第1讲 数与式的运算
数与式的运算知识点高一
数与式的运算知识点高一作为数学学科的基础,数与式的运算是高中数学学习的重点之一,也是后续学习的基础。
掌握好数与式的运算知识点,对于理解和应用高中数学知识具有重要意义。
本文将介绍高一数与式的运算知识点,帮助学生更好地掌握数学知识。
一、四则运算四则运算是数学中最基本的运算之一,包括加法、减法、乘法和除法。
在高一阶段,我们需要巩固和深化对四则运算的掌握和应用。
1. 加法加法是指两个或多个数相加的运算,可以通过竖式或横式进行计算。
在进行加法运算时,需要注意数字的对齐,进位和进位法则等。
2. 减法减法是指两个数中较大的数减去较小的数,得到差的运算。
减法运算中,需要注意借位和退位的方法,特别是在减法竖式中的借位运算。
3. 乘法乘法是指两个或多个数相乘的运算。
在乘法运算中,可以使用竖式、横式或分配律等方法进行计算。
需要掌握好乘法口诀和快速计算技巧。
4. 除法除法是指一个数被另一个数整除的运算。
在除法运算中,需要注意除数、被除数和商之间的关系,以及余数的处理方法。
掌握好除法的基本原理和计算方法对于解决实际问题非常重要。
二、整数的运算整数是正整数、负整数和零的统称,是数学中的重要概念。
在高一数学学习中,我们需要掌握整数的加法、减法和乘法等运算。
1. 整数加法整数加法是指两个或多个整数相加的运算。
在整数加法中,需要注意正数加负数和负数加正数的情况,以及整数加法的运算法则。
2. 整数减法整数减法是指一个整数减去另一个整数,得到差的运算。
与整数加法类似,整数减法中也需要注意正数减负数和负数减正数的情况,以及整数减法的运算法则。
3. 整数乘法整数乘法是指两个整数相乘的运算。
整数乘法的运算法则和正数乘法类似,但需注意乘积的正负关系。
特别是两个负数相乘的结果为正数。
三、代数式的展开与因式分解代数式是由字母和数字按照一定规则组成的式子,是高中数学学习的重点之一。
在高一阶段,我们需要对代数式进行展开和因式分解等运算。
1. 代数式的展开代数式的展开是指将一个由字母和数字组成的式子,按照运算法则展开成一个多项式的过程。
安徽中考数学总复习教学案:第一章数与式
第一章数与式第一章数与式第1讲实数及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:有理数、数轴、相反数、绝对值、平方根、算数平方根、立方根、无理数、实数、近似数等的相关概念;有理数的加、减、乘方运算;有理数的大小比较,用科学记数法表示数等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.科学记数法、实数的运算,都是安徽中考的重点考查对象,要求考生熟练掌握.年份考察内容题型题号分值有理数的乘法选择题14科学记数法填空题115倒数选择题14科学记数法选择题24有理数的加法选择题14科学记数法填空题11 51.实数的有关概念(1)数轴:规定了__原点__,__正方向__和__单位长度__的直线叫做数轴,数轴上所有的点与全体__实数__一一对应.(2)相反数:只有__符号__不同,而__绝对值__相同的两个数称为互为相反数.a ,b 互为相反数⇔a +b =__0__.(3)倒数:1除以一个不等于零的实数所得的__商__,叫做这个数的倒数.a ,b 互为倒数⇔ab =__1__.(4)绝对值:在数轴上,一个数对应的点离开原点的__距离__,叫做这个数的绝对值.|a |=⎩⎨⎧ a ,(a >0) 0 ,(a =0) -a ,(a <0)|a |是一个非负数,即|a |__≥0__. (5)科学记数法,近似数:科学记数法就是把一个数表示成__±a ×10n __(1≤a <10,n 是整数)的形式;一个近似数,__四舍五入__到哪一位,就说这个数精确到哪一位.(6)平方根,算术平方根,立方根:如果x 2=a ,那么x 叫做a 的平方根,记作__x =±a __;正数a 的正的平方根,叫做这个数的算术平方根;如果x 3=a ,那么x 叫做a 的立方根,记作__x =3a __.(7)识记:112=________,122=________,132=________,142=________,152=________,162=________,172=________,182=________,192=________,202=________,212=________,222=__________,232=________,242=________,252=__________.13=________,23=________,33=__________,43=________,53=________,63=__________,73=________,83=________,93=__________,103=________.2.实数的分类按实数的定义分类:实数⎩⎪⎪⎨⎪⎪⎧ 有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎨⎧ ⎭⎪⎬⎪⎫ 正整数 零 自然数负整数分数⎩⎪⎨⎪⎧ 正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ 正无理数负无理数 无限不循环小数根据需要,我们也可以按符号进行分类,如:实数⎩⎪⎨⎪⎧正实数零负实数3.零指数幂,负整数指数幂任何非零数的零次幂都等于1,即__a 0=1(a ≠0)__;任何不等于零的数的-p 次幂,等于这个数p 次幂的倒数,即__a -p =1ap (a ≠0,p 为正整数)__.4.实数的运算实数的运算顺序是先算__乘方和开方__,再算__乘除__,最后算__加减__,如果有括号,先算__小括号__,再算__中括号__,最后算__大括号__,同级运算应__从左到右依次进行__.五种大小比较方法实数的大小比较常用以下五种方法:(1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大. (2)代数比较法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小.(3)差值比较法:设a ,b 是两个任意实数,则:a -b >0⇒a >b ;a -b =0⇒a =b ;a -b <0⇒a <b .(4)倒数比较法:若1a >1b,a >0,b >0,则a <b .(5)平方比较法:∵由a >b >0,可得a >b ,∴可以把a 与b 的大小问题转化成比较a 和b 的大小问题.1.(·安徽)(-2)×3的结果是( C )A .-5B .1C .-6D .6 2.(·安徽)-2的倒数是( A ) A .-12 B .12C .2D .-23.(·安徽)下面的数中,与-3的和为0的是( A ) A .3 B .-3 C .13 D .-134.(·安徽)据报载,我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为__2.5×107__.5.(·安徽)安徽省棉花产量约37800吨,将37800用科学记数法表示应是__3.78×104__.实数的分类【例1】 (·合肥模拟)实数π,15,0,-1中,无理数是( A )A .πB .15C .0D .-1【点评】 判断一个数是不是无理数,关键就看它能否写成无限不循环小数,初中常见的无理数共分三种类型:(1)化简后含π(圆周率)的式子;(2)含根号且开不尽方的数;(3)有规律但不循环的无限小数.掌握常见无理数类型有助于识别无理数.1.(1)(·安顺)下列各数中,3.14159,-38,0.131131113…,-π,25,-17无理数的个数有( B )A .1个B .2个C .3个D .4个 (2)(·安庆模拟)下列各数中,为负数的是( B )A .0B .-2C .1D .12实数的运算【例2】 (·重庆)计算:4+(-3)2-0×|-4|+(16)-1.解:原式=2+9-1×4+6=11-4+6=13【点评】 实数运算要严格按照法则进行,特别是混合运算,注意符号和顺序是非常重要的.2.(·东营)计算:(-1)+(sin 30°)-1+(35-2)0-|3-18|+83×(-0.125)3.解:原式=1+2+1-32+3-1=6-3 2科学记数法与近似值、有效数字【例3】 (1)(·芜湖模拟)餐桌上的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( A )A .5×1010千克B .50×109千克C .5×109千克D .0.5×1011千克(2)下列近似数中精确到千位的是( C ) A .90200 B .3.450×102 C .3.4×104 D .3.4×102【点评】 (1)科学记数法一般表示的数较大或很小,所以解题时一定要仔细,确定n 的值时,把大数的总位数减1即为n 的值,较小的数表示时就数第1个有效数字前所有“0”的个数(含小数点前的那个“0”)即为n 的值;(2)科学记数法写出这个数后可还原成原数进行检验;(3)用有效数字表示的数,在确定其精确度时,要还原成原数后再进行处理判断.3.(1)近似数2.5万精确到__千__位. (2)(·内江)一种微粒的半径是0.00004米,这个数据用科学记数法表示为( C )A .4×106B .4×10-6C .4×10-5 D .4×105与实数相关的概念【例4】 (1)(·河北)-2是2的( B )A .倒数B .相反数C .绝对值D .平方根(2)已知|a |=1,|b |=2,|c |=3,且a >b >c ,那么a +b -c =__2或0__.【点评】 (1)互为相反数的两个数和为0;(2)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;(3)两个非负数的和为0,则这两个数分别等于0.4.(1)计算:-(-12)=__12__;|-12|=__12__;(-12)0=__1__;(-12)-1=__-2__. (2)若ab >0,则|a |a +|b |b -|ab |ab的值等于__1或-3__.数轴【例5】 (·呼和浩特)实数a ,b ,c 在数轴上对应的点如下图所示,则下列式子中正确的是( D )A .ac >bcB .|a -b|=a -bC .-a <-b <cD .-a -c >-b -c【点评】 数形结合借助数轴找到数的位置,或由数找到在数轴上的点的位置及其相反数的位置,再根据数轴上右边的数大于左边的数,确定各数的大小或根据大减小为正,小减大为负,以及有理数的加法、乘法法则来确定数的运算后的符号.5.(1)(·蚌埠模拟)在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是3和-1,则点C 所对应的实数是( D )A .1+ 3B .2+ 3C .23-1D .23+1 (2)(·宁夏)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( D )A .a +b =0B .b <aC .ab >0D .|b|<|a|实数的大小比较【例6】 (1)(·绍兴)比较-3,1,-2的大小,下列判断正确的是( A ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2(2)(·河北)a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( A ) A .2,3 B .3,2 C .3,4 D .6,8【点评】 实数的大小比较要依据数值特点来灵活运用比较大小的几种方法来进行.6.(1)(·阜阳模拟)比较大小:-2__>__-3. (2)比较2.5,-3,7的大小,正确的是( A ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3第2讲整式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用字母表示数,代数式的实际背景或几何意义,求代数式的值,代数式的分类,整式加、减、乘、除运算,运用乘法公式进行计算,整数指数幂的简单计算,这里要重点指出的是用字母表示数中渗透合情推理思想,它是安徽中考的一个重点,同时也是难点,要求复习时重点突破.年份考察内容题型题号分值乘方运算选择题 2 4整式加减解答题15 8整式运算选择题 4 4乘方运算选择题 3 4代数式的表示选择题 5 4整式加减解答题15 81.单项式:由__数与字母__或__字母与字母__相乘组成的代数式叫做单项式,所有字母指数的和叫做__单项式的次数__,数字因数叫做__单项式的系数__.单独的数、字母也是单项式.2.多项式:由几个__单项式相加__组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个__多项式的次数__,其中不含字母的项叫做__常数项__.3.整式:__单项式和多项式__统称为整式.4.同类项:多项式中所含__字母__相同并且__相同字母的指数__也相同的项,叫做同类项.5.幂的运算法则:(1)同底数幂相乘:__a m·a n=a m+n(m,n都是整数,a≠0)__;(2)幂的乘方:__(a m)n=a mn(m,n都是整数,a≠0)__;(3)积的乘方:__(ab)n=a n·b n(n是整数,a≠0,b≠0)__;(4)同底数幂相除:__a m÷a n=a m-n(m,n都是整数,a≠0)__.6.整式乘法:单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数作为积的一个因式.单项式乘多项式:m(a+b)=__ma+mb__;多项式乘多项式:(a+b)(c+d)=__ac+ad+bc+bd__.7.乘法公式:(1)平方差公式:__(a+b)(a-b)=a2-b2__;(2)完全平方公式:__(a±b)2=a2±2ab+b2__.8.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.一座“桥梁”用字母表示数是从算术过渡到代数的桥梁,是后续学习的基础,用字母表示数能够简明地表示出事物的规律及本质特征.只有借助字母,才能把一些数量规律及数量更简洁、准确地表示出来.用字母表示数:(1)注意字母的确定性;(2)注意字母的任意性;(3)注意字母的限制性.二种思维方法法则公式既可正向运用,也可逆向运用.逆向运用和灵活变式运用既可简化计算,又能进行较复杂的代数式的大小比较.当直接计算有较大困难时,考虑逆向运用,可起到化难为易的功效.1.(·安徽)x2·x4=( B )A.x5B.x6C.x8D.x92.(·安徽)下列运算正确的是( B )A .2x +3y =5xyB .5m 2·m 3=5m 5C .(a -b)2=a 2-b 2D .m 2·m 3=m 6 3.(·安徽)计算(-2x 2)3的结果是( B ) A .-2x 5 B .-8x 6 C .-2x 6 D .-8x 5 4.(·安徽)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( B )A .(a -10%)(a +15%)万元B .a(1-10%)(1+15%)万元C .(a -10%-15%)万元D .a(1-10%-15%)万元5.(·枣庄)如图,在边长为2a 的正方形剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2整式的加减运算【例1】 (1)(·邵阳)下列计算正确的是( A ) A .2x -x =x B .a 3·a 2=a 6 C .(a -b)2=a 2-b 2 D .(a +b)(a -b)=a 2+b 2 (2)(·威海)已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是( B ) A .-2 B .0 C .2 D .4【点评】 整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果.1.(1)(·威海)下列运算正确的是( C ) A .2x 2÷x 2=2x B .(-12a 2b)3=-16a 6b 3C .3x 2+2x 2=5x 2D .(x -3)3=x 3-9(2)(·厦门)先化简下式,再求值:(-x 2+3-7x)+(5x -7+2x 2),其中x =2+1.解:原式=x 2-2x -4=(x -1)2-5,把x =2+1代入原式,原式=(2+1-1)2-5=-3同类项的概念及合并同类项【例2】 若-4x a y +x 2y b =-3x 2y ,则a +b =__3__.【点评】 (1)判断同类项时,看字母和相应字母的指数,与系数无关,也与字母的相关位置无关,两个只含数字的单项式也是同类项;(2)只有同类项才可以合并.2.(·淮南模拟)已知12x n -2m y 4与-x 3y 2n 是同类项,则(mn)的值为( C )A .B .-C .1D .-1幂的运算【例3】 (1)(·济南)下列运算中,结果是a 5的是( A ) A .a 3·a 2 B .a 10÷a 2 C .(a 2)3 D .(-a)5(2)(·芜湖模拟)计算(a 2)3÷(a 2)2的结果是( B ) A .a B .a 2 C .a 3 D .a 4【点评】 (1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理.3.(1)(·)下列各式计算正确的是( D ) A .a 2+2a 3=3a 5 B .(a 2)3=a 5 C .a 6÷a 2=a 3 D .a ·a 2=a 3(2)(·随州)计算(-12xy 2)3,结果正确的是( B )A .14x 2y 4B .-18x 3y 6C .18x 3y 6D .-18x 3y 5 整式的混合运算及求值【例4】 (·绍兴)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2=1+14=54【点评】 注意多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.4.(·合肥模拟)化简2[(m -1)m +m(m +1)][(m -1)m -m(m +1)],若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)]=2(m 2-m +m 2+m)(m 2-m -m 2-m)=-8m 3.原式=(-2m)3,表示3个-2m 相乘,或者说是一个立方数,8的倍数等乘法公式【例5】 (·芜湖模拟)如图①,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图②的等腰梯形.(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2;(2)请写出上述过程所揭示的乘法公式.(1)S 1=a 2-b 2;S 2=12(2b +2a)(a -b)=(a +b)(a -b)(2)(a +b)(a -b)=a 2-b 2【点评】 (1)在利用完全平方公式求值时,通常用到以下几种变形: ①a 2+b 2=(a +b)2-2ab ; ②a 2+b 2=(a -b)2+2ab ;③(a+b)2=(a-b)2+4ab;④(a-b)2=(a+b)2-4ab.注意公式的变式及整体代入的思想.(2)算式中的局部直接使用乘法公式、简化运算,任何时候都要遵循先化简,再求值的原则.5.(1)整式A与m2-2mn+n2的和是(m+n)2,则A=__4mn__.(2)(·广州)已知多项式A=(x+2)2+(1-x)(2+x)-3.①化简多项式A;②若(x+1)2=6,求A的值.解:①A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2-2x+x-x2-3=3x+3②(x+1)2=6,则x+1=±6,∴A=3x+3=3(x+1)=±3 6第3讲因式分解~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用提取公因式法、公式法(直接用公式不超过两次)分解因式等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.年份考察内容题型题号分值因式分解选择题 4 4因式分解填空题12 5因式分解选择题 4 41.因式分解把一个多项式化成几个__整式__积的形式,叫做因式分解,因式分解与__整式乘法__是互逆运算.2.基本方法(1)提取公因式法:ma+mb-mc=__m(a+b-c)__.(2)公式法:运用平方差公式:a2-b2=__(a+b)(a-b)__;运用完全平方公式:a2±2ab+b2=__(a±b)2__.3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么必须先提取公因式;(2)如果各项没有公因式,那么尽可能尝试用公式法来分解;(3)分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式写成幂的形式,这样才算分解彻底;(4)注意因式分解中的范围,如x4-4=(x2+2)(x2-2),在实数范围内分解因式,x4-4=(x2+2)(x+2)(x-2),题目不作说明的,表明是在有理数范围内因式分解.