6、−6、18、−30、66、……②5、−1、11、−13、35、−61、……③(1)第①行数的第7个数是__________;(2)设第②行数中有一个数为a,第③行数中对应位置的数为b,则a和b之间等量关系为__________;设第①行数的第n个数为x,取每行的第n个数,这三个数的和是__________;(3)根据(2)中的结论,若取每行的第9个数,计算这三个数的和22.动脑筋、找规律.邱老师给小明出了下面的一道题,如图所示,请根据数字排列的规律,探索下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2020个数是正数还是负数?排在对应于A,B,C,D中的什么位置?【解析】【分析】本题考查的是绝对值,相反数,熟知0的绝对值是0是解答此题的关键.先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=−3,∴|x+3|=|−3+3|=0.故选A.2.【答案】D【解析】解:依题意在数轴上表示出a、b、、得根据它们在数轴上的位置可得:故选D3.【答案】D【解析】【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】【分析】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围,计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即:从99.75到100.25之间,然后逐项判断即可.【解答】解:100−0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是在99.75到100.25之间,只有99.80克在巧克力的质量标识范围,故A正确.故选:A.5.【答案】C【解析】【分析】本题主要考查的是相反数、绝对值、有理数的乘方的运算,先化简各数,然后根据相反数的定义判断即可.【解答】解:A.−(−2)3=−(−8)=8,|−2|3=23=8,不符合题意;B.(−2)3=−8;−23=−8,不符合题意;C.−22=−4;(−2)2=4,符合题意;D.−(−2)=2,|−2|=2,不符合题意.故选C.6.【答案】D【解析】【试题解析】【分析】本题考查了尾数特征的应用,关键是能根据题意得出规律,利用规律解决问题,因为21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,观察发现:2n 的个位数字是2,4,8,6四个一循环,所以根据2017÷4=504…1,2018÷4=504…2,得出22017的个位数字与21的个位数字相同是2,22018的个位数字与22的个位数字相同是4,进一步求解即可. 【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. 2017÷4=504…1, 2018÷4=504…2,∴22017的个位数字与21的个位数字相同是2, 22018的个位数字与22的个位数字相同是4, 2+4=6.故22017+22018的末位数字是6. 故选:D .7.【答案】C【解析】 【分析】本题考查了单项式,数字的变化类,注意字母a 的指数为奇数时,符号为正;系数字母a 的指数为偶数时,符号为负.观察字母a 的系数、次数的规律即可写出第n 个单项式. 【解答】解:a ,−a 2,a 3,−a 4,a 5,−a 6,……,(−1)n+1⋅a n . 故选C .8.【答案】D【解析】−0.125=−18,与18只有符号不同,它们互为相反数,故A 不正确; 因为m 是字母,可能等于0,所以−m 可能等于0,故B 不正确;正数和负数除符号不同外,其他也可能不同,如−2和3,所以正数和负数不一定互为相反数,故C 不正确,故选D .9.【答案】B【解析】解:∵A、D两点所表示的数分别是−6和5,∴AD=11,∵3AB=BC=2CD,∴112AB=11,∴AB=2,∴BC=6,CD=3,∴AC=8,∴C点表示的数是2,∴AC的中点表示的数是−2。
初一上册月考试题及答案
![初一上册月考试题及答案](https://img.taocdn.com/s3/m/39b779ce6aec0975f46527d3240c844768eaa000.png)
初一上册月考试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 地球是宇宙的中心B. 地球是太阳系的一部分C. 太阳是宇宙的中心D. 月球是地球的卫星答案:B2. 以下哪个是化学元素?A. 水B. 氧气C. 氢气D. 氮气答案:B3. 以下哪个是植物的六大器官之一?A. 根B. 茎C. 叶D. 所有选项答案:D4. 在数学中,哪个符号表示“不等于”?A. =B. ≠C. >D. <5. 以下哪个是英语中的第一人称单数?A. IB. youC. heD. they答案:A6. 以下哪个是中国古代的四大发明之一?A. 指南针B. 造纸术C. 印刷术D. 所有选项答案:D7. 以下哪个是人体的主要呼吸器官?A. 心脏B. 肺C. 胃D. 肝脏答案:B8. 在物理中,哪个单位用来表示力的大小?A. 米B. 千克C. 牛顿D. 秒答案:C9. 以下哪个是计算机的硬件组成部分?B. 键盘C. 鼠标D. 所有选项答案:D10. 在生物分类中,哪个是最基本的分类单位?A. 种B. 属C. 科D. 目答案:A二、填空题(每题2分,共20分)1. 地球围绕_________公转。
答案:太阳2. 化学元素周期表中,氢的原子序数是_________。
答案:13. 植物通过_________进行光合作用。
答案:叶绿体4. 数学中,一个数的相反数是它的_________。
答案:负数5. 英语中,“我”的复数形式是_________。
答案:we6. 中国古代四大发明中,_________促进了航海技术的发展。
答案:指南针7. 人体的循环系统由_________和血管组成。
答案:心脏8. 物理学中,力的单位是_________。
答案:牛顿9. 计算机的软件包括_________和应用软件。
答案:操作系统10. 生物分类中,种是最基本的单位,它属于_________。
答案:属三、简答题(每题10分,共30分)1. 请简述地球的自转和公转的区别。
七年级上册数学月考试卷【含答案】
![七年级上册数学月考试卷【含答案】](https://img.taocdn.com/s3/m/85231d59bb1aa8114431b90d6c85ec3a86c28b1d.png)
七年级上册数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长是10厘米,腰长是12厘米,这个三角形的周长是?A. 22厘米B. 34厘米C. 44厘米D. 54厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个数加上6后,再乘以4,结果是60,这个数是?A. 9B. 12C. 15D. 185. 下列哪个比例是正确的?A. 1:2 = 3:6B. 2:3 = 4:5C. 3:4 = 6:8D. 4:5 = 8:10二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。
()2. 一个三角形的两边之和一定大于第三边。
()3. 所有的正方形都是矩形。
()4. 0.5和1/2是同一个数。
()5. 两个负数相乘的结果一定是正数。
()三、填空题(每题1分,共5分)1. 一个等边三角形的周长是36厘米,每条边的长度是____厘米。
2. 4的立方是____。
3. 一个数是9的倍数,这个数最小是____。
4. 下列各数中,最大的质数是____。
5. 一个正方形的面积是81平方厘米,它的边长是____厘米。
四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 简述等边三角形的性质。