思考步骤多项式的因式分解有许多方法,但对于一个具体的多项式,有些方法是根本不适用的.因此,拿到一道题目,先试试这个方法,再试试那个办法.解题时思考过程建议如下:(1)提取公因式;(2)看有几项;(3)分解彻底.在分解出的每个因式化简整理后,把它作为一个新的多项式,再重复以上过程进行思考,试探分解的可能性,直至不可能分解为止.变形技巧当n为奇数时,(a-b)n=-(b-a)n;当n为偶数时,(a-b)n=(b-a)n.1.(·安徽)下列四个多项式中,能因式分解的是( B)A.a2+1B.a2-6a+9C.x2+5y D.x2-5y2.(·毕节)下列因式分解正确的是( A)A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+23.(·安徽)因式分解:x2y-y=__y(x+1)(x-1)__.4.(·安徽)下面的多项式中,能因式分解的是( D)A.m2-n B.m2-m-1C.m2+n D.m2-2m+15.(·哈尔滨)把多项式3m2-6mn+3n2分解因式的结果是__3(m-n)2__.因式分解的意义【例1】(·泉州)分解因式x2y-y3结果正确的是( D )A.y(x+y)2B.y(x-y)2C.y(x2-y2) D.y(x+y)(x-y)【点评】因式分解是将一个多项式化成几个整式积的形式的恒等变形,若结果不是积的形式,则不是因式分解,还要注意分解要彻底.1.(·玉林)下面的多项式在实数范围内能因式分解的是( D )A.x2+y2B.x2-yC.x2+x+1 D.x2-2x+1提取公因式法分解因式【例2】阅读下列文字与例题:将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n);(2)x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1).试用上述方法分解因式:a2+2ab+ac+bc+b2=__(a+b)(a+b+c)__.【点评】(1)首项系数为负数时,一般公因式的系数取负数,使括号内首项系数为正;(2)当某项正好是公因式时,提取公因式后,该项应为1,不可漏掉;(3)公因式也可以是多项式.2.(1)多项式ax2-4a与多项式x2-4x+4的公因式是__x-2__.(2)把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( D )A.m+1 B.2mC.2 D.m+2运用公式法分解因式【例3】(1)(·东营)3x2y-27y=__3y(x+3)(x-3)__;(2)(·邵阳)将多项式m2n-2mn+n因式分解的结果是__n(m-1)2__.【点评】(1)用平方差公式分解因式,其关键是将多项式转化为a2-b2的形式,需注意对所给多项式要善于观察,并作适当变形,使之符合平方差公式的特点,公式中的“a”“b”也可以是多项式,可将这个多项式看作一个整体,分解后注意合并同类项;(2)用完全平方公式分解因式时,其关键是掌握公式的特征.3.分解因式:(1)9x2-1;(2)25(x+y)2-9(x-y)2;(3)(·淮北模拟)a-6ab+9ab2;(4)(·湖州)mx2-my2.解:(1)9x2-1=(3x+1)(3x-1)(2)25(x+y)2-9(x-y)2=[5(x+y)+3(x-y)][5(x+y)-3(x-y)]=(8x+2y)(2x+8y)=4(4x+y)(x+4y)(3)a-6ab+9ab2=a(1-6b+9b2)=a(1-3b)2(4)mx2-my2=m(x2-y2)=m(x+y)(x-y)综合运用多种方法分解因式【例4】给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算,并把结果分解因式.解:(12x 2+x -1)+(12x 2+3x +1)=x 2+4x =x(x +4);(12x 2+x -1)+(12x 2-x)=x 2-1=(x+1)(x -1);(12x 2+3x +1)+(12x 2-x)=x 2+2x +1=(x +1)2【点评】 灵活运用多种方法分解因式,其一般顺序是:首先提取公因式,然后再考虑用公式,最后结果一定要分解到不能再分解为止.4.(1)(·武汉)分解因式:a 3-a =__a(a +1)(a -1)__; (2)(·黔东南州)分解因式:x 3-5x 2+6x =__x(x -3)(x -2)__;因式分解的应用 【例5】 (1)(·河北)计算:852-152=( D )A .70B .700C .4900D .7000 (2)已知a 2+b 2+6a -10b +34=0,求a +b 的值.解:∵a 2+b 2+6a -10b +34=0,∴a 2+6a +9+b 2-10b +25=0,即(a +3)2+(b -5)2=0,∴a +3=0且b -5=0,∴a =-3,b =5,∴a +b =-3+5=2【点评】 (1)利用因式分解,将多项式分解之后整体代入求值;(2)一个问题有两个未知数,只有一个条件,根据已知式右边等于0,若将左边转化成两个完全平方式的和,而它们都是非负数,要使和为0,则每个完全平方式都等于0,从而使问题得以求解.5.(1)(·马鞍山模拟)若ab =2,a -b =-1,则代数式a 2b -ab 2的值等于__-2__.(2)已知a ,b ,c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2,则△ABC 的形状是( C )A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形(3)(·北京)已知x -y =3,求代数式(x +1)2-2x +y(y -2x)的值.解:原式=x 2-2xy +y 2+1=(x -y)2+1,把x -y =3代入,原式=3+1=4第4讲 分式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:分式的概念、分式的基本性质、约分与通分,分式的加、减、乘、除运算等,题型有选择题、填空题,也有解答题,但难度都属于基础题和中档题的要求.这里要重点指出的是分式的加减乘除运算,它一直是安徽中考的一个重点,这是因为分式的加减乘除运算几乎可以涵盖所有代数式的基本运算,因此考生一定要注意.年份 考察内容 题型 题号 分值 分式方程的计算 填空题 13 5 分式方程的应用解答题 20(2) 8 分式计算选择题 6 41.分式的基本概念(1)形如__AB(A ,B 是整式,且B 中含有字母,B ≠0)__的式子叫分式;(2)当__B ≠0__时,分式A B 有意义;当__B =0__时,分式AB 无意义;当__A =0且B ≠0__时,分式AB的值为零.2.分式的基本性质分式的分子与分母都乘(或除以)__同一个不等于零的整式__,分式的值不变,用式子表示为__A B =A ×M B ×M ,A B =A÷MB÷M(M 是不等于零的整式)__.3.分式的运算法则(1)符号法则:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变. 用式子表示:a b =-a -b =-a -b =--a b ;-a b =a-b =-a b .(2)分式的加减法:同分母加减法:__a c ±b c =a±bc __;异分母加减法:__b a ±d c =bc±adac __.(3)分式的乘除法: a b ·c d =__acbd __; a b ÷c d =__adbc __. (4)分式的乘方:(a b )n =__a nbn (n 为正整数)__. 4.最简分式如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式. 5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质.把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.解分式方程,其思路是去分母转化为整式方程,要特别注意验根.使分母为0的未知数的值是增根,需舍去.两个技巧(1)分式运算中的常用技巧分式运算题型多,方法活,要根据特点灵活求解.如:①分组通分;②分步通分;③先“分”后“通”;④重新排序;⑤整体通分;⑥化积为差,裂项相消.(2)分式求值中的常用技巧分式求值可根据所给条件和求值式的特征进行适当的变形、转化.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.1.(·温州)要使分式x +1x -2有意义,则x 的取值应满足( A )A .x ≠2B .x ≠-1C .x =2D .x =-1 2.(·广州)计算:x 2-4x -2,结果是( B )A .x -2B .x +2C .x -42D .x +2x3.(·安徽)化简x 2x -1+x1-x 的结果是( D )A .x +1B .x -1C .-xD .x 4.(·济南)化简m -1m ÷m -1m 2的结果是( A )A .mB .1mC .m -1D .1m -15.(·安徽)方程4x -12x -2=3的解是x =__6__.分式的概念,求字母的取值范围【例1】 (1)(·贺州)分式2x -1有意义,则x 的取值范围是( A )A .x ≠1B .x =1C .x ≠-1D .x =-1 (2)(·毕节)若分式x 2-1x -1的值为零,则x 的值为( C )A .0B .1C .-1D .±1【点评】 (1)分式有意义就是使分母不为0,解不等式即可求出,有时还要考虑二次根式有意义;(2)首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值.1.(1)(·铜陵模拟)若代数式xx -1有意义,则实数x 的取值范围是( D )A .x ≠1B .x ≥0C .x >0D .x ≥0且x ≠1(2)当x =__-3__时,分式|x|-3x -3的值为0.分式的性质【例2】 (1)(·贺州)先化简,再求值:(a 2b +ab)÷a 2+2a +1a +1,其中a =3+1,b =3-1.解:原式=ab(a +1)·a +1(a +1)2=ab ,当a =3+1,b =3-1时,原式=3-1=2(2)(·济宁)已知x +y =xy ,求代数式1x +1y-(1-x)(1-y)的值.解:∵x +y =xy ,∴1x +1y -(1-x)(1-y)=y +x xy -(1-x -y +xy)=x +y xy -1+x +y -xy=1-1+0=0【点评】 (1)分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;(2)将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;(3)巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.2.(1)(·安庆模拟)下列计算错误的是( A ) A .0.2a +b 0.7a -b =2a +b 7a -b B .x 3y 2x 2y 3=x yC .a -b b -a=-1 D .1c +2c =3c(2)(·广安)化简(1-1x -1)÷x -2x 2-2x +1的结果是__x -1__.分式的四则混合运算【例3】 (·深圳)先化简,再求值:(3x x -2-x x +2)÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.解:原式=3x (x +2)-x (x -2)(x +2)(x -2)·(x +2)(x -2)x =2x +8,当x =1时,原式=2+8=10【点评】 准确、灵活、简便地运用法则进行化简,注意在取x 的值时,要考虑分式有意义,不能取使分式无意义的0与±2.3.(1)(·十堰)已知a 2-3a +1=0,则a +1a-2的值为( B )A .5+1B .1C .-1D .-5(2)(·黄山模拟)先化简x 2-4x 2-9÷(1-1x -3),再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解:原式=(x +2)(x -2)(x +3)(x -3)÷x -3-1x -3=(x +2)(x -2)(x +3)(x -3)·x -3x -4=(x +2)(x -2)(x +3)(x -4),不等式2x -3<7,解得x <5,其正整数解为1,2,3,4,当x =1时,原式=14分式方程的解法【例4】 (·舟山)解方程:x x +1-4x 2-1=1.解:去分母,得x(x -1)-4=x 2-1,去括号,得x 2-x -4=x 2-1,解得x =-3,经检验x =-3是分式方程的解【点评】 (1)按照基本步骤解分式方程,其关键是确定各分式的最简公分母.若分母为多项式时,应首先进行分解因式.将分式方程转化为整式方程,乘最简公分母时,应乘原分式方程的每一项,不要漏乘常数项;(2)检验是否产生增根:分式方程的增根是分式方程去分母后整式方程的某个根,但因为它使分式方程的某些分母为零,故应是原方程的增根,需舍去.4.(1)(·阜阳模拟)若分式方程x x -1-m1-x =2有增根,则这个增根是__x =1__;(2)(·)解分式方程:3x 2-9+xx -3=1.解:方程两边都乘(x +3)(x -3),得3+x(x +3)=x 2-9,3+x 2+3x =x 2-9,解得x =-4,检验:把x =-4代入(x +3)(x -3)≠0,∴x =-4是原分式方程的解第5讲 二次根式及其运算~安徽中考命题分析 安徽中考命题预测预测安徽省中考仍将主要考查:二次根式的加、减、乘、除运算(不要求分母有理化),用有理数估计无理数的大致范围仍将是安徽中考的主要考察点.尤其是用有理数估计无理数的大致范围是安徽中考的一个重点.题型以选择题、填空题居多.无论什么形式,计算的难度都不会太大,难度均属于基础题.年份 考察内容 题型题号 分值 用有理数估计无理数的大致范围选择题6 4 二次根式有意义 填空题 11 5 - ---1.二次根式的概念式子__a(a ≥0)__叫做二次根式. 2.二次根式的性质 (1)(a)2=__a(a ≥0)__.(2)a 2=|a|=⎩⎪⎨⎪⎧ a (a >0) ; 0(a =0) ; -a (a <0) W.3.二次根式的运算(1)二次根式加减法的实质是合并同类根式;(2)二次根式的乘法:a·b =__ab(a ≥0,b ≥0)__; (3)二次根式乘法的反用:ab =a·b(a ≥0,b ≥0); (4)二次根式的除法:ab=__ab(a ≥0,b >0)__;(5)二次根式除法的反用:a b =__ab(a ≥0,b >0)__. 4.最简二次根式运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式,需满足两个条件:(1)被开方数不含分母;(2)被开方数中不含开得尽方的因数或因式.“双重非负性”算术平方根a 具有双重非负性,一是被开方数a 必须是非负数,即a ≥0;二是算术平方根a 的值是非负数,即a ≥0.算术平方根的非负性主要用于两方面:(1)某些二次根式的题目中隐含着“a ≥0”这个条件,做题时要善于挖掘隐含条件,巧妙求解;(2)若几个非负数的和为零,则每一个非负数都等于零. 求值问题“五招”(1)巧用平方;(2)巧用乘法公式;(3)巧用配方;(4)巧用换元;(5)巧用倒数.1.(·安徽)设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7 D .82.(·安徽)若1-3x 在实数范围内有意义,则x 的取值范围是__x ≤13__.3.(·徐州)下列运算中错误的是( A ) A .2+3= 5 B .2×3= 6 C .8÷2=2 D .(-3)2=34.(·福州)若(m -1)2+n +2=0,则m +n 的值是( A ) A .-1 B .0 C .1 D .25.(·内江)按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( C )A .14B .16C .8+5 2D .14+ 2二次根式概念与性质【例1】 (1)等式2k -1k -3=2k -1k -3成立,则实数k 的范围是( D ) A .k >3或k <12 B .0<k <3C .k ≥12D .k >3(2)已知a ,b ,c 是△ABC 的三边长,试化简:(a +b +c )2+(a -b -c )2+(b -c -a )2+(c -a -b )2.解:原式=|a +b +c|+|a -b -c|+|b -c -a|+|c -a -b|=(a +b +c)+(b +c -a)+(c +a -b)+(a +b -c)=2a +2b +2c【点评】 (1)对于二次根式,它有意义的条件是被开方数大于或等于0;(2)注意二次根式性质(a)2=a(a ≥0),a 2=|a|的区别,判断出各式的正负性,再化简.1.(1)(·达州)二次根式-2x +4有意义,则实数x 的取值范围是( D ) A .x ≥-2 B .x >-2 C .x <2 D .x ≤2(2)如果(2a -1)2=1-2a ,则( B ) A .a <12 B .a ≤12C .a >12D .a ≥12二次根式的运算【例2】 (1)(·济宁)如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab÷ab=-b.其中正确的是( B ) A .①② B .②③C .①③D .①②③ (2)计算:24-32+23-216. 解:原式=26-126+136-136=326【点评】(1)二次根式化简,依据ab=a·b(a≥0,b≥0),ab=ab(a≥0,b>0),前者将被开方数分解,后者分子、分母同时乘一个适当的数使分母变成一个完全平方数,即可将其移到根号外;(2)二次根式加减,即化简之后合并同类二次根式.2.(1)(·黄山模拟)若20n是整数,则正整数n的最小值为__5__.(2)(·抚州)计算:27-3=__23__.二次根式混合运算【例3】计算:(10-3)·(10+3).解:原式=(10-3)×(10+3)×(10+3)=[(10-3)(10+3)]×(10+3)=1×(10+3)=10+3【点评】(1)二次根式混合运算,把若干个知识点综合在一起,计算时要认真仔细;(2)可以运用运算律或适当改变运算顺序,使运算简便.3.(1)(·荆门)计算:24×13-4×18×(1-2)0;解:原式=26×33-4×24×1=22-2= 2(2)已知10的整数部分为a,小数部分为b,求a2-b2的值.解:∵3<10<4,∴10的整数部分a=3,小数部分b=10-3.∴a2-b2=32-(10-3)2=9-(10-610+9)=-10+610。
初中数学基础知识2第1章《数与式第1节》
方、负整数指数幂、算术平方根、零指数幂、特殊角的三角函数值
第3页
实数的相关概念
1.(2019 山西)-3 的绝对值是
A.-3 B.3
C.-1
3
2.(2016 山西)-1的相反数是
6
A.1 B.-6 C.6
6
3.(2011 山西)|-6|的值是
A.-6
B.-1 C.1
6
6
D.1
3
D.-1
6
D.6
第一章
( C)
A.6.06×104 立方米/时
B.3.136×106 立方米/时
C.3.636×106 立方米/时
D.36.36×105 立方米/时
答案
第5页
第一章
第一节
5.(2017 西)2017年5月18日,我国宣布在南海神狐海域成功试采可 燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计, 仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国 陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为 ( C)
a.186×108吨
b.18.6×109吨
c.1.86×1010 吨
d.0.186×1011 吨
答案
第6页
第一章
第一节
6.(2014 西)pm2.5是指大气中直径小于或等于2.5 μm(1 μm=0.000001 m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质, 对人体健康和大气环境质量有很大危害.2.5 μm用科学记数法可表示 为( C )
A.3830×104千瓦
B.383×105千瓦
C.0.383×108千瓦
D.3.83×107千瓦
答案
第 29 页
初高衔接第一课时数与式的运算
Hale Waihona Puke 典例题例4.1 简化:1 4 24 − 6 54 + 3 96 − 2 150;
2
30 ×
3
2
2
3
2 ÷ −2 2
1
2
.
解:
1 4 24 − 6 54 + 3 96 − 2 150 = 8 6 − 18 6 + 12 6 − 10 6 = −8 6.
2
30 ×
8
3
3
2
2
5
2
2
3
÷ −2
30 × × = −
所以 −
+
2 2 − 2.
=
+ − 2
+ − 2 −2+ −2
+ −
= 2 + 1.
= 2 − 2 + −2 = 2 + 1 − 2 + 2 − 1 =
初高衔接
行,运算中要运用公式 = ≥ 0, ≥ 0 .而对于二次根式的除法,
通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法
与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式。
2 二次根式 2 的意义:
, ≥ 0
2
= =
−, < 0
初高衔接
2 完全平方 ± 2 = 2 ± 2 + 2 .
通过证明得到的乘法公式:
1 立方和公式 + 2 − + 2 = 3 + 3 ;
2 立方差公式 − 2 + + 2 = 3 − 3 ;
3 三数和平方公式 + + 2 = 2 + 2 + ��2 + 2 + + ;
初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)
专题一、数与式的运算课时一:乘法公式一、初中知识1.实数运算满足如下运算律:加法交换律,加法结合律,乘法交换律,乘法结合律,乘法对加法的分配律。
2.乘法公式平方差公式: (a +b)(a -b) =a 2-b 2完全平方公式: (a ±b)2=a 2± 2ab +b 2二、目标要求1.理解字母可以表示数,代数式也可以表示数,并掌握数与式的运算。
2.掌握平方差公式和完全平方公式的灵活运用,理解立方和与差公式,两数和与差的立方公式以及三数和的完全平方公式。
三、必要补充根据多项式乘法法则推导出如下乘法公式(1)(x +a)(x +b) =x 2+ (a +b)x +ab(2)(ax +b)(cx +d ) =acx2+ (ad +bc)x +bd(3)立方和公式: (a +b)(a 2-ab +b 2 ) =a3+b3(4)立方差公式: (a -b)(a 2+ab +b 2 ) =a 3-b3(5)两数和的立方公式:(a +b)3=a3+ 3a 2b + 3ab2+b3(6)两数差的立方公式:(a -b)3=a3- 3a 2b + 3ab 2-b3(7)三数和的平方公式:(a +b +c)2=a 2+b 2+c 2+ 2ab + 2bc + 2ac四、典型例题例1、计算:(1)(x + 2)(x - 5) (3)(2x -1)3(2)(2x + 3)(3x - 2) (4)(2a +b -c)2例2:已知x +y = 3 ,xy = 8 ,求下列各式的值(1)x 2y 2;(2)x 2xy y 2;(3)( x y)2;(4)x 3y 3分析:(1)x 2y 2( x y)2 2 xy(2)x 2xy y 2( x y)2 3 xy(3)( x y)2( x y)2 4 xy(4)x 3y 3( x y)( x 2xy y 2 ) ( x y)[( x y)2 3 xy] 例3:已知a +b +c = 4 ab +bc +ac = 4 求a 2+b 2+c 2的值分析: a2+b2+c2= (a +b +c)2- 2(ab +bc +ac) = 8变式:已知:x2- 3x +1= 0 ,求x3+1x3的值。
高一数学单元知识点专题讲解1---数与式的运算
【例 8】计算:
(1) ( a + b + 1)(1 − a + b ) − ( a + b )2
(2)
a
a
+
a − ab a + ab
解: 原式 (1) = (1 + b)2 − ( a )2 − (a + 2 ab + b) = −2a − 2 ab + 2 b + 1
【例 7】计算(没有特殊说明,本节中出现的字母均为正数):
3 (1)
2+ 3
11 (2) +
ab
(3) 2
x −
x3 +
8x
2
解: 原式 (1)
=
3(2 − 3)
3(2 − =
3) = 6 − 3 3
(2 + 3)(2 − 3) 22 − 3
原式 a + b a2b + ab2
(2) =
=
ab
ab
3/7
解:( )原式 1
= 43 + m3 = 64 + m3
( )原式 2
= (1 m)3 − (1 n)3 = 1 m3 − 1 n3
5
2 125 8
( )原式 3
= (a 2 − 4)(a 4 + 4a 2 + 42 ) = (a 2 )3 − 43 = a 6 − 64
( )原式 4
= (x + y)2 (x 2 − xy + y 2 )2 = [(x + y)(x 2 − xy + y 2 )]2
三、分式
4/7
初升高衔接课程 数与式的运算因式分解一元二次方程
第一讲数与式的运算第二讲因式分解知识篇数与式的运算1、实数;2、代数式;3、乘法公式;4、分式;5、二次根式因式分解1、提取公因式;2、运用公因式;3、分组分解法;4、十字相乘法;5、配方法笔记:归纳小结:数与式的运算1 、已知 的公式表示试写出用21121,,111R ,R R R R R R R ≠+=2、设X=,3232-+ Y=,3232+- 求33Y X +的值3、化简下列各式1)221-32-3)()(+ 2)22x -2x -1)()(+ (X ≥1)4、已知a+b+c=4,ab+bc+ac=4,求a2+b2+c2的值。
分解因式1、提公因式法,运用公因式法(1)3a3b-81b4(2)a7-ab62、分组分解法(3)2ax-10ay+5by-bx (4)ab(c2-d2)-(a2-b2)cd (5)x2-y2+ax+ay (6)2x2+4xy+2y2-8z23、十字相乘(7)x2-7x+6 (8)x2+13x+36(9)x2+xy-6y2(10)(x2+x)2-8(x2+x)+12 (11)12x2-5x-2 (12)5x2+6xy-8y24、配方法(13)x2+12x+16 (14)a4+a2b2+b45、其他方法添项、拆项法、分解因式(15)x 3-3x 2+4 (16)(x 2-5x+2)(x 2-5x+4)-8二、因式分解的应用 1、已知a+b=32,ab=2,求代数式 a 2b+2a 2b 2+ab 2的值2、计算12345678921234567890-123456789112345678902)(ab o作业篇一选择1、二次根式,a -=2a 成立的条件是 ( )A 、a >0,B 、a <0,C 、a ≤0,D 、a 是任意实数2、若x <3,则6x 6x -92--+x 的值是 ( ) A 、-3, B 、3, C 、-9, D 、93、数轴上有两点A ,B 分别表示实数a ,b ,则线段AB 的长度是 ( ) A 、a-b , B 、a+b , C 、b -a ,D 、b +a4、实数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( ) A 、a+b >a >b >a-b , B 、a >a+b >b >a-b C 、a-b >a >b >a+b , D 、a-b >a >a+b >b5、若等于,则yy x y x322x =+- ( ) A 、1, B 、45, C 、54, D 、56二化简1、19183-232)()(+ 2、313-1+3、1-32-23121++4、38a -5、aa 1-⨯三、已知x+y=1,求x 3+y 3+3xy四、若2)1()1(22=++-a a ,求a 的取值范围。
数与式的运算
数与式的运算数与式的运算是数学中的基础内容之一,它涉及到数的运算和式的运算。
数的运算主要包括加法、减法、乘法和除法,而式的运算则是对含有未知数的表达式进行计算和化简。
在日常生活和学习中,我们经常会遇到各种数与式的运算问题,因此掌握这方面的知识对于我们的数学学习和实际应用都具有重要意义。
一、数的运算数的运算是数学的基础,它包括加法、减法、乘法和除法四种基本运算。
这些运算符号和规则在我们的日常生活中随处可见,我们经常会用到它们来解决各种实际问题。
1. 加法加法是最简单的数的运算之一,它的运算符号是“+”。
当我们需要将两个或多个数进行相加时,可以使用加法。
例如,计算2 + 3的结果为5,表示两个数相加的和是5。
在加法中,两个或多个数的顺序可以交换,即a + b = b + a。
2. 减法减法是数的运算中常用的一种,它的运算符号是“-”。
减法是加法的逆运算,它表示从一个数中减去另一个数。
例如,计算5 - 3的结果为2,表示从5中减去3的差是2。
3. 乘法乘法是数的运算中的一种重要运算,它的运算符号是“×”或“*”。
乘法表示将两个或多个数相乘的结果。
例如,计算2 ×3的结果为6,表示两个数相乘的积是6。
在乘法中,两个或多个数的顺序可以交换,即a × b = b × a。
4. 除法除法是数的运算中的一种重要运算,它的运算符号是“÷”或“/”。
除法表示将一个数分成若干等份的运算。
例如,计算6 ÷ 2的结果为3,表示将6分成2等份,每份的值是3。
在除法中,被除数除以除数得到商,商可以是整数或小数。
二、式的运算式的运算是对含有未知数的表达式进行计算和化简的过程。
式是数学中的一种基本表达形式,它由数和运算符号组成,可以用来表示数与数之间的关系。
1. 合并同类项合并同类项是对式进行化简的一种常用方法。
同类项是指具有相同的字母部分和相同的指数的项。
例如,对于表达式3x + 2x - 5x,我们可以将其中的同类项3x、2x和-5x合并得到x,即3x + 2x - 5x = x。
数与式的基本概念及运算法则
数与式的基本概念及运算法则在数学中,数与式是基本的概念,它们在各个领域都有广泛运用。
本文将介绍数与式的基本概念和运算法则,希望能帮助读者更好地理解和运用数与式。
一、数的基本概念与运算法则1.1 自然数和整数自然数是最基本的数,即从1开始,依次递增的数。
自然数集合记作N={1, 2, 3, ...}。
整数是包括正整数、负整数和0的数。
整数集合记作Z={..., -3, -2, -1, 0, 1, 2, 3, ...}。
1.2 有理数和无理数有理数是可以表示为两个整数之比的数,它们包括整数、分数和有限小数。
有理数集合记作Q。
无理数是无法用有理数表示的数,它们包括无限不循环小数,如π和根号2等。
无理数集合记作I。
1.3 实数实数是包括有理数和无理数的所有数,它们构成实数集合R。
1.4 数的运算法则数的基本运算法则包括加法、减法、乘法和除法。
加法法则:对于任意的实数a、b和c,满足结合律和交换律,即(a+b)+c=a+(b+c)和a+b=b+a。
减法法则:减法是加法的逆运算,即a-b=a+(-b)。
乘法法则:对于任意的实数a、b和c,满足结合律和交换律,即(a*b)*c=a*(b*c)和a*b=b*a。
除法法则:除法是乘法的逆运算,即a/b=a*(1/b)。
二、式的基本概念与运算法则2.1 代数式代数式是由数字、字母和运算符号组成的表达式。
代数式可以包含加减乘除、指数、根号、括号等。
代数式可以是一元的或多元的。
2.2 方程与不等式方程是含有未知数的等式,表示两个代数式相等的关系。
解方程是求使方程成立的未知数的值。
不等式是含有未知数的不等式表达式,表示两个代数式的大小关系。
求解不等式是求使不等式成立的未知数的取值范围。
2.3 恒等式和条件式恒等式是对于所有满足式中变量范围的值都成立的等式。
条件式是只在满足一定条件时成立的等式。
2.4 表达式的合并与分解合并是指将多个代数式合并成一个更简单的表达式。
分解是指将一个复杂的代数式分解成几个更简单的表达式。
专题1 数与式的运算
专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂),掌握运算性质,能够区别n的异同. 通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离; 例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x = . (1)由已知可得x+2=3或x+2=-3解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8.(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5,∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5.(4)在数轴上找出|x-2|+|x+2|+|x-5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x对应的点在-2的左边或5的右边.若x对应的点在5的右边,可得203x=;若x对应的点在-2的左边,可得103x=-,∴方程|x-2|+|x+2|+|x-5|=15的解是103x=-或203x=.【变式训练】实数在数轴上所对应的点的位置如图所示:化简.a-2b解:由数轴知:a<0,b>0,|a|>|b|,所以b-a>0,a-b<0原式=|a|-(b-a)-(b-a)=-a-b+a-b+a=a-2b【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围;(2)化简:.(1) −1<a<3;(2).(1)①+②得:5x=15−5a,即x=3−a,代入①得:y=2+2a,根据题意得:xy=(3−a)(2+2a)>0,解得−1<a<3;(2)∵−1<a<3,∴当−1<a<3时,高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b ab +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b aab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】 (1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- (1)3(2)4ab-8b 2解:(1)原式=4+1+(-8)÷4 =5-2=3(2)原式=a 2-4b 2-(a 2-4ab+4b 2)=a 2-4b 2-a 2+4ab-4b 2=4ab-8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+-(1)8 (2)-6x+13(1)原式=1+16-9=8;(2)原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=-6x+13.【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示) (1)ab;(2)a b ;(3)2a b. 解:(1)50x =10x ×5x =ab ; (2)2x =xx x 1010a 55b ⎛⎫== ⎪⎝⎭; (3)20x =x x 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭.高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2(1) 56-;(2)(1)×3﹣6=﹣=﹣(2)x 4﹣4x=2x 4x2x .【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.不正确,见解析解:不正确,正确解答过程为:【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2b a b-+,其中,.2a a b -. 解:(2a b a b -+-b a b -)÷a 2b a b-+ =()()()()()2a b a b b a b a b a b a b a 2b ---++⋅+--=2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a ba 2b -⋅-- =2a a b -, 当+3,-3时,原式22=33.高中必备知识点4:分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像a b c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x x x x x x +++-÷--+,其中x 满足x 2+x ﹣1=0.21x x -,1. 解:原式=()()()221-211121x x xx x x x x ---=-+210x x +﹣=,21x x ∴=﹣,∴原式=1.【变式训练】化简:22442x xy y x y -+-÷(4x 2-y 2)y x +2122442x xy y x y -+-÷(4x 2-y 2)=2(2)12(2)(2)x y x y x y x y -⨯-+-=y x +21.【能力提升】已知:112a b -=,则ab b a bab a 7222+---的值等于多少?43-.解:∵112a b -=,∴a-b=-2ab ,则2ab 2ab44ab 7ab 3--=--+专题验收测试题1.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在()A .线段AB 上 B .线段BC 上 C .线段CD 上D .线段DE 上B∵实数m+1,23<<∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.2.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66 B(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.3.已知1-1xx=,则221xx+等于()A.3 B.2 C.1 D.0 A∵1-1 xx=,∴21-1x x ⎛⎫= ⎪⎝⎭, 即221-2+1x x ⎛⎫= ⎪⎝⎭, ∴221-=3x x.故选A . 4.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根.其中,所有正确说法的序号是 A .①④ B .②③C .①②④D .①③④C根据勾股定理,边长为3的正方形的对角线长为a = 根据实数与数轴上的一点一一对应的关系,a 可以用数轴上的一个点来表示,故说法②正确.∵216<a 18<25=,∴4<a =,故说法③错误.∵2a 18=,∴根据算术平方根的定义,a 是18的算术平方根,故说法④正确. 综上所述,正确说法的序号是①②④.故选C .5.定义一种关于整数n 的“F ”运算:一、当n 为奇数时,结果为3n +5;二、当n 为偶数时,结果为2k n(其中k 是使2k n为奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74……,若n =449,求第2020次运算结果是( ) A .1 B .2C .7D .8A设449经过n 次运算结果为n a ,则11352a =,2169a =,3512a =,41a =,58a =,61a =,⋯,21n a ∴=,218(2n a n +=且n 为整数).∵2020为偶数,20201a ∴=.故选:A6.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760C∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个; 第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2na n n =+(n 为正整数)个∴111122n a n n ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++ (1111)3815399=++++11111324351921=++++⨯⨯⨯⨯ 1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C 7.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为()A .0B .1C .2D .与m 有关A根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019Mx x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是()A .M N <B .MN >C .MN D .M N ≥B根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=,∴()()12201823201920192019()Mx x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()MN pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴MN >;故选:B.9.下列运算正确的是( )A .1a b a b b a -=--B .m n m na b a b --=- C .11b b a a a+-=D .2221a b a b a b a b+-=--- D根据分式的减法法则,可知:a b a b b a ---=a b a b a b +--=a ba b +-,故A 不正确;由异分母的分式相加减,可知m n a b -==bm an bm anab ab ab --,故B 不正确;由同分母分式的加减,可知11b b a a a+-=-,故C 不正确; 由分式的加减法法则,先因式分解通分,即可知2221a b a b a b a b+-=---,故D 正确.故选:D. 10.已知a ,b 为实数且满足1a ≠-,1b ≠-,设11=+++a b M a b ,1111=+++N a b .①若1ab =时,M N ;②若1ab >时,M N >;③若1ab <时,M N <;④若0a b +=,则0M N ≤.则上述四个结论正确的有( ) A .1 B .2C .3D .4D对于①,可知(1)(1)2(1)(1)(1)(1)a b b a a b ab M a b a b +++++==++++,2(1)(1)a b N a b ++=++,若1ab =时,M N ,正确;对于②,也可分析得到;对于③④同样如此.11.若11122299919991a +=+,22233399919991b +=+,则a 与b 的大小关系为( ) A .a b > B .a b =C .a b <D .无法确定A∵11122299919991a +=+,22233399919991b +=+, ∴1112222223339991999199919991a b ++-=-++ =()()()()()211133322222222299919991999199919991++-+++=()()111333222222333999999999999199291++-⨯+=()()()1112222222223339999999999991999211⨯+-++⨯>()()111222222222333999999999999199291+⨯-⨯+>0,∴a b >.故选A .12.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x +y +z 的值为( )A .12B .14C .727D .9A11z x y x y y z z x ++=+++, 11114z x y x y y z z x∴+++++=+++, 即14x y z x y z x y zx y y z z x ++++++++=+++,11114x y y z z x x y z∴++=+++++, 而11176x y y z z x ++=+++, 1476x y z ∴=++,12x y z ∴++=.故选:A .13.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B .C .2D .±2A∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴a+b=a-b=∴a ba b +-= A.14有意义,那么直角坐标系中点A(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限A根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A15.已知a的最小值为()A.0 B.3 C.D.9B根据题意,由,可知当(a﹣3)2=0,即a=3时,代数的值最小,为故选B.16.已知m、n m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是Cm、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.17.