3. 解释比例的意义。
4. 解释负数乘以负数的结果为什么是正数。
5. 解释什么是绝对值。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求这个三角形的周长。
3. 一个数是12的倍数,这个数最小是多少?4. 下列各数中,最大的质数是多少?5. 一个正方形的面积是100平方厘米,求这个正方形的边长。
六、分析题(每题5分,共10分)1. 小明有一些糖,他给了小红一半的糖,然后又给了小红一半的糖,小明还剩下4颗糖,请问小明原来有多少颗糖?2. 一个长方形的长是宽的两倍,面积是120平方厘米,求这个长方形的长和宽。
初中七年级生物上册月考测试卷及答案【可打印】
![初中七年级生物上册月考测试卷及答案【可打印】](https://img.taocdn.com/s3/m/9a733fe57e192279168884868762caaedd33baf4.png)
初中七年级生物上册月考测试卷及答案【可打印】考试说明:本试卷五个大题,满分100分,时间90分钟。
题序一二三四五总分得分一、选择题(共25个小题,每题2分,共50分)1、在观察临时装片时,如果在视野中看到中央发亮、周边黑暗的圆圈,该圆圈最可能()A.气泡B.污物C.细胞D.墨水2、泡椒鸡爪是人们喜爱的小吃,鸡爪多“筋”,经切片后用显微镜观察,发现“筋”的细胞间隙大,细胞间质多,具有连接和支持作用。
由此可见“筋”属于()A.上皮组织B.结缔组织C.肌肉组织D.神经组织3、下列哪项行为或现象与“葵花朵朵向太阳“所表现出的生物基本特征相同()A.燕子育雏B.子女与父母不同C.种子萌发长成幼苗D.小羊发现狼后迅速逃离4、小明这几天刷牙时,牙龈常常出血,你建议他应当多吃一些()A.米饭、馒头B.鱼、肉、奶、蛋C.新鲜蔬菜水果D.奶油、巧克力5、下列有关血液中各种成分功能的叙述,错误的是()A.血浆具有运输血细胞、营养物质和废物的作用B.红细胞能够快速分裂产生新的红细胞C.白细胞能够吞噬病菌,具有防御作用D.血小板能在伤口处凝血,具有保护作用6、边说边笑吃东西,食物容易误入气管,其原因是()A.气流冲击,声门裂开大B.气流冲击,喉腔扩大C.会厌软骨没能盖住喉的入口D.环状软骨扩大7、下列所描述的生命现象与其实例不相符合的是()A.生物的生命活动需要营养——螳螂捕蝉,黄雀在后B.生物能对外界刺激作出反应——朵朵葵花向太阳C.生物需要排出体内的代谢废物——蜻蜓点水D.生物能生长繁殖——离离原上草,一岁一枯荣8、下列有关动物的叙述,正确的是()A.用肺呼吸并用气囊辅助呼吸、体温恒定是鸟类特有的特征B.动物直接或间接的以植物为食,这对植物的生长和繁殖是不利的C.蜘蛛是一种节肢动物,蜘蛛结网属于先天性行为D.长颈鹿为躲避敌害快速奔跑,只靠运动系统就能完成9、在烧杯中倒入10毫升植物油,加入配制的消化液,充分的震荡,并置于37℃的温水中,1小时后,植物油不见了,下列所配制的消化液中,最合理的是()A.唾液、胆汁、胃液B.胃液、肠液、唾液C.胆汁、肠液、胰液D.胰液、肠液、唾液10、人类和现代类人猿的共同祖先是()A.长臂猿B.北京猿人C.森林古猿D.类人猿11、有些同学只爱吃肉,不爱吃水果和蔬菜,常此以往会造成身体缺乏()A.蛋白质和维生素 B.脂肪和无机盐C.维生素和无机盐 D.蛋白质和脂肪12、若用同一显微镜观察同一标本4次,通过调整目镜、物镜和细准焦螺旋,结果得到如下四个图。
七年级上册第二次月考试卷【含答案】
![七年级上册第二次月考试卷【含答案】](https://img.taocdn.com/s3/m/2e830d82185f312b3169a45177232f60ddcce7a5.png)
七年级上册第二次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个是生态系统中的生产者?A. 植物B. 动物C. 细菌D. 岩石2. 光合作用的主要场所是?A. 叶绿体B. 细胞核C. 线粒体D. 细胞膜3. 下列哪种物质是植物光合作用的产物?A. 二氧化碳B. 氧气C. 有机物D. 水4. 下列哪种动物属于变温动物?A. 鸟类B. 哺乳类C. 爬行类D. 鱼类5. 下列哪种物质是植物呼吸作用的产物?A. 二氧化碳B. 氧气C. 有机物D. 水二、判断题(每题1分,共5分)1. 植物进行光合作用时,必须有光的存在。
()2. 动物细胞和植物细胞都有细胞核。
()3. 生态系统中的消费者只有动物。
()4. 细菌和真菌都是生态系统中的分解者。
()5. 植物进行呼吸作用时,需要氧气的参与。
()三、填空题(每题1分,共5分)1. 生态系统由生产者、消费者和______组成。
2. 植物细胞和动物细胞的共同结构有细胞膜、细胞质和______。
3. 光合作用的公式是:二氧化碳+水+光能→有机物+______。
4. 呼吸作用的公式是:有机物+氧气→二氧化碳+水+______。
5. 下列物质中,属于有机物的是______。
四、简答题(每题2分,共10分)1. 简述生态系统的组成。
2. 简述光合作用的意义。
3. 简述呼吸作用的意义。
4. 简述植物细胞和动物细胞的区别。
5. 简述变温动物和恒温动物的区别。
五、应用题(每题2分,共10分)1. 某生态系统中,植物通过光合作用产生的有机物为1000克,其中500克被初级消费者食用,请问初级消费者能获得多少克的能量?2. 某种植物在光合作用过程中,每吸收10克二氧化碳,可以释放8克氧气,若该植物吸收了100克二氧化碳,请问可以释放多少克氧气?3. 某种动物在呼吸作用过程中,每消耗10克有机物,可以产生6克二氧化碳,若该动物消耗了50克有机物,请问可以产生多少克二氧化碳?4. 某种植物在光合作用过程中,每吸收10克水,可以产生6克葡萄糖,若该植物吸收了100克水,请问可以产生多少克葡萄糖?5. 某种动物在呼吸作用过程中,每消耗10克有机物,可以产生4克水,若该动物消耗了50克有机物,请问可以产生多少克水?六、分析题(每题5分,共10分)1. 分析光合作用和呼吸作用的相互关系。
2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)
![2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)](https://img.taocdn.com/s3/m/564d1a5053ea551810a6f524ccbff121dd36c5e3.png)
2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米B .30+米C .10−米D .10米2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710×B .37.8710×C .47.8710×D .50.78710×3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个B .2个C .3个D .4个4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−−B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)+C .-|-0.01|与1100−−D .13−与0.3 6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3B .2C .1−D .07.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34B .32−C .152D .129.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a <<②1c <−③2b >−④b a <⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg .1314.