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.9.∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187……,∴尾数四个一循环,∴每四个的尾数和是0.∵2019÷4=504…3,∴3+32+33+34+…+32019的末位数字是9.故答案为:9.C,最小正方形的周长是18.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是12C,则12C C =_____.432如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下: 0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=- 7号:3号-4号得2(22)43x y y x x y ---=- 6号:4号-7号得22(43)56y x x y y x ---=- 10号:0号-1号得x9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=- 8号:10号-9号得(86)67x x y y x --=- 11号:6号-7号得56(43)810y x x y y x ---=- 或9号-6号得86(56)1411x y y x x y ---=- 因此x 和y 满足等式:8101411y x x y -=- 整理得:1924x y =所以最大正方形(0号)的周长1434()6C x y y =+=最小正方形(11号)的周长214(1411)3C x y y =-=则12432C C =.19.对于整数a ,b ,c ,d ,定义a d b c =ac ﹣bd ,已知1<1d 4b<3,则b+d 的值为_______.±3根据题意,得1<4–bd <3,化简,得1<bd <3, a ,b ,c ,d 均为整数,∴db =2, ∴当d =1时b =2或当d =–1时b =–2, ∴b +d =3或b +d =–3.20. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.±3把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②,①×2-②得:5m =15, 解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3, 故答案为:±3 21.若m 满足关系式35223x y m x y m +--+-199199x y x y =---+m =________.201由题意可得,199-x-y ≥0,x-199+y ≥0, ∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m , 将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201. 故答案为:201.22.若214x x x++=,则2211x x ++= ________________.8∵214x x x ++=可化为13x x +=,2211x x ++化为211x x ⎛⎫+- ⎪⎝⎭∴原式=211x x ⎛⎫+- ⎪⎝⎭=32-1=823.已知22143134m n m n =--+,则11m n+的值等于______. 1322143134m n m n =--+221(2)(6)04m n -++=,则20m -=,60n +=, 所以2m =,6n =-, 所以11111263m n +=-=. 故答案是:13. 24.已知函数1x f xx,那么1f _____.2+因为函数1x f xx,所以当1x =时, 211()2221f x .25.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =..原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 26.观察下列等式:1)131====-====回答下列问题:(1(2;(3+….(1(2;(3)1 (12575752227575 527755=(222121212121n n n n n 2222212121n n n n 22212121n n n n 22221n n2121n n(3)由(22121121n n n n3153757573 =153757573 31537573717573175 531270=(1)求实数,a b 的值;(2的整数部分为x ,小数部分为y①求2x y +的值;②已知10kx m =+,其中k 是一个整数,且01m <<,求k m -的值.(1)7a =;21b =;(2)①4(10=,2490a -=且70a +≠,∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125,∴45<<,即的整数部分为4,小数部分为4,①244)4x y +=+=;②∵12<<,∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<,∴2,10242k m ==-⨯=∴2(2k m -=--=28.已知下面一列等式: 111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. (1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. (1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x =+. 29.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()ca b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++.(1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?(1)运算满足交换律;(2)加法的分配律不满足.(1)∵a b a b a b ⊕=⨯++,b a b a b a ⊕=⨯++,∴a b b a ⊕=⊕,∴该运算满足交换律;(2)根据规定,()()()a b c a b c a b c +⊕=+⨯+++a c b c a b c =⨯+⨯+++,∵a c a c a c ⊕=⨯++,b c b c b c ⊕=⨯++, ∴a c b c a c a c b c b c⊕+⊕=⨯+++⨯++2a c b c a b c =⨯+⨯+++, ∵2a c b c a b c a c b c a b c ⨯+⨯+++≠⨯+⨯+++,∴()a b c a c b c +⊕≠⊕+⊕,∴对加法的分配律不满足.30.李狗蛋同学在学习整式乘法公式这一节时,发现运用乘法公式在进行一些计算时特别简便,这激发了李狗蛋同学的学习兴趣,他想再探究一些有关整式乘法的公式,便主动查找资料进行学习,以下是他找来的资料题,请你一同跟李狗蛋同学探究一下:(1)探究:()()a b a b -+=____;()()22a b a ab b -++=___;()()3223a b a a b ab b -+++=_____;(2)猜想:()()1221...n n n n a b a a b ab b -----++++=______(n 为正整数,且2n ≥); (3)利用上述猜想的结论计算:98732222...2221-+-+-+-的值.(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)341 (1)()()22a b a b a b -+=-,()()22322223a b a ab b a a b ab a b ab b -++=++---33=-a b ,()()32234322332234a b a a b ab b a a b a b ab a b a b ab b -+++=+++----44a b =-,故答案为:22a b -,33a b -,44a b -;(2)根据(1)的结果可知:()()1221...n n n n a b a a b ab b -----++++=n n a b -, 故答案为:nn a b -; (3)原式987236278922(1)2(1)...2(1)2(1)2(1)(1)=+⨯-+⨯-++⨯-+⨯-+⨯-+- 98723627891[2(1)][22(1)2(1)...2(1)2(1)2(1)(1)]3=⨯--⨯+⨯-+⨯-++⨯-+⨯-+⨯-+-10101[2(1)]3=⨯-- 10213-= 102413-= 341=.。
§1.1 数与式的运算(1.2.3)_教师版
大良总校:0757-2222 2203 大良北区:0757-2809 9568 大良新桂:0757-2226 7223 大良嘉信:0757-2232 3900 容桂分校:0757-2327 9177 容桂体育:0757-2361 0393 容桂文华:0757-2692 8831 龙江分校:0757-2338 6968 北滘分校:0757-2239 5188 乐从分校:0757-2886 6441 勒流分校:0757-2566 8686 伦教分校:0757-2879 9900 均安分校:0757-2550 6122 南海桂城:0757-8633 8928 南海黄岐:0757-8599 0018 金色家园:0757-8630 6193 禅城玫瑰:0757-8290 0090 南海大沥:0757-8118 0218 南海丽雅:0757-8626 3368 佛山高明:0757-8828 2262 中山小榄:0760-2225 9911 石岐北区:0760-8885 2255 石岐东区:0760-8888 0277 §1.1 数与式的运算(1. 绝对值、2.二次根式、3.乘法公式)【要点回顾】 1.绝对值[1]绝对值的代数意义:1.正数的绝对值是它的本身.2. 负数的绝对值是它的相反数.3. 零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩[2]绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离 的距离.[3]两个数的差的绝对值的几何意义:a b -表示_表示在数轴上,数a 和数b 之间 的距离.[4]两个绝对值不等式:(1)||(0)x a a a x a <>⇔-<<; (2)||(0)x a a x a >>⇔<-或x a >. [5]两个负数比较大小:绝对值大的反而小。
[6]非负数的应用:若,0=+b a 则a=_0且b=_0_。
数与式的运算
第一讲 数与式 1.1 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:ba -表示在数轴上,数a 和数b 之间的距离.例1、 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4. 解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA|,即|PA|=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB|,即|PB|=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA|+|PB|>4. 由|AB|=2,可知10 |x -1||x -3|点P 在点C(坐标为0)的左侧、或点P 在点D(坐标为4)的右侧. x <0,或x >4. 练 习 1.填空: (1)若5=x ,则x=_________;若4-=x ,则x=_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是 ( ) (A )若a b=,则a b = (B )若a b>,则a b >(C )若a b <,则a b< (D )若a b=,则a b =±3.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -. 解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -. 例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:(1)221111()9423a b b a -=+( );(2)(4m + 22)164(m m =++ ); (3 )2222(2)4(a b c a b c +-=+++ ). 2.选择题:(1)若212x mx k++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b ,等是无理式,而21x ++,22x y +1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与与,等等.一般地,b与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩ 例1、将下列式子化为最简二次根式:(1(20)a ≥; (30)x <.解: (1= (20)a ==≥;(3220)x x x =-<.例2(3.解法一:(3==.解法二:(3.例3 、试比较下列各组数的大小:(1(2解: (1)∵===,===,>(2)∵1===又 4>22,∴6+4>6+22,例4、化简:20042005⋅.解:20042005+⋅=20042004+⋅-⋅-=2004⎡⎤+⋅⋅-⎣⎦=20041⋅例5、化简:(1(21)x<<.解:(1)原式===2=2=.(2)原式1xx=-,∵01x<<,∴11xx>>,所以,原式=1xx-.例6、已知x y==22353x xy y-+的值.解:∵2210x y +==+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=. 练 习1.填空:(1_____;(2(x =-x 的取值范围是_____;(3)=____;(4)若2x =+=_______. 2.选择题:=成立的条件是 ( )(A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若1b a =+,求a b +的值.4.比较大小:2- 3 ____5-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M≠0时,分式AB 具有下列性质: A A M B B M ⨯=⨯; A A M B B M ÷=÷.上述性质被称为分式的基本性质.2.繁分式像abc d +,2m n p m n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1、若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++, ∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2、(1)试证:111(1)1n n n n =-++(其中n 是正整数); (2)计算:1111223910+++⨯⨯⨯ ; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+ . (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++, ∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++- =910. (3)证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+ =1121n -+,又n≥2,且n 是正整数, ∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+ <12. 例3、设ce a =,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c2-5ac +2a2=0两边同除以a2,得 2e2-5e +2=0,∴(2e -1)(e -2)=0,∴e =12 <1,舍去;或e =2. ∴e =2.练 习1.填空题:对任意的正整数n ,1(2)n n =+ ___ 112n n -+; 2.选择题:若223x y x y-=+,则xy =( ) (A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x yx y -+的值.4.计算1111 (122334)99100++++⨯⨯⨯⨯.习题1.1 A 组1.解不等式: (1)13x ->; (2)327x x ++-< ; (3)116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a的取值范围是________;(3=________.B 组1.填空:(1)12a=,13b=,则2223352a aba ab b-=+-________;(2)若2220x xy y+-=,则22223x xy yx y++=+____;2.已知:11,23x y==的值.C 组1.选择题:(1()(A)a b<(B)a b>(C)0a b<<(D)0b a<<(2)计算()(A(B(C)(D)2.解方程:22112()3()10 x xx x+-+-=.3.计算:1111 132435911 ++++⨯⨯⨯⨯.4.试证:对任意的正整数n,有111123234(1)(2)n n n+++⨯⨯⨯⨯++<14.1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法. 1.十字相乘法 例1 、分解因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有 x2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示). (2)由图1.2-3,得x2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法例2 、分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++ =22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++. (2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-. -1 -2 x x 图1.2-1 -1 -21 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx+c(a≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3、把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-. 习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-. 2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a).第二讲 函数与方程 2.1 一元二次方程 2.1.1根的判别式我们知道,对于一元二次方程ax2+bx +c =0(a≠0),用配方法可以将其变形为2224()24b b acx a a -+=. ① 因为a≠0,所以,4a2>0.于是(1)当b2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根X 1,2=;(2)当b2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根X 1=x 2=-2ba ;(3)当b2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a +一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax2+bx +c =0(a≠0)的根的情况可以由b2-4ac 来判定,我们把b2-4ac 叫做一元二次方程ax2+bx +c =0(a≠0)的根的判别式,通常用符号“Δ”来表示. 综上所述,对于一元二次方程ax2+bx +c =0(a≠0),有 当Δ>0时,方程有两个不相等的实数根x1,2=;(2)当Δ=0时,方程有两个相等的实数根x1=x2=-2ba ;(3)当Δ<0时,方程没有实数根. 例1、判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x +3=0; (2)x2-ax -1=0; (3) x2-ax +(a -1)=0; (4)x2-2x +a =0. 解:(1)∵Δ=32-4³1³3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a2-4³1³(-1)=a2+4>0,所以方程一定有两个不等的实数根12a x =,22a x =.(3)由于该方程的根的判别式为Δ=a2-4³1³(a-1)=a2-4a +4=(a -2)2, 所以,①当a =2时,Δ=0,所以方程有两个相等的实数根 x1=x2=1;②当a≠2时,Δ>0, 所以方程有两个不相等的实数根 x1=1,x2=a -1. (3)由于该方程的根的判别式为 Δ=22-4³1³a=4-4a =4(1-a), 所以①当Δ>0,即4(1-a) >0,即a <1时,方程有两个不相等的实数根11x =21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x1=x2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax2+bx +c =0(a≠0)有两个实数根12b x a -+=,22b x a -=,则有1222b b x x a a -+===-;221222(4)444b b ac ac cx x a a a --====.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1²x 2=ca .这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x1+x2=-p ,x1²x2=q ,即 p =-(x1+x2),q =x1²x2,所以,方程x2+px+q=0可化为 x2-(x1+x2)x+x1²x2=0,由于x1,x2是一元二次方程x2+px+q=0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x+x1²x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是X2-(x1+x1)x+x1²x2=0.例2 、已知方程2560x kx+-=的一个根是2,求它的另一个根及k的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.解法一:∵2是方程的一个根,∴5³22+k³2-6=0,∴k=-7.所以,方程就为5x2-7x-6=0,解得x1=2,x2=-3 5.所以,方程的另一个根为-35,k的值为-7.解法二:设方程的另一个根为x1,则 2x1=-65,∴x1=-35.由(-35)+2=-5k,得 k=-7.所以,方程的另一个根为-35,k的值为-7.例3、已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1²x2=m2+4.∵x12+x22-x1²x2=21,∴(x1+x2)2-3 x1²x2=21,即 [-2(m-2)]2-3(m2+4)=21,化简,得 m2-16m-17=0,解得 m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4³1³293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4、已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则 x+y=4,①xy=-12.②由①,得 y=4-x,代入②,得x(4-x)=-12,即 x2-4x-12=0,∴x1=-2,x2=6.∴112,6,xy=-⎧⎨=⎩或226,2.xy=⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x2-4x-12=0的两个根.解这个方程,得x1=-2,x2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5、若x1和x2分别是一元二次方程2x2+5x-3=0的两根.(1)求| x1-x2|的值;(2)求221211x x+的值;(3)3231xx+.解:∵x1和x2分别是一元二次方程2x2+5x-3=0的两根,∴1252x x+=-,1232x x=-.(1)∵| x1-x2|2=x12+ x22-2 x1x2=(x1+x2)2-4 x1x2=253 ()4() 22 --⨯-=254+6=494,∴| x1-x2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x13+x23=(x1+x2)( x12-x1x2+x22)=(x1+x2)[ ( x1+x2) 2-3x1x2]=(-52)³[(-52)2-3³(32-)]=-2158.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律: 设x1和x2分别是一元二次方程ax2+bx +c =0(a≠0),则1x =,2x =,∴| x1-x2|===. 于是有下面的结论:若x1和x2分别是一元二次方程ax2+bx +c =0(a≠0),则| x1-x2|=||a (其中Δ=b2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6、若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x1,x2是方程的两根,则x1x2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4, 由②得 a <174 .∴a 的取值范围是a <4. 练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( )(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )(A )m <14 (B )m >-14 (C )m <14,且m≠0 (D )m >-14,且m≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x +=_______. (2)方程mx 2+x -2m =0(m≠0)的根的情况是____________________________. (3)以-3和1为根的一元二次方程是______________________.3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7;②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-;④方程3 x 2+2x =0的两根之和为-2,两根之积为0. 其中正确说法的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a2+a =0的一个根是0,则a 的值是( ) (A )0 (B )1 (C )-1 (D )0,或-1 2.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k =_______.(2)方程2x 2-x -4=0的两根为α,β,则α2+β2=__________.(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是_______.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= __________.3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数. B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为 ( )(A )1或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 _________.(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是______.3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.4.一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1和x 2.求:(1)| x 1-x 2|和122x x +; (2)3231x x +. 5.关于x 的方程x2+4x +m =0的两根为x1,x2满足| x1-x2|=2,求实数m 的值. C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9(2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m)x +m 2=0有两实数根α,β,则α+β的取值范围为 ( )(A )α+β≥12 (B )α+β≤12 (C )α+β≥1 (D )α+β≤1(4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b)x +4c=0的根的情况是( )(A)没有实数根(B)有两个不相等的实数根(C)有两个相等的实数根(D)有两个异号实数根2.填空:若方程x2-8x+m=0的两根为x1,x2,且3x1+2x2=18,则m=________.3.已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)( x1-2 x2)=-32成立?若存在,求出k的值;若不存在,说明理由;(2)求使1221x xx x+-2的值为整数的实数k的整数值;(3)若k=-2,12xxλ=,试求λ的值.4.已知关于x的方程22(2)04mx m x---=.(1)求证:无论m取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.5.若关于x的方程x2+x+a=0的一个大于1、零一根小于1,求实数a的取值范围.2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质问题1、函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y=2x2,y=12x2,y=-2x2的图象,通过这些函数图象与函数y=x2的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系.先画出函数y=x2,y=2x2的图象.先列表:从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x2,y =2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x2的图象可以由函数y =x2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x2,y =-2x2的图象,并研究这两个函数图象与函数y =x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax2(a≠0)的图象可以由y =x2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax2(a≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小. 问题2 函数y =a(x +h)2+k 与y =ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax2+bx +c(a≠0)的图象的方法:由于y =ax2+bx +c =a(x2+b x a )+c =a(x2+b x a +224b a )+c -24b a224()24b b aca x a a -=++, 所以,y =ax2+bx +c(a≠0)的图象可以看作是将函数y =ax2的图象作左右平移、上下平移得到的,于是,二次函数y =ax2+bx +c(a≠0)具有下列性质:图2.2-2图2.2-1(1)当a >0时,函数y =ax2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2ba -时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2ba -时,y 随着x 的增大而减小;当x =2b a -时,函数取最大值y =244ac b a -. 上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1 、求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x2-6x +1=-3(x +1)2+4, ∴函数图象的开口向下; 对称轴是直线x =-1; 顶点坐标为(-1,4); 当x =-1时,函数y 取最大值y =4;当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随图2.2-3图2.2-4着x 的增大而减小;采用描点法画图,选顶点A(-1,4)),与x 轴交于点B 3(,0)3和C 3(,0)3-,与y 轴的交点为D(0,1),过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.例2、某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之间关系如下表所示:若日销售量y 是销售价x 的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y³(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值. 解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩解得 k =-1,b =200. ∴ y =-x +200. 设每天的利润为z (元),则z =(-x+200)(x -120)=-x2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3、把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x2+bx +c =(x+2b)224b c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩ 解得b =-8,c =14.解法二:把二次函数y =x2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x2的图像,等价于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x2+bx +c 的图像.由于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x2-8x +14的图像,∴函数y =x2-8x +14与函数y =x2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4、已知函数y =x 2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论. 解:(1)当a =-2时,函数y =x2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a2;(3)当0≤a<2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的①图2.2-6②③二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()(A)y=2x2(B)y=2x2-4x+2(C)y=2x2-1 (D)y=2x2-4x(2)函数y=2(x-1)2+2是将函数y=2x2()(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=_____,n=________.(2)已知二次函数y=x2+(m-2)x-2m,当m=_____时,函数图象的顶点在y轴上;当m=______时,函数图象的顶点在x轴上;当m=______时,函数图象经过原点.(3)函数y=-3(x+2)2+5的图象的开口向_______,对称轴为________,顶点坐标为______;当x=_______时,函数取最____值y=______;当x _______时,y随着x的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象:(1)y=x2-2x-3;(2)y=1+6 x-x2.4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x 轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx +c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++)= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1、已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a.解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y=x+1上,所以,2=x+1,∴x=1.∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a=-+<,∵二次函数的图像经过点(3,-1),∴21(32)1a-=-+,解得a=-2.∴二次函数的解析式为22(2)1y x=--+,即y=-2x2+8x-7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2、已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0),∴可设二次函数为y=a(x+3) (x-1) (a≠0),展开,得 y=ax2+2ax-3a,顶点的纵坐标为2212444a aaa--=-,由于二次函数图象的顶点到x轴的距离2,∴|-4a|=2,即a=12±.所以,二次函数的表达式为y=21322x x+-,或y=-21322x x-+.分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x=-1,又由顶点到x轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x=-1.又顶点到x 轴的距离为2, ∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a(x +1)2+2,或y =a(x +1)2-2, 由于函数图象过点(1,0),∴0=a(1+1)2+2,或0=a(1+1)2-2.∴a =-12,或a =12.所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3、已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax2+bx +c(a≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练 习 1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是( )(A )0个 (B )1个 (C )2个 (D )无法确定 (2)函数y =-12(x +1)2+2的顶点坐标是 ( )(A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2) 2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a ____________(a≠0) .(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为____________. 3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6); (2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).。
第01讲 数与代数
第一章数与式第1讲实数考纲要求命题趋势1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.实数是中学数学重要的基础知识,中考中多以选择题、填空题和简单的解答题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法.另外,命题者也会利用分析归纳、总结规律等题型考查考生发现问题、解决问题的能力.一、实数的分类1、按实数的定义分类:实数有限小数或无限循环数2、按实数的正负分类:二、实数的有关概念及性质1.数轴(1)规定了原点、单位长度、正方向的直线叫做数轴;(2)实数与数轴上的点是一一对应的.2.相反数(1)实数a 的相反数是-a ,零的相反数是零;(2)a 与b 互为相反数⇔a +b =0.3.倒数(1)实数a (a≠0)的倒数是1/a ;ìíîìíî正数正无理数零 负有理数负数⎪⎪⎪⎪î⎪⎪⎪⎪íìîíì⎪⎪⎪î⎪⎪⎪íìîíì⎪î⎪íì正无理数无理数负分数零正整数整数有理数(2)a与b互为倒数⇔ab=1.4.绝对值(1)数轴上表示数a的点与原点的距离,叫做数a的绝对值,记作|a|.(2)|a|a>0 ,a=0 ,a<0 .5.平方根、算术平方根、立方根(1)平方根①定义:如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫二次方根),数a的平方根记作±a.②一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(2)算术平方根①如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,a的算术平方根记作a.零的算术平方根是零,即0=0.②算术平方根都是非负数,即a≥0(a≥0).③(a)2=a(a≥0),a2=|a|a≥0 ,a a<0 .(3)立方根①定义:如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的立方根(也叫三次方根),数a 的立方根记作3a.②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同.6.科学记数法、近似数、有效数字(1)科学记数法把一个数N表示成a与10的幂相乘(1≤a<10,n是整数)的形式叫做科学记数法.当N≥1时,n等于原数N的整数位数减1;当N<1时,n是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从左边第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.三、非负数的性质1.常见的三种非负数|a|≥0,a2≥0,a≥0(a≥0).2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0.四、实数的运算1.运算律(1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).(3)乘法交换律:ab =ba .(4)乘法结合律:(ab )c =a (bc ).(5)乘法分配律:a (b +c )=ab +ac .2.运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义为:a 0=1(a≠0);(2)负整数指数幂的意义为:p a -=pa 1(a≠0,p 为正整数).五、实数的大小比较1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数大.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小.2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b .3.倒数比较法若1a >1b ,a >0,b >0,则a <b .4.平方法因为由a >b >0,可得a >b ,所以我们可以把a 与b 的大小问题转化成比较a 和b 的大小问题.2.﹣2的绝对值是()A .2B .﹣2C .D .A .-1B .1C .D .74.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A .3.7×10-5克B .3.7×10-6克C .37×10-7克D .3.7×10-8克5.已知实数a 在数轴上的对应点位置如图所示,则化简的结果是()A .3﹣aB .﹣a ﹣5C .3a +3D .3a ﹣56.计算:.考点一、实数的分类A .1个B .2个C .3个D .4个方法总结一个数是不是无理数,应先计算或者化简再判断.有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.举一反三在下列实数中,无理数是()A .0B .14C D .6考点二、相反数、倒数、绝对值与数轴【例2】1.-5的绝对值是2.-6的倒数是()A .16B .-16C .6D .-63.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论中正确的是()A .a >bB .|a|>|b|C .-a <bD .a+b <0方法总结1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出.2.解有关绝对值和数轴的问题时常用到字母表示数的思想、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1.;-3的倒数是2.-2024的绝对值是()A .-2024B .2024C .20241D .20241-3.如图,数轴上的A 、B 、C 三点所表示的数分别是a 、b 、c ,其中AB =BC ,如果|a |>|c |>|b |,那么该数轴的原点O 的位置应该在()A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边考点三、平方根、算术平方根与立方根【例3】1.实数0.5的算术平方根等于()A .2B C .22D .12.方法总结1.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a 具有双重非负性:①被开方数a 是非负数,即a≥0;②算术平方根a 本身是非负数,即a≥0.2.(3a )3=a ,3a 3=a ..的平方根是.2.若a 是(﹣3)2的平方根,则3a 等于()A .﹣3B .33C .33或33-D .3或﹣3考点四、科学记数法、近似数、有效数字【例4】2023年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标,其中在促进义务教育均衡方面,安排农村义务教育经费保障机制改革资金达865.4亿元,数据“865.4亿元”用科学记数法可表示为()元.A .865×108B .8.65×109C .8.65×1010D .0.865×1011方法总结1.用科学记数法表示数,当原数的绝对值大于或等于1时,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数.2.取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑.3.用科学记数法表示的近似数,乘号前面的数(即a )的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.举一反三2023年,我国上海和安徽首先发现“H8N9”禽流感,H8N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米考点五、非负数性质的应用A .0B .1C .-1D .±1方法总结常见的非负数的形式有三种:|a|,a (a≥0),a 2,若它们的和为零,则每一个式子都为0.举一反三设a 、b 、c 都是实数,且满足2)2(a -+c b a ++2+|8|+c =0,ax 2+bx+c=0,求代数式x 2+x+1的值.