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .15.比较两数大小: −76−16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 17.比2−小6的数是 .18.当||2,||4x y ==,且2x y +=−,则xy = . 19.已知1xyz xyz =,则x zy x y z++值为 .20.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 .三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−;(2)12433−÷−×;(3)()()32211234−+×−+−;(4)()235363412−+×−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.24.(本题8分)如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:.(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×.27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×=. 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1 B .任何非零数的圈3次方都等于它的倒数 C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472−−÷−×−④⑥⑧.2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米 B .30+米 C .10−米 D .10米【答案】A【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可. 【详解】解:∵向东走40米记作40+米, ∴向西走30米可记作30−米, 故选A .2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710× B .37.8710×C .47.8710× D .50.78710×【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中≤<110a ,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将78700用科学记数法表示为:47.8710× 故选:C .3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】将每个数进行化简后,得出判断.【详解】解:239−=−,2(93) ,(2)2−−=,|5|5−−=−,因此负数有:23−和|5|−−,共有2个, 故选:B .4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−− B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−【答案】C【分析】本题考查了绝对值、有理数的乘方、相反数、倒数,熟练掌握这几个定义是解题的关键.根据绝对值、有理数的乘方、相反数、倒数的定义分别计算判断即可. 【详解】解:A 、22−=,故此选项不符合题意; B 、()328−=−,故此选项不符合题意; C 、−2的相反数是2,故此选项符合题意; D 、−2的倒数是0.5−,故此选项不符合题意; 故选:C .5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)−+C .-|-0.01|与1100−−D .13−与0.3 【答案】C【分析】先化简,根据相反数的定义:只有符号不同的两个数即可求解. 【详解】解:A .−(+5)=−5−5)=−5,选项A 不符合题意; B .−(+0.5)=−0.5,与12−相等,选项B 不符合题意;C .−|−0.01|=−0.01,−(1100−)=1100=0.01,−0.01与0.01互为相反数,选项C 符合题意; D .13−与0.3不是相反数,选项D 不符合题意;故选:C .6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3 B .2 C .1− D .0【答案】B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程求解即可. 【详解】解:由题可知:A 点表示的数为a ,B 点表示的数为1, ∵C 点是A 向左平移3个单位长度,∴C 点可表示为:3a −, 又∵点C 与点B 互为相反数,∴310a −+=, ∴2a =. 故选:B .7.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A 、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B 、原式=﹣(4×125×7),不符合题意;C 、原式=(10﹣119)×16=160﹣1619,不符合题意; D 、原式=3×[(﹣25)×(﹣2)],不符合题意. 故选:A .8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34 B .32− C .152 D .12【答案】C【分析】本题主要考查了有理数的乘方运算,求一个数的绝对值,有理数的加法运算等知识点,熟练掌握相关运算法则是解题的关键. 先计算乘方和绝对值,然后相加即可. 【详解】解:722−▲2722=+−742=+152=,故选:C .9.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a << ②1c <− ③2b >− ④b a < ⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个【答案】B【分析】此题考查了利用数轴比较有理数的大小,由a ,b ,c 在数轴上的位置得到1012b c a <−<<<<<,进而逐项求解即可.【详解】解:由题意得,1012b c a <−<<<<<, ∴12a <<,①正确;1c >−,②错误; 2b <−,③错误;b a <,④正确; 12c −<<,⑤正确;a 到原点的距离小于b 到原点的距离,⑥错误;在a 与c 之间有2个整数,⑦正确.∴正确的有4个.故选:B .10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024【答案】D【分析】根据前面图案中三角形的个数,找出规律,即可求解. 【详解】解:第1个图案有2个三角形,即12个; 第2个图案有4个三角形,即22个; 第3个图案有8个二角形,即32个; 第4个图案有16个三角形,即42个; 则第n 个图案有2n 个三角形,只有D 选项,当21024n =时,10n =符合题意,其余选项n 都不符合题意, 故选:D二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 【答案】12024【分析】本题考查了相反数,熟练掌握相反数的概念:“只有符号不同的两个数叫做互为相反数”,是解题的关键. 【详解】解:12024−的相反数是12024. 故答案为:12024. 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg . 【答案】0.4【分析】本题主要考查正负数的意义,有理数的加减混合运算,根据题意质量相差最多的是()250.2kg ±,再根据有理数的加减运算即可求解,解题的关键理解并掌握正负数的意义,进行有理数的混合运算.【详解】解:根据题可得,质量最少的是少了0.2kg ,质量最多的是多了0.2kg ,∴质量最多相差0.20.20.4(kg)+=, 故答案为:0.4.13 【答案】2−【分析】根据绝对值的意义进行化简即可求解. 【详解】解:2−−=2−, 故答案为:2−.14.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .【答案】25−【分析】本题考查了有理数的混合运算,根据操作步骤列出式子进行计算即可求解. 【详解】解:依题意,()()310529 −÷−×−−()289=×−− 169=−− 25=−故答案为:25−.15.比较两数大小: −76−【答案】>【分析】本题主要考查的是比较有理数的大小,依据两个负数比较大小,绝对值大的反而小比较即可; 【详解】解:∵6677−=,7766−=,6776<, ∴−>−6776, 故答案为:>.16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 【答案】 579−+− 负5加7减9【分析】本题主要考查了有理数的加减混合运算,熟练掌握有理数的加减法法则是解题的关键.利用有理数的减法法则和有理数的加法法则解答即可.【详解】()()()()()()579579579−−−−+=−+++−=−+−, 读作:负5加7减9;故答案为:579−+−;负5加7减9. 17.比2−小6的数是 . 【答案】8−【分析】本题考查了有理数的减法,理解题意,根据题意正确列出式子,进行计算即可. 【详解】解:比2−小6的数是268−−=−, 故答案为:8−.18.当||2,||4x y ==,且2x y +=−,则xy = . 【答案】8−【分析】根据绝对值先求出x ,y 的值,再根据2x y +=−得出符合条件的值,计算即可. 【详解】解:∵||2,||4x y ==, ∴2x =±,4y =±, ∵2x y +=−, ∴2,4x y ==−, ∴8xy =−, 故答案为:8−. 19.已知1xyz xyz =,则x zy x y z++值为 . 【答案】1−或3【分析】此题考查了绝对值,以及有理数的除法,熟练掌握运算法则是解本题的关键.根据已知等式得到||xyz xyz =,确定出x ,y ,z 中负因式有0个或2个,原式利用绝对值的代数意义化简即可得到结果. 【详解】解:由1||xyzxyz =,得到||xyz xyz =,x ∴,y ,z 中有0个或2个负数,当2个都为负数时,原式1111=−−+=−; 当0个为负数时,原式1113=++=.∴1x zy xy z++=−或3 故答案为:1−或320.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 . 【答案】202348【分析】根据题意列出算式进行计算即可. 【详解】解:根据题意可得:11112023111123448×−×−×−− ……12347202323448=××××……1202348× 202348=. 故答案为:202348. 三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−; (2)12433−÷−× ;(3)()()32211234−+×−+−;(4)()235363412−+×−. 【答案】(1)50− (2)38(3)6(4)12−【分析】(1)根据有理数的加法法则计算即可; (2)根据有理数的混合运算法则解答即可;(3)根据含有乘方的有理数的混合运算法则解答即可; (4)根据乘法运算律解答即可.本题考查了有理数的混合运算,运算律的应用,熟练掌握法则和预算律是解题的关键. 【详解】(1)解:()()43772743+−++− ()43277743=++−− ()70120=+−50=−.(2)解:12433−÷−×()2433=−×−×236=+ 38=.(3)解:()()32211234−+×−+−()11894=−+×−+129=−−+ 6=.(4)解:()235363412−+×−()()()2353636363412=×−−×−+×− 242715=−+−12=−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明. 【答案】(1)=,=,= (2)满足交换律,理由见解析【分析】本题考查有理数的混合运算,新定义,理解新定义是关键. (1)按照题中新定义的运算进行计算即可作出判断; (2)就一般情况根据新定义进行计算即可.【详解】(1)解:∵()424(2)4(2)10⊗−=×−−−−=−,()24(2)4(2)410−⊗=−×−−−=−; ∴()42(2)4⊗−=−⊗;∵()()53(5)(3)(5)(3)23−⊗−=−×−−−−−=,()()35(3)(5)(3)(5)23−⊗−=−×−−−−−=,∴(5)(3)(3)(5)-⊗-=-⨯-;∵1115557222 −⊗=−×−−−=− ,1115557222⊗−=×−−−−=− ; ∴115522 −⊗=⊗− ; 故答案:=,=,=(2)解:运算:“✞”满足交换律 理由如下:由新定义知:a b ab a b ⊗−−,b a ba b a ⊗−−, ∴a b b a ⊗=⊗,表明运算“✞”满足交换律.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.【答案】见解析,()11300.5133234<<−−<+−<−<−−【分析】本题考查了有理数的大小比较,解题的关键是先将所给各数化简,在数轴上表示出各数,再根 【详解】解:()33110.50.5,,334433−−=−−=−+−=− . 画出数轴并在数轴上表示出各数如图:根据数轴的特点从左到右用“<”把各数连接起来为: ()1313300.51342+−<−<−−<<−−<24.(本题8分)如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少?A : ;B : ;C : .(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 . (3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等? 【答案】(1)6−、1、4 (2)7;10(3)点B 向左移动2个单位【分析】本题考查了是数轴,运用数轴上点的移动和数的大小变化规律是左减右加是解答此题的关键. (1)本题可直接根据数轴观察出A 、B 、C 三点所对应的数; (2)根据数轴的几何意义,根据图示直接回答;(3)由于10AC =,则点B 到点A 和点C 的距离都是5,此时将点B 向左移动2个单位即可. 【详解】(1)解:根据图示可知:A 、B 、C 这三个点表示的数各是6−、1、4, 故答案为:6−;1;4.(2)解:根据图示知:AB 的距离是()167−−=;AC 的距离是6410−−=, 故答案为:7;10;(3)解:∵A 、C 的距离是10, ∴点B 到点A 和点C 的距离都是5,∴应将点B 向左移动2B 表示的数为1−,5ABBC ==. 25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元? 