考点六、实数的运算点拨:(1)根据负整数指数幂的意义可把负整数指数幂转化为正整数指数幂运算,即a -p =1a p (a≠0).(2)a 0=1(a≠0).方法总结提高实数的运算能力,首先要认真审题,理解有关概念;其次要正确、灵活地应用零指数、负整数指数的定义、特殊角的三角函数、绝对值、相反数、倒数等相关知识及实数的六种运算法则,根据运算律及顺序,选择合理、简捷的解题途径.要特别注意把好符号关.举一反三120100(60)(1)|2(301)cos tan -¸-+--- 考点七、实数的大小比较A .1与2之间B .2与3之间C .3与4之间D .4与5之间方法总结实数的各种比较方法,要明确应用条件及适用范围.如:“差值比较法”用于比较任意两数的大小,而“商值比较法”一般适用于比较符号相同的两个数的大小,还有“平方法”、“倒数法”等.要依据数值特点确定合适的方法.举一反三已知26,622,12-=-=-=c b a 那么a ,b ,c 的大小关系是()A .a <b <cB .b <a <cC .c <b <aD .c <a <b一、选择题1.据统计,某市去年接待国际旅游入境者共800160人次,800160用科学记数法表示是()A .8.0016×104B .8.0016×105C .8.0016×106D .8.0016×1072.比较三个数10,,3---p 的大小,下列结论正确的是()A .103->->-pB .310->->-p C .p->->-310D .103->->-p3.16的值等于()A .4B .4±C .2D .2±4)A .4B .2C .4±D .2±5.若代数式M =3x 2+8,N =2x 2+4x ,则M 与N 的大小关系是()A .M ≥N B .M ≤NC .M >ND .M <N二、填空题1.据统计,杭州市注册志愿者人数已达109万人,将109万人用科学记数法表示应为.2.若a 2﹣3a=4,则6a ﹣2a 2+8=.3.(1012p -æö-+-+ç÷èø4.计算221--=5.古时候,猎人通过结绳的方法来统计猎物的个数,如图,一位猎人在排列的绳子上从右到左依次打结,满八进一,用来记录一段时间内猎物的数量,由图可知,猎物的数量是.三、解答题1.一个数的算术平方根为2M﹣6,平方根为±(M﹣2),求这个数.2.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.3.(1)计算:3﹣[6﹣(2﹣3)2](2)因式分解:4m2﹣16n2.1.下列各数中,最小的数是()A.0B.1C.-1D.-22.4的算术平方根是()±A.2B.±2C.2D.23.已知一个数的两个平方根分别是a+3与2a﹣15,这个数的值为()A.4B.±7C.﹣7D.494.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-是17的平方根.其中正确的有()17A.0个B.1个C.2个D.3个5.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i 2=﹣1(即方程x 2=﹣1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i=(﹣1)•i=﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对于任意正整数n ,我们可以得到i 4n+1=i 4n •i=(i 4)n •i=i ,同理可得i 4n+2=﹣1,i 4n+3=﹣i ,i 4n =1.那么i+i 2+i 3+i 4+…+i 2012+i 2013的值为()A .0B .1C .﹣1D .i 6.若﹣2x m ﹣n y 2与3x 4y 2m+n 是同类项,则m ﹣3n 的立方根是.7.若两个连续整数x 、y 满足x <+1<y ,则x+y 的值是.8.阅读下列材料:设 333.03.0==·x ①,则10x=3.333…②,则由②﹣①得:9x=3,即31=x .所以31333.03.0==·.根据上述提供的方法把下列两个数化成分数.·7.0=,·3.1=.9.规定:log a b (a >0,a≠1,b >0)表示a ,b 之间的一种运算.现有如下的运算法则:n na a=log ,NnMnMNlog log log =(a >0,a≠1,N >0,N≠1,M >0).例如:log 223=3,21051052log log log =,则log 1001000=.10.为了表述方便,本题取0.ba 表示小数.其中a 、b 只在1、2、3、…、9这9个数字中选取,例如当a 取2,b 取3时,0.ba 就表示0.32.我们知道无限循环小数可以化为分数,一般地,9.0aa =·,那么=·23.0,=·a b .0.11.已知a 、b 分别是6﹣的整数部分和小数部分.(1)分别写出a 、b 的值;(2)求3a ﹣b 2的值.12.阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi (a ,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(5+i)×(3﹣4i)=19﹣17i.(1)填空:i3=,i4=.(2)计算:(3+i)2;(3)试一试:请利用以前学习的有关知识将化简成a+bi的形式.第2讲整式与因式分解考纲要求命题趋势1.能求代数式的值;能根据特定问题找到所需要的公式,并会代入具体的值进行计算.2.了解整数指数幂的意义和基本性质;了解整式的概念和有关法则,会进行简单的整式加、减、乘、除运算.3.会推导平方差公式和完全平方公式,会进行简单的计算;会用提公因式法、公式法、十字相乘进行因式分解.整式及因式分解主要考查用代数式表示数量关系,单项式的系数及次数,多项式的项和次数,整式的运算,多项式的因式分解等内容.中考题型以选择题、填空题为主,同时也会设计一些新颖的探索型问题.一、整式的有关概念1.整式整式是单项式与多项式的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有3.多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:n m a n a m a +=,mn a n m a =)(,m b m a m ab =)(,n m a na ma -=(m ,n是正整数).三、同类项与合并同类项1.所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项.2.把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变.四、求代数式的值1.一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤:(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要变号.2.整式的乘除(1)整式的乘法①单项式与单项式相乘:把系数、同底数幂分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m(a+b+c)=ma+mb+mc.③多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.(2)整式的除法①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:(a+b)÷m=a÷m+b÷m.3.乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2;(2)完全平方公式:(a±b)2=a2±2ab+b2.六、因式分解1.因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解.2.因式分解的方法(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a2-b2=(a+b)(a-b).②运用完全平方公式:a2±2ab+b2=(a±b)2.(3)十字相乘A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=22.下列运算正确的是()A.a2•a3=a6B.﹣2(a﹣b)=﹣2a﹣2b C.2x2+3x2=5x4D.(﹣)﹣2=43.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5B.3;5C.5;3D.6;124.下列各式能用平方差公式分解因式的有()①x2+y2;②x2﹣y2;③﹣x2﹣y2;④﹣x2+y2;⑤﹣x2+2xy﹣y2.A.1个B.2个C.3个D.4个5.下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)26.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b87.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)8.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.考点一、整数指数幂的运算【例1】1.若2x+5y﹣3=0,求4x•32y的值.2.已知a3m=3,b3n=2.求(a2m)3+(b n)3﹣a2m b n•a4m b2n的值.方法总结幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.举一反三1.已知:x3m=4,y3n=5,求(x2m)3+(y n)6﹣x2m•y n•x4m•y5n的值;2.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.考点二、整式的运算【例2】1.若a ﹣b=1,则代数式a 2﹣b 2﹣2b 的值为.2.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足()A .a=52b B .a=3b C .a=72b D .a=4b方法总结对于整式的运算主要把握好整式的乘法公式及因式分解等的应用举一反三1.已知a+b=2,ab=﹣1,则3a+ab+3b=;a 2+b 2=.2.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A .(a+b )2=a 2+2ab+b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b )(a ﹣b )D .(a+2b )(a ﹣b )=a 2+ab ﹣2b 2考点三、乘法公式【例3】1.下列乘法中,不能运用平方差公式进行运算的是()A .(x+a )(x ﹣a )B .(a+b )(﹣a ﹣b )C .(﹣x ﹣b )(x ﹣b )D .(b+m )(m ﹣b )2.若m 为正实数,且31=-m m ,则=-221mm .方法总结本题考查了完全平方公式、平方差公式,求出m 的值代入前,一定要把代数式分解完全,可简化计算步骤.举一反三1.填空:(a ﹣b )(a +b )=a 2﹣b 2;(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;……(1)(a ﹣b )(a 2022+a 2021b +…+ab 2021+b 2022)=a 2023﹣b 2023;(2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b +⋯+ab n ﹣2+b n ﹣1)=a n ﹣b n ;(其中n 为正整数,且n ≥2)(3)利用(2)中的猜想的结论计算:22023+22022+22021+⋯+22+2+1;2.如果41224|11|-++-=--++b a c b a ,那么a+2b ﹣3c=.3.已知(2008﹣a )2+(2007﹣a )2=1,则(2008﹣a )•(2007﹣a )=.考点四、因式分解【例4】分解因式:(1)20a 3x ﹣45ay 2x (2)1﹣9x 2(3)4x 2﹣12x+9(4)4x 2y 2﹣4xy+1(5)p 2﹣5p ﹣36方法总结因式分解的一般步骤:(1)“一提”:先考虑是否有公因式,如果有公因式,应先提公因式;(2)“二套”:再考虑能否运用公式法分解因式.一般根据多项式的项数选择公式,二项式考虑用平方差公式,三项式考虑用完全平方公式;(3)分解因式,必须进行到每一个多项式因式都不能再分解为止.举一反三分解因式(1)y 2﹣7y+12(2)3﹣6x+3x 2(3)﹣a+2a 2﹣a 3(4)m 3﹣m 2﹣20m一、选择题1.下列运算正确的是()A .2x 2+x =3x 3B .2x 2﹣7x 2=﹣5C .﹣8x 3•4x 2=﹣32x 6D .=x 22.下列计算正确的是()A .523mm m =+B .623m m m =×C .1)1)(1(2-=+-m m m D .12)1(24-=--m m 3.在下列各式的变形中,正确的是()A .()()22x y y x x y---+=--B .()413222--=--x x x C .111x x-=-D .()xy y x -=-1-4.将多项式4x 2+1再加上一项,使它能分解因式成(a +b )2的形式,以下是四位学生所加的项,其中错误的是()A .2xB .﹣4xC .4x 4D .4x5.下列运算正确的是()A .(a 4)3=a 7B .a 6÷a 3=a 2C .(2ab )3=6a 3b 3D .﹣a 5•a 5=﹣a 106.因式分解:a 2﹣4=()A .(a ﹣2)(a +2)B .(2﹣a )(2÷a )C .(a ﹣2)2D .(a ﹣2)(﹣a +2)7.下列运算正确的是()A .ba b a 33)(=B .3a 3•2a 2=6a 6C .4a 6÷2a 2=2a 3D .(3a 2)3=27a 68.设a ,b 是实数,定义@的一种运算如下:a@b=(a+b )2﹣(a ﹣b )2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c )=a@b+a@c③不存在实数a ,b ,满足a@b=a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a=b 时,a@b 最大.其中正确的是()A .②③④B .①③④C .①②④D .①②③9.(1+y )(1﹣y )=()A .1+y 2B .﹣1﹣y 2C .1﹣y 2D .﹣1+y 2二、填空题1.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是(写出一个即可).2.在实数范围内分解因式:4424+-x x =.3.分解因式:2a 2﹣4a+2=.4.分解因式:a 3b ﹣2a 2b+ab=.5.因式分解:(a ﹣b )2﹣(b ﹣a )=.6.在化简求(a +3b )2+(2a +3b )(2a ﹣3b )+a (5a ﹣6b )的值时,亮亮把a 的值看错后代入得结果为10,而小莉代入正确的a 的值得到正确的结果也是10,经探究后,发现所求代数式的值与b 无关,则他们俩代入的a 的值的和为.7.已知a =,则(4a +b )2﹣(4a ﹣b )2为.8.因式分解:a 3﹣4a =.三、解答题1.先化简,再求值:2)2()1)(1(++-+a a a ,其中41=a .2.设m =2a ﹣1,n =﹣2a ﹣1,若41=a ,求mn +m +n +1的值.3.先化简,再求值:(2﹣a )(3+a )+(a ﹣5)2,其中a =4.1.要使二次三项式x 2﹣2x+m 在整数范围内能进行因式分解,那么整数m 的值可取()A .1B .﹣3C .1或﹣3D .有无数个2.若多项式x 4+mx 3+nx ﹣16含有因式(x ﹣2)和(x ﹣1),则mn 的值是()A .100B .0C .﹣100D .503.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×10174.下列从左到右的变形是因式分解的是()A.4yz﹣2y2+z=2y(2z﹣y)+zB.(3﹣x)(3+x)=9﹣x2C.x(x﹣y)﹣y(x﹣y)=(x﹣y)2D.x3﹣3x2+x=x(x2﹣3x)5.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形6.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.37.如图所示,有三种卡片,其中边长为a的正方形1张,边长为a、b的矩形卡片4张,边长为b的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为()A.a2+4ab+4b2B.42+8ab+4b2C.4a2+4ab+b2D.a2+2ab+b28.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.10249.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.10.因式分解:x2﹣y2+6y﹣9=.11.计算(1﹣)()﹣(1﹣﹣)()的结果是.12.将多项式x2+4加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式:,,.13.若n满足(n﹣2019)2+(2020﹣n)2=1,则(n﹣2019)(2020﹣n)=.14.如果关于x的二次三项式x2﹣4x+m在实数范围内不能分解因式,那么m的取值范围是.15.因式分解:(1)4m2n﹣8mn2﹣2mn;(2)m2(m+1)﹣(m+1);(3)4x2y+12xy+9y;(4)(x2﹣6)2+2(x2﹣6)﹣15.16.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.第3讲分式考纲要求命题趋势1.能确定分式有意义、无意义和分式的值为零时的条件.2.能熟练应用分式的基本性质进行分式的约分和通分.3.能熟练进行分式的四则运算及其混合运算,并会解决与之相关的化简、求值问题.命题反映在分式中主要涉及分式的概念、性质、运算法则及其应用,题型表现为填空题、选择题、化简求值题等形式.一、分式1.分式的概念形如AB (A ,B 是整式,且B 中含有字母,B≠0)的式子叫做分式.2.与分式有关的“三个条件”(1)分式AB 无意义的条件是B =0;(2)分式AB 有意义的条件是B≠0;(3)分式AB 值为零的条件是A =0且B≠0.二、分式的基本性质分式的分子与分母同乘(或除以)一个相同的整式,分式的值不变.用式子表示是:A B =A×M B×M ,A B =A÷M B÷M (其中M 是不等于0的整式).三、分式的约分与通分1.约分根据分式的基本性质将分子、分母中的相同的整式约去,叫做分式的约分.2.通分根据分式的基本性质将几个异分母的分式化为分母相同的分式,这种变形叫分式的通分.四、分式的运算A.2个B.3个C.4个D.5个2.若把分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变3.先化简再求值:,其中.4.已知:A=xy﹣x2,B=,C=,若A÷B=C×D,求D.5.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式中,是和谐分式(填写序号即可);(2)若分式为和谐分式,且a为整数,请写出所有a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:原式===小强:原式===.显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.考点一、分式有意义、无意义、值为零的条件为零且分母不为零.举一反三要使分式有意义,则x 的取值范围为.考点二、分式的基本性质【例2】若分式的x 和y 均扩大为原来各自的10倍,则分式的值()A .不变B .缩小到原分式值的C .缩小到原分式值的D .缩小到原分式值的方法总结运用分式的基本性质解题必须理解和掌握分式的基本性质:A B =A·m B·m ,A B =A÷mB÷m (其中m ≠0)和分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任意两个,分式的值不变.举一反三已知﹣=3,则分式的值为.考点三、分式的约分与通分【例3】设=2,则=()A .B .﹣C .D .﹣方法总结1.分式约分的步骤:(1)找出分式的分子与分母的公因式,当分子、分母是多项式时,要先把分式的分子与分母分解因式;(2)约去分子与分母的公因式.2.通分的关键是确定最简公分母.求最简公分母的方法是:(1)将各个分母分解因式;(2)找各分母系数的最小公倍数;(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母.举一反三先化简,再求值:(+2﹣x )÷,其中x 满足x 2﹣4x+3=0.考点四、分式的运算【例4】计算:.方法总结在分式运算的过程中,要注意对分式的分子、分母进行因式分解,然后简化运算,再运用四则运算法则进行求值计算.分式混合运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的,其乘除运算归根到底是乘法运算,实质是约分,分式加减实质是通分,结果要化简.关于化简求值,近年来出现了一种开放型问题,题目中给定几个数字,要考虑分母有意义的条件,不要盲目代入.举一反三先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.一、选择题1.若241()142w a a+=-- ,则()A .2(2)a a +¹-B .2(2)a a -+¹C .2(2)a a -¹D .2(2)a a --¹-2.将分式方程13)1(251+=++-x x x x 去分母,整理后得()A .018=+xB .038=-xC .0272=+-x x D .0272=--x x 3.化简的结果是()A .x ﹣1B .C .x+1D .4.下列变形正确的是()A .=B .C .D .二、填空题1.函数y =的自变量x 的取值范围.2.当2x =时,分式x mx m -+没有意义,则m =.3.当3=x 时,分式bx ax +-没有意义,则=b .三、解答题1.已知îíì=+=+65316156y x y x ,求代数式222()x x xy x y x y x y-¸--++1的值.2.(1)将下列各式进行分解因式:①142++x x ;②22818b a -(2)先化简,再求值:(1-1212+-x x )÷(122--x x -2),其中34=x ;完成对分式的化简求值后,填空:要使该分式有意义,x 的取值应满足.3.计算:aba bb a ---21,并求当3=a ,b=1时原式的值.4.先化简代数式(1+)÷,然后在0≤a <4范围选取一个适当的整数作为a 的值代入求值.5.计算﹣x+2,乐乐同学的计算过程如下:﹣x+2=﹣=﹣=﹣请判断计算过程是否正确,若不正确,请写出正确的计算过程.6.化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.1.若分式不论x取何值总有意义,则m的取值范围是()A.m≥1B.m>1C.m≤1D.m<12.若ab=1,m=+,则m2023=()A.2013B.0C.1D.23.已知=﹣,其中A、B为常数,则4A﹣B的值为()A.7B.9C.13D.54.若的值为,则的值为()A.1B.﹣1C.﹣D.5.已知△ABC的三边长分别为a,b,c,且,则△ABC一定是()A.等边三角形B.腰长为a的等腰三角形C.底边长为a的等腰三角形D.等腰直角三角形6.若恒成立,则A+B=.7.若,则的值为.9.已知a,b,c是不为0的实数,且,那么的值是.10.已知关于x的方程的解是负数,则m的取值范围为.11.先化简分式(﹣)÷,再从不等式组的解集中取一个合适的值代入,求原分式的值.12.先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.。
初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
运算顺序
作商法 =1ea=b(a>0,b>0)
<1ea<b
(4) (ab)c=a(bc); n(5)a(b+c)=ab+ac
分级∶加减是一级运算,乘除是二级运算,乘方和开方是三级运算.
三级运算的顺序是三、二、一、(如果有括号,先算括号内的;如
果没有括号,在同一级运算中,要从左至右进行运算,无论何种
运算,都要注意先定符号后运算.)
学习误区
合并同类项
系数相加,所得的结果作为合并后的系数,字母和字母的指数 _不变叫做合并同类项.