【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米 (2)800915:~:汽车共耗油21.2升(3)沈师傅在上午800915:~:一共收入156元【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面; (2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【详解】(1)解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5++−+++−+++++−+−++++=, ∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米; (2)解:|8||6||3||6||8||4||8||4||3||3|+−+++−+++++−+−++++8636848433=+++++++++ 53=,∴0.45321.2×=(升),∴800915:~:汽车共耗油21.2升. (3)解:∵共营运十批乘客, ∴起步费为:1110110×=(元), 超过3千米的收费总额为:[](83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246−+−+−+−+−+−+−+−+−+−×=(元),∴11046156+=(元),∴沈师傅在上午800915:~:一共收入156元 26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−× .【答案】(1)11111565630−×=−+=− (2)()11111111n n n n n n −×=−+=−+++ (3)20222023−【分析】本题考查了有理数的乘法运算,(1)根据题干,模仿写出第5个等式,即可作答;(2)由(1)以及题干条件,即得第n 个等式:()11111111n n n n n n −×=−+=−+++;(3) 由(2)的结论,先化简再运算,即可作答,掌握第n 个等式:()11111111n n n n n n −×=−+=−+++是解题的关键. 【详解】(1)解:依题意,第5个等式: 11111305656−×=−+=−; (2)解:第1个等式:11111222−×=−+=−; 第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−; 第4个等式:11111454520−×=−+=−; 第5个等式:11111565630−×=−+=−; ……故第n 个等式:()11111111n n n n n n −×=−+=−+++; (3)解:由(2)知第n ()11111111n n n n n n −×=−+=−+++;则111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×111111112233420222023=−++−++−++⋅⋅⋅⋅⋅⋅+−+111111112022202322334=−+−+−++⋅⋅⋅⋅⋅⋅−+112023=−+ 20222023=−27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×= . 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−【答案】(1)没有除法分配律,故解法一错误; (2)过程见解析,114−.【分析】本题考查了有理数的除法乘法分配律; (1)根据有理数的运算法则进行判断,可得答案;(2)根据有理数的运算顺序,计算原式的倒数,和按照先计算括号内的,最后计算除法,两种方法求解,即可得出答案.【详解】(1)解:没有除法分配律,故解法一错误; (2)解法一:原式的倒数为: 132216143742 −+−÷− , ()132********=−+−×−()()()()13224242424261437=×−−×−+×−−×− 14=−;所以原式114=−; 解法二:原式=17928124242424242 −÷−+−17928124242−+− =−÷1424214=−×114=−. 28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472 −−÷−×− ④⑥⑧. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)1149− 【分析】(1)根据题意,计算出所求式子的值即可;(2(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10a a a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确;B .因为()10a a a a a a=÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .圈n 次方等于它本身的数是1或1−,说法错误,()11−=②;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ,故答案为:21n a −; (4)解:()2114172 −−÷−×− ④⑥⑧ ()()()()711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−8个16个 41119647=−−÷×1149=−−4950=−.。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
![2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)](https://img.taocdn.com/s3/m/e9e37bffb1717fd5360cba1aa8114431b90d8e2d.png)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
初一上册月考试卷.doc
![初一上册月考试卷.doc](https://img.taocdn.com/s3/m/0fc059165ef7ba0d4b733b49.png)
初一上册月考试卷.txt懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。
生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。
初中七年级《数学》第一月月考测试题一、填空题:本题共10题,每题3分,共30分。
1、 1与一1的差是。
2、有理数m的倒数是,则它的相反数是 o3、甲地海拔一22 in,乙地海拔一18 m,则比要高。
4、数轴上离表示数2有3个单位长度的点所表示的数是.5、数轴上表示3. 2与一7. 1的两点距离是.6、计算:①一1+2=,②2-2X =, —32=??.7、已知 | a-1 | + | ab-2 | +c2006=0.则 a+b+c=.8、 -999999^ (保留两个有效数字).9、存1000元的活期储蓄,月利率是0. 15%。
.五个月后本息和是10、观察下列算式,再填空:32 —12=8X 1, 52-32=8X2, 72-52=8X, 92—()2=8 X4,...(2n+l)2—(2n—1)2=8X. (n 是正整数)二、选择题:(本题10小题,每小题3分,共30分,每小题只有一个正确答案)1.下列数轴画法正确的是()A BC D2、已知a表示非负数,则一a包括()A.正数B,正数和0 C.负数D.负数和03、下列说法正确的是()A两个符号相反的数是互为相反数B. 一个数的相反数一定是负数C. —3是相反数D. 0的相反数是它本身4、一个数等于它的相反数的绝对值,则这个数是()A.非负数B,非正数C. 一切正数D, 一切负数5、一4的倒数与4的相反数的和是()A. 4B. —4C. 3D. —36、若a是有理数,则| a | —a一定是()A.正数B.负数C.零D.非负数7、如果ab=0,那么一定有()A. a=b=0B. a=0C. a、b中至少有一个为0D. a、b中最多有一个为08、对于任意有理数a,下列各式一定成立的是()A. a2= (―a) 2 ,B. a3= (— a) 3 ,C. — a2= | a | 2 , D | a | 3=a39、算式43+43+43+43可以化为()A. 412B. 44C. 481 D,无正确答案10、计算(―1 ) 2005X (-0. 6)2006=()A. 0.6B. -0.6C. 1D. -1三、计算题:(每题5分,共20分)①一10+8:( —2)3—(―2)2X (―3)②一25 X03-14+(1- ) X ( -2) X [4-(-2)3]042006-2006X3. 14159+2. 14X2006+(-1. 00159) X (-2006).解答题(每题6分,共12分)(1)a与b互为相反数,x、y互为倒数, 且| m | =1,求优惠条件一次购物不超过200元一次购物超过200元,但不超过500元一次购物超过500 元优惠方法不予优惠按物价给予九折优惠其中500元按九折优惠,超过500元部分按八折优惠.(2)已知A=a+a2+a3+…+a2006.当a=l时,求A的值.当a=T时,求A的值..(8分)理解与计算:例:若规定乂※y=3x —2y+l,求5※(一1)的值.解:山乂※y=3x — 2y+l得5淤(―1)=3X5 —2 X (-1)+1=18仿上例计算一2※(一3淤4)的值.六、(10分)已知有理数a、b、c在数轴上的对应点如图所示 c b a化简:| a—b | + | b —c | — | c —a | + | b+c | .七、(3+3+4分)某商店打出了促销广告如下表.对顾客实行优惠,某人在此商场两次购物分别付款168元和423元.(1)第一次付款168元,可购价值多少元的货物?(2)第二次付款423元,可购价值多少元的货物?(3)若把两次的货物合在一次买,需要多少钱?初中七年级《数学》第一章《有理数》测试题参考答案班级姓名得分参考答案:一、填空题(10题,共30分)1、 22、-33、乙、甲4、一1 和 55、10. 36、① 1 ② 1.5 ③一97、38、1. 0X1069、1000. 6510、 3 、 7、 n二、选择题(10题,共30分)题号 1 23456789 10答案 DDDABDCABB三、计算题1、12、 -24. 63、一4、 2006四、解答题(本题共2小题,每小题6分,共12分)1、 2、①2006 ②0五、理解与计算(8分)27六、—b—c七、①168元②470元③560.4元00。
七年级上册数学月考试卷及答案
![七年级上册数学月考试卷及答案](https://img.taocdn.com/s3/m/64e6b03b6d85ec3a87c24028915f804d2a16875c.png)
七年级上册数学月考试卷及答案七年级上册数学月考试卷及答案七年级上册数学月考试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A。
-7℃ B。
+7℃ C。
+12℃ D。
-12℃2.某同学春节期间将自己的压岁钱800元,存入银行。
XXX放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A。
+800,+350,-100 B。
+800,-350,-100C。
-800,+350,+100 D。
+800,-350,+1003.-6的相反数为( )A。
6 B。
-6 C。
0 D。
-14.下列式子中,-(-3),-|-3|,3-5,-1-5是负数的有( )A。
1个 B。
2个 C。
3个 D。
4个5.下列计算不正确的是( )A。
-(-3)=-3 B。
+[-(-3)]=3 C。
-3+|-3|=0 D。
-5=-56.下列四个数中,最小的数是( )A。
2 B。
-2 C。
0 D。
-18.某种面粉袋上的质量标识为250.25kg,则下列面粉中合格的是( )A。
24.70kg B。
25.30kg C。
25.51kg D。
24.80kg9.(-1)-(-3)+2(-3)的值等于( )A。
1 B。
-4 C。
5 D。
-110.若ab≠0,则a/b的值不可能是( )A。
2 B。
0 C。
-2 D。
1二、填空题(每小题3分,共30分)11.①3的相反数是-3,②-2的倒数是-1/2,③|-2012|=2012.12.如果m≥0,n≥0,m≥|n|,那么m≥n≥-m≥-n.13.写出一个比-1小的数是-2.14.7(-2)的相反数是-14.16.若|x|=3,y=2,则|x+y|=5.17.计算|-|-3|=3.18.武冈某天早晨气温是-5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为-7℃.19.已知a,b互为相反数,且都不为0,则(a+b-5)(-3)=12.20.一组按规律排列的数:-4,-1,2,5,8,请你推断第9个数是14.三、XXX21.(16分) 计算1) 3+(-2)-(-3)+2 = 62) |-5+7|+(-4)-6 = 03) -2×(-3)-(-4)×(-5) = 24) (-2)×[(3-7)×(-4)] = 3222.(14分) 一张纸的厚度是0.01cm,折叠后厚度变成原来的2倍,再折叠后厚度变成原来的3倍,求折叠3次后纸的厚度.答:第一次折叠后厚度为0.02cm,第二次折叠后厚度为0.06cm,第三次折叠后厚度为0.18cm.23.(10分) 如果-3x+2y=5,3x-y=7,求x和y的值.答:将第二个式子两边乘以3得-9x+6y=15,与第一个式子相加得7y=20,即y=20/7.将y的值代入第二个式子得3x-(20/7)=7,解得x=61/21.因此,x=61/21,y=20/7.24.(10分) 一辆汽车从A地出发,以每小时60公里的速度向B地行驶,途中遇到了一次故障,耽误了1小时,然后以每小时40公里的速度向B地行驶,结果比原计划晚到2小时,求AB两地的距离.答:设AB两地的距离为x公里,则原计划行驶时间为x/60小时,故障后行驶时间为(x/60+1)小时,最后行驶时间为(x/60+1)+(x/40)小时。
七年级上册第一次月考试题(含答案)
![七年级上册第一次月考试题(含答案)](https://img.taocdn.com/s3/m/aca6da9b02d276a200292eaa.png)
七年级上学期第一学月试题 考试范围:第一章 有理数(90分钟完卷,满分100分)班级 姓名 得分一、选择题(每题2分,共20分)( )1.冬季的一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差 A .4℃ B .6℃ C .10℃ D .16℃( )2.下列各组选项中,a 与b 不一定互为相反数的是( )(A) a b =- (B) 0a b += (C) 1a b ÷=- (D) a b = ( )3.下列各式中,正确的是(A) ―5―3=―2 (B) 0)411()25.1(=+--(C) 222)13()12()5(-=-+- (D) )5723(1)7532(1+⨯=+÷ ( )4.如果两个数的积为负数,和也为负数,那么这两个数(A) 都是负数 (B) 一正一负,且负数的绝对值大 (C) 都是正数 (D) 一正一负,且正数的绝对值大( )5.a b -的值与b a -的值的关系是(A) 互为相反数 (B)互为倒数 (C) 相等 (D) 以上都不对( )6.关于有理数,下列说法错误的是(A) 整数和分数统称为有理数; (B)最大的负整数是-1;(C) 有理数都可以在数轴上表示出来; (D)有理数分为正有理数和负有理数两大类。
( )7.以-273 0C 为基准,并记作0°K,则有-272 0C 记作1°K,那么100 0C 应记作(A )-173°K (B )173°K (C )-373°K (D )373°K ( )8.用科学记数法表示的数1.001×1025的整数位数有(A) 23位 (B) 24位 (C) 25位 (D) 26位( )9.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是(A) 相等 (B) 互为相反数 (C) 互为倒数 (D) 相等或互为相反数 ( )10.下列各组数中,数值相等的是(A) 32和23(B)-23和(-2)3(C)-32和(-3)2(D)—(3×2)2和-3×22二、填空题(每小题3分,共30分)11、在里○填上“>、<”或“=”:3--○1(3)- 12-○23-a b +○()a b --12、有理数a,b,c 在数轴上的位置如图所示, 则____0, ____0,____0, ____0a c a b a b c b +---÷(填上“<”或“>” ) 13、数轴上,如果点A 表示―87,点B 表示―76,那么离原点较近的点是 。