整式的加减 就是合并同类项,遇到括号,一般先去掉括号,去 括号的方法是∶+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c.
知能提升
整式有关概念
总并华结 梳知理识
整式 幂的运算法则 的运算 整式的乘法
中A,B,M/都是整式,特别要注意整式M的值不等于零.
2、分式的分子、分母与分式本身的符号,改变其中的任何
两个,分式的值不变如--=-为=号,再如一ba
知能提升
分式的概念
并总华结
知识
梳理
式子表述 告A部告告(u20,如为整式)
基本性质
同分母的分式相加减,分母不变,把分子相加减,
即号±8a±o,
3、分式有意义的条件是分母不为0;分式无意义的条件是
初三升高一数学衔接教学教案——初三知识汇总,高一数学提前预习(教师版教案)
第二讲 函数与方程——一元二次方程练习题
(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=0的根的情况 是( ) (A)没有实数根 (B)有两个不相等的实数根 (C)有两个相等的实数根 (D)有两个异号实数根
第二讲 函数与方程
2.1 一元二次方程 2.1.1根的判别式 例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程 的实数根. (1)x2-3x+3=0; (2)x2-ax-1=0; (3) x2-ax+(a-1)=0; (4)x2-2x+a=0.
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理)
第一讲 数与式
1.2 分解因式
初中升高中数学衔接
初中数学知识汇总,高一数学提前预习
第一讲 数与式
1.2 分解因式
第一讲 数与式
1.2 分解因式
第一讲 数与式
1.2 分解因式
初中升高中数学衔接
初中数学知识汇总,高一数学提前预习
第二讲 函数与方程
2.1 一元二次方程 2.1.1根的判别式 我们知道,对于一元二次方程ax2+bx+c=0(a≠0),用配方法可以将其变形为
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理) 例4 已知两个数的和为4,积为-12,求这两个数.
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理)
第二讲 函数与方程
2.1 一元二次方程 2.1.2 根与系数的关系(韦达定理)
第二讲 函数与方程
第一讲 数与式
1.1.3.二次根式第源自讲 数与式1.1.3.二次根式
第一讲 数与式
初高中数学衔接 第1课 数与式的运算 1
初高中数学衔接第1课数与式的运算 1初高中数学衔接第1课数与式的运算1初高中数学衔接第1课数与式的运算(1)第1课数与式的运算(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.⎧a,a>0,即|a|=⎧⎧0,a=0,⎧绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:|a-b|表示在数轴上,数a和数b之间的距离.【例1】在数轴上表示|x+1|与|x-1|的几何意义.【基准2】化简:(1)|3x-2|;(2)|x+1|+|x-3|;x-4x+4;【例3】解下列方程:(1)|x-1|=1;(2)|x2-1|=1.【基准4】求解以下不等式.(1)|2x+3|≤2;(2)|x-1|+|x-3|>4.(4)t+4t+4.【基准5】图画出来以下函数的图象.(1)y=|x|;(2)y=|x-2|+|x+2|.1.平方差公式:(a+b)(a-b)=a2-b2.2.完全平方公式:(a±b)2=a2±2ab+b2.3.立方和公式:(a+b)(a2-ab+b2)=a3+b3.4.立方差公式:(a-b)(a2+ab+b2)=a3-b3.5.三数和平方公式:(a+b+c)2=a2+b2+c2+2(ab+bc+ac).6.两数和立方公式:(a+b)3=a3+3a2b+3ab2+b3.7.两数高立方公式:(a-b)3=a3-3a2b+3ab2-b3.【基准6】因式分解.(1)x3-1;(2)x3+1.【例7】计算:(x+1)(x-1)(x2-x+1)(x2+x+1).【基准8】未知:x+y=1,谋x3+y3+3xy的值.【例9】已知:x2-3x+1=0,求x3+1【基准10】设x=2323,y2-3x3+y3的值.1.以下描述恰当的就是()a.若|a|=|b|,则a=bb.若|a|>|b|,则a>bc.若a3.如果|a|+|b|=5,且a=-1,则b=________;若|1-c|=2,则c=________.4.化简:|x+1|-|x-2|.5.解方程3|x+1|-1=5.6.求解不等式|x2-1|≤2.7.画出下列函数的图象.(1)y=-|x+1|(2)y=|x|+|x-1|8.排序:(1)(4+m)(16-4m+m2);(3)(a+b)(a2-ab+b2)-(a+b)3;9.未知:x2-5x+1=0,谋x3+1(2)(x2+2xy+y2)·(x2-xy+y2)2;(4)(a-4b)(1+4b2+ab).10.已知:a+b+c=0,求b+c-aa+c-b+a+b-c.未知:a>0,a2x=3,求:a3x+a3x11a+a-12.已知:a2-4a+1=0a2a+5a+113.未知:a+b+c=0,谋a(1b+1c+b1c1a+c(11a+b).14.未知:a+b+c=0.澄清:a3+a2c+b2c-abc+b3=0.例1解|x+1|为a、b两点间的距离,如图|x-1|为a、b两点间的距离,例如图⎧3x-2(x≥23基准2求解(1)|3x-2|=⎧⎧-3x+2(x⎧-2x+2(x≤-1(2)|x+1|+|x-3|=⎧)⎧4(-1⎧⎧2x-2(x≥3)(3)原式=(x-2)=|x-2|=⎧⎧⎧x-2(x≥2)-x+2(x(4)原式=(t+2)=t2+2.例3解(1)x=0或x=2;(2)x=0或x=2.例4解(1)52x≤-12;(2)x>4或x例6解(1)(x-1)(x2+x+1);(2)(x+1)(x2-x+1).例7解(x3+1)(x3-1)=x6-1.基准8求解原式=(x+y)(x2-xy+y2)+3xy=(x+y)2=1.基准9求解由x2-3x+1=0得:x1∴x3+1x3[(x12-3]=18.例10解xy=1,x+y=14,x3+y3=2702.强化训练1.d2.±5±43.±43或-1⎧-3(x≤-1)4.解|x+1|-|x-2|=⎧⎧2x-1(-1⎧⎧3(x≥2)5.求解x=1或x=-36.求解3≤x≤37.求解8.解(1)64+m3;(2)(x3+y3)2=x6+2x3y3+y6;(3)-3a2b-3ab2;183-8b3)=143-16b3.9.解x+1x5,(x+11x)[(x+x2-3]=110.10.求解原式=1111a+b+c-2bc-2ac+-2ab2[abc=0.11.求解原式=a2x-1+a=3-1+1712.求解a+1a=4,a2+1a14,原式=11a2+11913.求解原式=acbbcababbb-1+aaa-1+cc+c14.证明原式=a2(a+c+b)-a2b-abc+b2c+b3=-ab(a+c+b)+ab2+b2c+b3=b2(a+b+c)=0.。
第一讲 数与式的运算
第一讲 数与式的运算在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性,可以进行运算.在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公式.在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本节中要补充.基于同样的原因,还要补充“繁分式”等有关内容.一、乘法公式【公式1】ca bc ab c b a c b a 222)(2222+++++=++ 证明:2222)(2)(])[()(c c b a b a c b a c b a ++++=++=++ca bc ab c b a c bc ac b ab a 222222222222++++++++++=∴等式成立【例1】计算:22)312(+-x x解:原式=22]31)2([+-+x x913223822)2(312312)2(2)31()2()(234222222+-+-=-⨯⨯+⨯+-++-+=x x x x x x x x x x说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. 【公式2】3322))((b a b ab a b a +=+-+(立方和公式)证明: 3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+ 说明:请同学用文字语言表述公式2. 【例2】计算:))((22b ab a b a ++-解:原式=333322)(])()()][([b a b a b b a a b a -=-+=-+---+ 我们得到:【公式3】3322))((b a b ab a b a -=++-(立方差公式)请同学观察立方和、立方差公式的区别与联系,公式1、2、3均称为乘法公式. 【例3】计算:(1))416)(4(2m m m +-+ (2))41101251)(2151(22n mn mn m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++ 解:(1)原式=333644m m +=+ (2)原式=3333811251)21()51(n m n m -=-(3)原式=644)()44)(4(63322242-=-=++-a a a a a (4)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构. (2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知0132==-x x ,求331xx +的值.解:0132==-x x 0≠∴x 31=+∴x x 原式=18)33(3]3)1)[(1()11)(1(2222=-=-++=+-+xx xx xx xx说明:本题若先从方程0132==-x x 中解出x 的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值.解:b a c a c b c b a c b a -=+-=+-=+∴=++,,,0∴原式=abb ac acc a b bcc b a +⋅++⋅++⋅abccb a abc c acb b bca a 222)()()(++-=-+-+-=①abc c ab c c ab b a b a b a 3)3(]3))[((32233+-=--=-++=+abc c b a 3333=++∴ ②,把②代入①得原式=33-=-abcabc说明:注意字母的整体代换技巧的应用. 引申:同学可以探求并证明:))((3222333ca bc ab c b a c b a abc c b a ---++++=-++二、根式式子(0)a a ≥叫做二次根式,其性质如下: (1) 2()(0)a a a =≥(2) 2||aa =(3)(0,0)ab a b a b =⋅≥≥ (4)(0,0)b b a b aa=>≥【例6】化简下列各式: (1)22(32)(31)-+-(2)22(1)(2) (1)x x x -+-≥解:(1) 原式=|32||31|23311-+-=-+-=(2) 原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2)x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明:请注意性质2||a a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数): (1)323+(2)11ab+(3) 3282x x x -+解:(1) 原式=23(23)3(23)63323(23)(23)--==--+-(2) 原式=22a b a b ab abab++=(3) 原式=2222222223222x x xx x x x x x x x -⋅+⨯=-+=-⨯说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式.(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(如323+)或被开方数有分母(如2x ).这时可将其化为a b形式(如2x 可化为2x ) ,转化为 “分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(如323+化为3(23)(23)(23)-+-,其中23+与23-叫做互为有理化因式).【例8】计算: (1) 2(1)(1)()a b a b a b ++-+-+(2)a a a aba ab+-+解:(1) 原式=22(1)()(2)2221b a a ab b a ab b +--++=--++(2) 原式=11()()a a a a b a a b a ba b+=+-+-+()()2()()a b a b aa ba b a b ++-==-+-说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次根式的运算.【例9】设2323,2323x y +-==-+,求33x y +的值.解:22(23)23743,743 14,12323x y x y xy ++===+=-⇒+==--原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.三、分式当分式A B的分子、分母中至少有一个是分式时,A B就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.【例10】化简11x x x x x-+-解法一:原式=222(1)11(1)1(1)(1)11x x x x x x x x x x x xx x x xx x x x x x x x x ++=====--⋅+-+-+++--+解法一:原式=22(1)1(1)(1)111()x x xx x x x x x x x xx x xx x x x x x xx ++====-⋅-+--+++--⋅说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质A A m BB m⨯=⨯进行化简.一般根据题目特点综合使用两种方法.【例11】化简222396162279x x x x xx x x++-+-+--解:原式=22239611612(3)3(3)(3)2(3)(3)(39)(9)x x x x x x x x x x x x x x x ++--+-=--+-+---++-22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)x x x x x x x x x x +-------===+-+-+说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式.A 组1.二次根式2a a =-成立的条件是()A .0a >B .0a <C .0a ≤D .a 是任意实数2.若3x <,则296|6|x x x -+--的值是( ) A .-3B .3C .-9D .93.计算: (1) 2(34)x y z --(2) 2(21)()(2)a b a b a b +---+(3) 222()()()a b a ab b a b +-+-+(4) 221(4)(4)4a b a b ab -++4.化简(下列a 的取值范围均使根式有意义): (1) 38a -(2) 1a a⋅-(3)4ab a b b a-(4)11223231+-+-5.化简: (1)219102325m m m mmm+- (2)222 (0)2x yx y x y xx y--÷>>B 组1.若112x y-=,则33x xy y x xy y+---的值为( ):练 习A .35B .35-C .53-D .532.计算:(1) ()()a b c a b c +---(2) 111()23÷-3.设11,3232x y ==-+,求代数式22x xy yx y+++的值.4.当22320(0,0)a ab b a b +-=≠≠,求22a b a b baab+--的值.5.设x 、y 为实数,且3xy =,求y x xyxy+的值.6.已知11120,19,21202020a xb xc x =+=+=+,求代数式222a b c ab bc ac ++---的值.7.设512x -=,求4221x x x ++-的值.8.展开4(2)x -9.计算(1)(2)(3)(4)x x x x ----10.计算()()()()x y z x y z x y z x y z ++-++-++- 11.化简或计算:(1) 113(184)2323-+÷-(2) 22122(25)352⋅--++(3)2x x x yx xy y xy yxx yy+++---(4) ()()b ab ab a b a a bab bab aab-++÷+-++-第一讲 习题答案 A 组1. C 2. A3. (1) 2229166824x y z xy xz yz ++--+ (2) 22353421a ab b a b -++-+(3) 2233a b ab --(4)331164a b -4.2()22212a b a a a a b+-------5. 2m m xy B 组1. D 2.2,3223a c b ac +--+ 3. 1336-4.3,2-5.23±6. 37.35-8.4328243216x x x x -+-+ 9.43210355024x x x x -+-+10.444222222222x y z x y x z y z ---+++11.433,,,3x yb a y+--。
初高衔接知识第一讲:数与式的运算(含练习+参考答案)
第一讲:数与式的运算班级:______姓名:__________问题一、绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1 (1)化简:|x -5|-|2x -13|(x >5).(2)利用绝对值的几何意义求13x x -+-的最小值.问题二、乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式: (2)立方差公式(3)三数和平方公式 (4)两数和立方公式(5)两数差立方公式例1 (1)计算:22(1)(1)(1)(1)x x x x x x +--+++.(2)已知1x y +=,求333x y xy ++的值.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.问题三、二次根式0)a ≥a ==,0,,0.a a a a ≥⎧⎨-<⎩例 1 化简:(1; (21)x <<.例2 试比较下列各组数的大小:(1(2问题四、分解因式例1 分解因式:(1)x 2-3x +2;(2)x 2+x -(a 2-a );(3)321x x -+参考答案问题1例1 当1352x <<时,原式5213318x x x =-+-=- 当132x ≥时,原式52138x x x =--+=-例2当1x ≤时,原式1324x x x =-+-+=-+,当1x =时,有最小值2当13x <<时,原式=132x x --+=,恒为2当3x ≤时,原式1324x x x =-+-=-,当3x =时,有最小值2综上所述,最小值为2问题2例1原式()()336111x x x =+-=-例2()33223+331x y x x y y x y =+++=()3331x y xy x y ∴+++=代入1x y +=得3331x y xy ++=问题3例11.原式2= 2.原式11x x x x =-=- 例31.==1010=2.==> 问题四例11.原式()()12x x =--2.原式 ()()221x a x a x a x a =-++=+-+3.原式()()()2111x x x x x x ⎛=-++=-+ ⎝⎭⎝⎭高一数学衔接知识讲义一练习班级:________姓名:_________1.下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b >(C )若a b <,则a b < (D )若a b =,则a b =±2.计算 ( )(A (B (C ) (D )3= ( )(A )a b < (B )a b > (C )0a b << (D )0b a <<4=________;5.比较大小:2-4(填“>”,或“<”).6.不等式13x ->的解为_________________;||x x >的解为___________________;7.利用绝对值的几何意义写出|1||3|x x ---的最大值为___________;最小值为______________;8.化简:20042005⋅=_______________________;9.因式分解324x x --=___________________________;10.若1,1x y xy +==-,则33x y -=__________________. 11.若2220x xy y +-=,求22223x xy y x y +++的值12.解方程22112()3()10x x x x+-+-=.参考答案1-3 D C D4-10 1;>;4x >或2x <-,0x <;2,-22(2)(22)x x x -++;± 11 解:222(2)(-)0x xy y x y x y ++=+=;x y =或2x y =-;当x y =时,原式=22223522x x x x ++=; 当2x y =-时,原式=2222246145y y y y y -+=-+; 综上所述:15-或5212 解:22211()2x x x x+=+-; 令1t x x =+;则22350t t -+=; (25)(1)0t t -+=;152t =,21t =-; 当152x x +=时; 25102x x -+=; 259()416x -=; 12x =,212x =; 当11x x +=-时; 210x x ++=,30∆=-<,无解;综上所述:12x =,212x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 数与式的运算【巩固练习】 1. 1,4- 2.2116k m =3.-34.x5.2b -6. 7. 提示:先做除法,后做减法,能约分的先要约分.答案:-1 8.提示:先分式化简.答案:2-. 9. 提示:先分式化简.答案:11a a +-. 10. 10.提示:1===,1===,>.答案:<.11.解:实数a 要满足条件22101010a a a ⎧-≥⎪-≥⎨⎪+≠⎩,得1,0a b ==,所以1a b +=.12.解:∵2210x y +==+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.13.(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+ =1121n -+,又n ≥2,且n 是正整数,∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+<12 .14.解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4, ∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4.又x ≥3,∴x >4. 综上所述,原不等式的解为x <0,或x >4.解法二:如图,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.所以,原不等式的解为x <0,或x >4.专题二 因式分解【巩固练习】1. 1000;2.()32ab -; 3.(2)(29)x x --; 4. (x -1) (y+1); 5. -6;6.(4)(23)x y x y ++; 7.16(23)nnn x yx y ---; 8. (11x x +-++; 9. 2; 10.1,a ;11.(1)221112(23)(4)x x x x -+=--; (2)28107(21)(47)x xx x +-=-+;(3)223(2x x x --=+-;(4)2576(21)(35)x x x x +-=-+-12. (1)224146(21)(26)273(21)(3)22x x x x x x x x ++++++===++; (2)2835(1)(85)y y y y +-=+-; (3)2252310(5)(52)x y xy xy xy +-=+-;(4) 3232222312()(1)(1)(21)x x x x x x x x -+=---=---=)12()1(2+-x x1A 0 C |x -1||x -3|13. 解:由题意3280x ax bx +++=至少有两个根121,2x x =-=-,代入原方程得,{a b a b -+-+=-+-+=18084280解之得,,a b ==714.21a b +=.14.原式可化为2222222220a b c ab bc ac ++---=,2222222220a ab b b bc c c ac a ∴-++-++-+=222()()()0a b b c c a ∴-+-+-=000a b b c c a -=⎧⎪∴-=⎨⎪-=⎩a b c ∴==故ABC ∆是等边三角形.专题三 解方程组【巩固练习】1.32x y =⎧⎨=⎩;2.4;3.45x y =⎧⎨=⎩或10x y =-⎧⎨=⎩;4. 3,2;5. 103;6. 12b =,121x y ⎧=⎪⎨⎪=⎩;7.12与13(提示:两数可看作是一元二次方程的根);8.4+9.13,2a b =-=-(提示:234456x y x y +=⎧⎨+=⎩的解即为原方程组的解,求得1,2x y =-=代入原方程组即可解出,a b );10.52x y ⎧-+=⎪⎪⎨⎪=⎪⎩或52x y ⎧--=⎪⎪⎨⎪=⎪⎩ 11.(1)将23x y +看作一个整体求解得出4,7y x =-=;(2)运用换元法求解比较方便:设23x k +=,则原方程组可变形为323812311x k y k x y k=-⎧⎪=+⎨⎪+=⎩解得1,k =∴方程组的解为13x y =⎧⎨=⎩12. 解:(1)由②,得x =2y +2, ③把③代入①,整理,得8y 2+8y =0,即 y (y +1)=0.解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0.所以原方程组的解是112,0x y =⎧⎨=⎩,220,1.x y =⎧⎨=-⎩ (2)解法一:由①,得7.x y =- ③ 把③代入②,整理,得27120y y -+= 解这个方程,得123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是114,3x y =⎧⎨=⎩,223,4.x y =⎧⎨=⎩ 解法二:对这个方程组,也可以根据一元二次方程的根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y .这个方程组的,x y 是一元二次方程27120z z --=的两个根,解这个方程,得 3z =,或4z =. 所以原方程组的解是 114,3;x y =⎧⎨=⎩ 223,4.x y =⎧⎨=⎩13.(1)2⨯+③②,得411x y +=④,-④①,得13x =,代入①③,得2950,33y z == (2)⨯①2+②,得933z x z x =∴=代入①,得23y z =,::1:2:3x y z ∴=14.(1)原方程组化为(23)(23)0(21)(21)0x y x y x y x y -+=⎧⎨+-++=⎩,230210x y x y -=⎧∴⎨+-=⎩或230210x y x y -=⎧⎨++=⎩或230210x y x y +=⎧⎨+-=⎩或230210x y x y +=⎧⎨++=⎩∴方程组的解为3727x y ⎧=⎪⎪⎨⎪=⎪⎩,3727x y ⎧=-⎪⎪⎨⎪=-⎪⎩,32x y =-⎧⎨=⎩,32x y =⎧⎨=-⎩(2)把21y x =-代入2x x y --=,得2310,x x -+=12123,1.x x x x +=⎧∴⎨=⎩()12121212121212113,(21)(21)421 1.y y x x x x x x x x x x x x ===--=+∴-+=-++ 专题四 解含有字母的方程(组)【巩固练习】1.x a b =+;2.4a >;3. 1a <(提示:0∆>且120x x <可得);4.32-(提示:消元将方程组转化为ax b =形式,然后讨论一次项系数);5.98a >;6. 61-,;7.23x y =⎧⎨=⎩,或32x y =⎧⎨=⎩;8.4-或6-;9. 2;10. 8或8311.3431x y x y +=⎧⎨+=⎩的解必是239ax y +=的解,10x y =⎧∴⎨=⎩代入方程得29=a 12.解方程组,得324164x a y a ⎧=⎪⎪+⎨⎪=⎪+⎩,要使,x y 为整数,则a 必须是16和32的正整数因数.41,2,4,8,16a ∴+=,故整数a 的值为3,2,0,4,12--13.当0a =时,方程无解;当0a ≠时0∆>即0a <或1a >时,方程的解为1,21x =;0∆=即1a =时,方程的解为1x =;0∆<即01a <<时,方程无解.14.将2y kx =+代入①,整理得22(24)10k x k x +-+= (*), 因为方程组有两个不相等的实数解,所以(*)方程有两个不等根2220(24)40k k k ⎧≠∴⎨∆=-->⎩ 解得1k <且0k ≠ 专题五 函数(一)【巩固练习】 1.-2 2. 12k <3.2-<m4.③5. 223y -<≤- 6.6 7. 1y <或1y > 8. 4 9. 8 10. 3y x=- 11. 变换过程如下:①把函数1y x =的图象沿x 轴方向向右平移1个单位后得到函数11y x =-的图象; ②把函数11y x =-的图象沿y 轴方向向上平移2个单位后得到函数121y x =+-的图象,即为函数211x y x -=-的图象.y 的取值范围是2y ≠.12.(1)将(2,)P a -代入2y x =-得4a =; (2) /(2,4)P(3)将/(2,4)P 代入k y x =得4=2k ,解得8k =,所以反比例函数的解析式为8y x=. 13.解:(1)由反比例函数的图象经过点(21,8),可知4821=⨯=⋅=y x k ,所以反比例函数的解析式为xy 4=,∵点Q 是反比例函数和直线b x y +-=的交点,∴144==m ,∴点Q 的坐标是(4,1),∴514=+=+=y x b ,∴直线的解析式为5+-=x y . (2) 如图所示:由直线的解析式5+-=x y 可知与x 轴和y 轴交点坐标点A 与点B 的坐标分别为(5,0)、(0,5),由反比例函数与直线的解析式可知两图像的交点坐标分别点(1,4)P 和点(4,1)Q ,过点P 作PC ⊥y 轴,垂足为C ,过点Q 作QD ⊥x 轴,垂足为D , ∴S △OPQ =S △AOB -S △OAQ -S △OBP =21×OA ×OB -21×OA ×QD -21×OB ×PC =21×25-21×5×1-21×5×1=215. 14.解:(1)依题意有15y x y x =-+⎧⎨=+⎩ 得23x y =-⎧⎨=⎩,所以双曲线的解析式为6y x =-.(2)20x -<<或3x >.专题六 函数(二)【巩固练习】1.-22.4 3.③ 4.12x ≥5.13y -≤≤ 6.02y ≤≤ 7.提示:抛物线的对称轴为直线3x =-.答案:-27.8.提示:抛物线过点(1,0),则有a +b +c =0;对称轴为直线x =-1,则-3+12=-1,另一交点为(-3,0),①③正确;对称轴为x =-b2a=-1,b =2a ;又a >0,c <0,则a -2b +c=a -4a +c =-3a +c <0,所以②、④错误.答案:①③.9.提示:根据点P 的纵坐标为1求出它的横坐标的值后,再代入方程.答案:-3.10.提示:与x .答案:22y x x =+.11.解:二次函数y =2x 2-4x +1的解析式可变为y =2(x -1)2-1,其顶点坐标为(1,-1). (1)把函数y =2(x -1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为y =2(x -3)2-2.(2)把函数y =2(x -1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1, 2),所以,平移后所得到的函数图象对应的函数表达式就为y =2(x +1)2+2.12. 解:由于y 是x 的一次函数,于是,设y =kx +b将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩ 解得 k =-1,b =200. ∴ y =-x +200.设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.13.解:22221()1y x ax a x a a a =-++-=--+-+,对称轴为x a =当0a <时, max 12y a =-=,则1a =-; 当1a >时, max 2y a ==;当01a ≤≤时, 2max 12y a a =-+=,则)a =舍 综上所述,1a =-或2a = 14.解:(1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;(3)当0≤a <2时,由图②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a ≥2时,由图③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.专题七 二次不等式【巩固练习】1.121>-<x x 或2.44>-<a a 或3.一切实数R .4.342≤≤-x 5.32>-<x x 或6. 67.43<<-x8. 22x a -≤≤ 9. 03m ≤≤ 10.22-≤<m 11. 解:(1)∵Δ>0,方程x 2+2x -3=0的解是x 1=-3,x 2=1. ∴不等式的解为 -3≤x ≤1. (2)整理,得x 2-x -6>0.∵Δ>0,方程x 2-x -6=0的解为x 1=-2,x 2=3.∴所以,原不等式的解为x <-2,或x>3. (3)整理,得(2x +1)2≥0.由于上式对任意实数x 都成立,∴原不等式的解为一切实数. (4)整理,得 (x -3)2≤0.由于当x =3时,(x -3)2=0成立;而对任意的实数x ,(x -3)2<0都不成立, ∴原不等式的解为x =3. (5)整理,得x 2-x +4>0.Δ<0,所以,原不等式的解为一切实数.12.解:不等式0122<+--m x mx 恒成立,即函数()122+--=m x mx x f 的图像全部在x 轴下方.注意讨论0=m 时的情况.当0=m 时,021<-x ,即当21>x 时不等式才成立;当0≠m 时,函数()122+--=m x mx x f 为二次函数,需满足开口向下且方程0122=+--m x mx 无解,即()⎩⎨⎧<--=∆<,0144,0m m m 则m 无解. 综上可知不存在这样的m .13. 解: ∆24a =-,①②③①当0,2a a ∆><->即或2时, 10x ax ++=2方程的解是1222a a x x --==所以,原不等式的解集为x < 或x >; ②当Δ=0,即a =±2时,原不等式的解为x ≠-a2的一切实数;③当0,22,a ∆<-<<即时原不等式的解为一切实数 .综上,当a ≤-2,或a ≥2时,原不等式的解是x < 或x >; 当22,a -<<时原不等式的解为一切实数.14.解:当0<a 时,不等式化为()011<+⎪⎭⎫⎝⎛-x a x 若11,01,11-<<<<--<x a a a 则即; 若1,11-=-=a a 即,则不等式无解; 若ax a a 11,1,11<<--<->则即. 专题八 分式不等式、简单的高次不等式【巩固练习】1.11>-≤x x 或2.32<<-x3.312><<-x x 或4.21->x 5.101><<-x x 或 6. 3x <-且2x ≠ 7.213<>x x 或 8. 3x >-或2x = 9.1021≥<≤-x x 或 10.20<<x 11. 解:(1)由题意,分子分母异号,得{()()x x x --<-≠12020,x ∴<<12(2)由题意,分子分母同号,得{()x x x ->-≠2020,x ∴<0或x >2(3)由题意,分子分母异号或分子为0,得{()()x x x --≤-≠12020,x ∴≤<12(4)由题意,分子分母同号或分子为0,得{()x x x -≥-≠2020,x ∴≤0或x >212. 解:(1) 由题意,1110x x x--=<,{()x x x -<∴≠100x ∴<0或x >1(2) 由题意,2432011x xx x ---=≥--,{()()x x x --≥∴-≠431010,x ∴<≤41313. 解:(1)(1)(2)(3)0x x x ---=的根为x x x ===,,123123,当x >3时,(1)(2)(3)0x x x --->; 当x <<23时,(1)(2)(3)0x x x ---<; 当x <<12时,(1)(2)(3)0x x x --->; 当x <1时,(1)(2)(3)0x x x ---<.综上:(1)(2)(3)0x x x --->的解为x <<12或x >3. (2)由题意,x =1是方程324520x x x -+-=的根,x ∴-1是32452x x x -+-的因式,322452(1)(32)(1)(1)(2)x x x x x x x x x ∴-+-=--+=-++324520x x x ∴-+-=的根为,,x x x =-=-=123211, 324520x x x -+->的解为x -<<-21,或x >1.14. 解:⑴当1-<a 时,不等式有解为21>-<<x x a 或;⑵当1-=a 时,不等式有解为2>x ;⑶当21<<-a 时,不等式有解为12x a x -<<>或; ⑷当2=a 时,不等式有解为21≠->x x 且. ⑸当2>a 时,不等式有解为12.x x a -<<>或专题九 三角形【巩固练习】1.52 2.359 3.4,25 4.等边三角形 5.23 6.32 7.138.120,120(提示:注意圆周角与圆心角的关系) 9.553(提示:因为AD 是BAC ∠的平分线,所以::AB AC BD CD =, 所以():():AB AC AC BD CD CD -=-,得403AC =,所以5553AB AC =+=.) 10.连结,,AO BO CO , 因为O 是ABC 的内切圆且切点为,,D E F ,所以1,3,2AF AE BD BF CE CD ======,所以4,5,3AB BC AC ===,又因为ABC 的面积为6,所以1(453)62r ++=,所以1r =. 11.证明 AD BC ,ADB 为直角三角形,又DE AB ,由射影定理,知2AD AE AB . 同理可得2AD AF AC .AE AB AF AC .12.解:(1)连结CG 并延长交AB 于点D ,因为Rt ABC ∆中,90ACB ∠=,4,3AC BC ==,所以5AB =,因为G 是ABC ∆的重心,所以CD 是边AB 上的中线,所以52CD =,2533CG CD ==. (2)作CF AB ⊥于点F ,作GE AB ⊥于点E ,则125CF =,所以1435GE CF ==. 13.解 (1)如图,作AD BC ⊥于D .,AB AC D =∴为BC 的中点,2222,12222 2.2ABC AD AB BD S ∴=-=∴=⨯⨯= 又1,2ABC S AC BE =⋅解得42BE =. (2)如图,I 为内心,则I 到三边的距离均为r ,连,,IA IB IC ,ABC IAB IBC IAC S S S S =++,即11122222AB r BC r CA r =⋅+⋅+⋅, 解得22r =. (3)ABC 是等腰三角形,∴外心O 在AD 上,连BO ,则Rt OBD 中,,OD AD R =-222,OB BD OD =+222)1,R R ∴=+解得8R = 14.证明:(1)∵直线CD 与O 相切于E ,∴C E B E A B ∠=∠.∵AB 为O 直径,∴A E EB ⊥,即2E A B E B F π∠+∠=.又E F A B ⊥,得2F E B E B F π∠+∠=. ∴E A B ∠F E B=∠.于是F E B C E B ∠=∠. (2)由B C C E ⊥,E F A B⊥,F E B C E B ∠=∠,B E 是公共边,得R tB C E R tB F E ∆≅∆.所以B C B F =.类似可证:R tA D E R tA F E ∆≅∆,得A D A F=. 在R t A B E ∆中,E F A B⊥,由射影定理得2EF AF FB =⋅.所以2EF AD BC =⋅。