七年级上册英语第一次月考(含答案)
![七年级上册英语第一次月考(含答案)](https://img.taocdn.com/s3/m/1d062c1fabea998fcc22bcd126fff705cd175c46.png)
七年级英语第一学月月考试题(满分120分时间100分钟)第一部分第二部分第三部分总分题号ⅠⅡⅢⅣⅤⅠⅡⅢⅠⅡⅢ得分第一部分听力(25分)Ⅰ.听句子或对话,选择正确图片。
每个句子或对话读两遍。
(5分)()1.()2.()3.()4.()5.Ⅱ.听句子,选择正确答语。
每个句子读两遍。
(5分)()6.A.How do you do? B.Fine,thank you. C.I’m five.()7.A.She’s thirteen. B.She’s a teacher. C.Her name is Jane. ()8.A.Yes,it is. B.Yes,they are. C.Yes,he is.()9.A.Thank you. B.Nice to meet you,too. C.You’re welcome. ()10.A.I’m twelve. B.I’m OK. C.I’m from Beijing.Ⅲ.听对话及问题,选择正确答案。
每组对话和问题读两遍。
(5分)()11.A.7312-8492. B.7623-5849. C.7381-5849.()12.A.Class Seven. B.Class Four. C.Class Five.()13.A.12. B.11. C.13.()14.A.An egg. B.A ruler. C.An eraser.()15.A.China. B.England. C.Canada.Ⅳ.听对话,补全对话中所缺单词。
对话读两遍。
(5分)A:Good16,I’m Miss Brown.I’m from17.I’m your teacher.What’s your name, please?B:My name is18.A:How19are you?B:I’m20years old.A:OK.Thanks.16._______17._______18._______19._______20._______Ⅴ.听短文,根据短文内容,完成表格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级月考上册试题及答案1.在下列各数中,﹣3.8,+5,0,﹣,,﹣4,中,属于负数的个数为()A.2个B.3个C.4个D.5个考点:正数和负数.专题:推理填空题.分析:根据正负数的定义便可直接解答,即大于0的数为正数,小于0的数为负数,0既不是正数也不是负数.解答:解:根据负数的定义可知,在这一组数中为负数的有:﹣3.8,﹣,﹣4,故选:B.点评:此题考查的知识点是正数和负数,解答此题的关键是正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号.2.下列叙述正确的是()A.正数和分数统称有理数B.0是整数但不是正数C.﹣是负分数,1.5不是正分数D.既不是正数,又不是负数,这样的数一定不是有理数考点:有理数.分析:根据有理数的定义,可判断A,根据零的意义,可判断B、D,根据分数的定义,可判断C.解答:解:A、整数和分数统称有理数,故A错误;B、0是整数单但不是正数,故B错误;C、﹣是负分数,1.5是正分数,故C错误;D、0既不是正数也不是负数,0是有理数,故D错误;故选:B.点评:本题考查了有理数,利用了有理数的定义,注意0不是整数也不是负数,0是有理数.3.下面表示数轴的图中,画得正确的是()A.B.C.D.考点:数轴.分析:数轴就是规定了原点、正方向和单位长度的直线,依据定义即可作出判断.解答:解:A、缺少正方向,故错误;B、单位长度不统一,故错误;C、正确;D、没有原点,故错误.故选C.点评:数轴有三要素:原点、正方向和单位长度,三者必须同时具备.4.下列比较大小的题目中,正确的题目个数是()(1)﹣5>﹣4;3>0>﹣4;(3)﹣>;(4)﹣>﹣.A.1B.2C.3D.4考点:有理数大小比较.分析:(1)根据两个负数比较大小,绝对值大的数反而小,可判断(1);根据正数大于零,零大于负数,可判断;(3)根据正数大于负数,可判断(3);(4)根据两个负数比较大小,绝对值大的数反而小,可判断(4).解答:解:(1)|﹣5|>|﹣4|,﹣5<﹣4,故(1)错误;3>0>﹣4,故正确;(3)正数大于负数,故(3)错误;(4)|﹣|<|﹣|﹣>﹣,故(4)正确;故选:B.点评:本题考查了有理数比较大小,正数大于零,零大于负数,注意两个负数比较大小,绝对值大的负数反而小.5.下列各式中,等号不成立是()A.︳﹣9|=9B.︳﹣9|=︳+9|C.﹣︳﹣9|=9D.﹣︳﹣9|=﹣︳+9| 考点:绝对值.分析:根据绝对值的性质对四个选项依次计算即可:如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.解答:解:A、|﹣9|=9,故等号成立;B、|﹣9|=|+9|=9,故等号成立;C、﹣|﹣9|=﹣9,故等号不成立;D、﹣﹣9|=﹣+9|=﹣9,故等号成立.故选C.点评:本题考查了绝对值的性质,解题时熟练掌握性质是关键,此题比较简单,易于掌握.6.|x﹣1|+|y+3|=0,则y﹣x﹣的值是()A.﹣4B.﹣2C.﹣1D.1考点:非负数的性质:绝对值.专题:计算题.分析:本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”解出x、y的值,再把x、y的值代入y﹣x﹣中即可.解答:解:∵|x﹣1|+|3+y|=0,∴x﹣1=0,3+y=0,解得y=﹣3,x=1,∴y﹣x﹣=﹣3﹣1﹣=﹣4.故选A.点评:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.7.某店一周经营情况记录(记盈利为正)+113,+87,﹣55,﹣35,+80,+90,则该店一周经营情况()A.盈利280元B.亏损280元C.盈利260元D.亏损260 考点:正数和负数.分析:可以求出这七个数的和,看其结果即可判断.解答:解:因为113+87﹣55﹣35+80+90=280,所以可知一周盈利280元,故选:A.点评:本题主要考查有理数的加法减运算,正确理解正负数的意义是解题的关键.8.两个有理数和为0,积为负,则这两个数的关系是()A.两个数均为0B.两个数中一个为0C.两数互为相反数D.两数互为相反数,但不为0 考点:有理数的乘法;有理数的加法.分析:根据有理数的乘法运算法则和有理数的加法运算法则判断即可.解答:解:∵两个有理数和为0,积为负,∴这两个数的关系是两数互为相反数,但不为0.故选D.点评:本题考查了有理数的乘法,有理数的加法,熟记运算法则是解题的关键.二、专心填一填(每题3分,共24分)9.潜艇所在的高度是﹣100m,一条鲨鱼在潜艇上方30m处,则鲨鱼的高度记作﹣70米.考点:正数和负数.分析:潜艇所在高度是﹣100米,如果一条鲨鱼在艇上方30m处,根据有理数的加法法则即可求出鲨鱼所在高度.解答:解:∵潜艇所在高度是﹣100米,鲨鱼在潜艇上方30m处,∴鲨鱼所在高度为﹣100+30=﹣70米.故答案为:﹣70米.点评:此题主要考查了正负数能够表示具有相反意义的量、有理数的加法等知识,解题关键是正确理解题意,根据题意列出算式解决问题.10.﹣的倒数是﹣,绝对值等于的数是,﹣()的相反数是.考点:倒数;相反数;绝对值.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:﹣的倒数是﹣,绝对值等于的数是,﹣()的相反数是,故答案为:﹣,,.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.11.相反数等于本身的有理数是0;倒数等于本身的数是±1.考点:倒数;相反数.专题:推理填空题.分析:根据①相反数的定义:只有符号不同的两个数叫互为相反数,0的相反数是0;②倒数的定义:乘积是1的两个数叫互为倒数;进行解答.解答:解:根据相反数的定义,得相反数等于本身的数是0;根据倒数的定义,得倒数等于本身的数是±1;故答案为:0,±1.点评:本题考查的是相反数、倒数的定义,难度不大,关键正确理解掌握其意义.12.绝对值小于5的整数有9个.考点:绝对值.分析:求绝对值小于5的整数,即求绝对值等于0,1,2,3,4的整数,可以结合数轴,得出到原点的距离等于0,1,2,3,4的整数;解答:解:根据绝对值的定义,则绝对值小于5的整数是0,±1,±2,±3,±4,共9个,绝对值小于6的负整数有﹣1,﹣2,﹣3,﹣4,﹣5,共5个.故答案为9;点评:本题主要考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单. 13.把(﹣4)﹣(﹣6)﹣(+8)写成省略加号的和的形式为﹣4+6﹣8.考点:有理数的减法.分析:根据相反数的定义和有理数的加法运算省略加号的方法解答.解答:解:(﹣4)﹣(﹣6)﹣(+8)写成省略加号的和的形式为﹣4+6﹣8.故答案为:﹣4+6﹣8.点评:本题考查了有理数的减法,有理数的加法省略加号的方法,是基础题,需熟记.14.在﹣1,﹣2,2三个数中,任取两个数相乘,最小的积是﹣4,的积是2.考点:有理数的乘法.分析:根据有理数的乘法运算法则和有理数的大小比较列式计算即可得解.解答:解:最小的积=﹣2×2=﹣4,的积=(﹣1)×(﹣2)=2.故答案为:﹣4;2.点评:本题考查了有理数的乘法,有理数的大小比较,正确列出算式是解题的关键.15.数轴上A点表示的数是2,那么同一数轴上与A点相距3个单位长度的点表示的数是﹣1或5.考点:数轴.分析:设与A点相距3个单位长度的点表示的数是x,再根据数轴上两点间的距离公式求出x的值即可.解答:解:设该点表示的数是x,则|2﹣x|=3,解得x=﹣1或x=5.故答案为:﹣1或5.点评:本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.用“>”、“<”、“=”号填空;(1)﹣0.02<1;>;(3)﹣(﹣)=﹣[+(﹣0.75)];(4)﹣<3.14.考点:有理数大小比较.分析:(1)(4)根据正数大于负数可直接比较大小,(3)先把分数化为小数的形式再比较大小.解答:解:(1)﹣0.02<1;=0.8,=0.75,∴;(3)﹣(﹣)==0.75,﹣[+(﹣0.75)]=﹣(﹣0.75)=0.75,∴﹣(﹣)=﹣[+(﹣0.75)];(4)﹣<3.14.点评:本题考查了有理数的大小比较,解题的关键是把每个数化为统一的形式,再比较大小.三、细心算一算(17-20题每小题26分,21、22每题5分,共26分)17.(1)(﹣4.6)+(﹣8.4)(﹣5)﹣5(3)3×[(﹣2)﹣10](4)23+(﹣17)+6+(﹣22)(5)(﹣5.3)+(﹣3.2)﹣(﹣2.5)﹣(+4.8)(6)(+)+(+17)+(﹣1)+(+7)+(﹣2)+(﹣)考点:有理数的混合运算.专题:计算题.分析:(1)原式利用同号两数相加的法则计算即可得到结果;原式利用减法法则计算即可得到结果;(3)原式先计算括号中的运算,再计算乘法运算即可得到结果;(4)原式结合后,相加即可得到结果;(5)原式利用减法法则变形,计算即可得到结果;(6)原式结合后,相加即可得到结果.解答:解:(1)原式=﹣13;原式=﹣10;(3)原式=3×(﹣12)=﹣36;(4)原式=23+6﹣22﹣17=29﹣39=﹣10;(5)原式=﹣5.3﹣3.2+2.5﹣4.8=﹣13.3+2.5=﹣10.8;(6)原式=﹣+17+7﹣1﹣2=24﹣3=20.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、认真解一解.18.把下列各数在数轴上表示出来,并用“>”号把它们连接起来.﹣3,1,﹣4.5,0,3.考点:有理数大小比较;数轴.分析:数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是:左边的数总是小于右边的数.解答:解:先将各数在数轴上标出来用“>”号把它们连接起来:3>1>0>﹣3>﹣4.5.点评:主要考查了有理数大小的比较,利用数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.19.把下列各数填在相应的大括号里:+2,﹣3,0,﹣3,π,﹣1.414,17,.负数集合:{…};正整数集合:{…};负分数集合:{…};有理数集合:{…}.考点:有理数.分析:根据小于零的数是负数,可得负数集合;根据大于零的整数是正整数,可得正整数集合;根据小于零的分数是负分数,可得负分数集合;根据有理数是有限小数或无限循环小数,可得有理数集合.解答:解:负数集合:{﹣3,﹣3,﹣1.414…};正整数集合:{2,17…};负分数集合:{﹣3,﹣1.414…};有理数集合:{+2,﹣3,0,﹣3,﹣1.414,17,…}.点评:本题考查了有理数,利用了有理数的分类.20.已知a与b互为相反数,c与d互为倒数,e=﹣(﹣2014),求2013a+2013b﹣的值.考点:代数式求值;相反数;倒数.分析:根据互为负数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,再求出e,然后代入代数式进行计算即可得解.解答:解:∵a与b互为相反数,∴a+b=0,∵c与d互为倒数,∴cd=1,又∵e=﹣(﹣2014)=2014,∴2013a+2013b﹣=﹣=﹣2014.点评:本题考查了代数式求值,主要利用了相反数的定义,倒数的定义,是基础题,熟记概念是解题的关键.21.已知|x﹣4|+|5﹣y|=0,求(x+y)的值.考点:非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x﹣4=0,5﹣y=0,解得x=4,y=5,所以,(x+y)=×(4+5)=.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.已知10箱苹果,以每箱10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,0,﹣0.1,+0.5,﹣0.2,﹣0.5.求12箱苹果的总重量.考点:正数和负数.分析:可以先求出这10箱比标准多或少重量,再加上10箱的标准重量即可.解答:解:因为0.2﹣0.2+0.7﹣0.3﹣0.4+0﹣0.1+0.5﹣0.2﹣0.5=﹣0.3所以12箱总重量为:10×10+(﹣0.3)=99.7(千克),答:12箱苹果的总重量为99.7千克.点评:本题主要考查有理数的加减混合运算,正确利用运算律及有理数的运算法则是解题的关键.23.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远?在白沙客站的什么方向?若每千米的价格为3.5元,这天下午小李的营业额是多少?考点:正数和负数.分析:(1)把这9个数加起来计算出其他结果,看其正负判断位置即可,求出绝对值的和,再乘价格即可.解答:解:(1)15﹣2+5﹣13+10﹣7﹣8+12+4=16,所以可知距出发白沙站16千米,在白沙客站的北方;|+15|+|﹣2|+|+5|+|﹣13|+|+10|+|﹣7|+|﹣8|+|+12|+|+4|=15+2+5+13+10+7+8+12+4=76,76×3.5=268(元),所以这天下午小李的营业额为268元.点评:本题主要考查有理数的加减运算,灵活运用运算律和正确掌握运算的法则是解题的关键.。