矿粉和粉煤灰的掺量

合集下载

C40计算书(掺阻锈剂、创先)

C40计算书(掺阻锈剂、创先)

C40墩身(7.9m 以下) 混凝土配合比设计计算书一、配合比技术要求1.设计强度: C402.设计坍落度: 180±20㎜3.设计扩展度: 450±50㎜4.凝结时间: 12h5.含气量: 3~6%6.氯离子扩散系数(RCM 84d ): ≤2.0×10-12m 2/s二、配合比试验(一)计算配合比1.确定试配强度fcu,o = fcu,k + 1.645σ = 40 + 1.645×5 =48.2(MPa ); 2.计算水胶比bb a cu ba f f f BW ααα+=0,=0.53×38.85/(48.2+0.53×0.20×38.85) =0.394 (其中ce s f b f f γγ=)水泥胶砂28天强度fce=47.9MPa ,按耐久性及设计要求校核水胶比,综合考虑外掺料对强度的影响,基准水胶比取用0.32;3.根据JGJ 55-2011表5.2.1-2,用水量取值为197 kg/m ;外加剂掺量为0.88%,减水率约为30%,则用水量修正为197*(1-30%)=138kg/m 3,每立方米混凝土掺加7kg 阻锈剂扣除后实际用水量为131kg/m 3;4.计算胶凝材料用量:B W m m w b 00==138/0.32=431(kg/m 3);选取粉煤灰和矿粉为掺合料,按等量替换法取粉煤灰和矿粉为胶凝材料用量的掺量分别为25%和25%,每方混凝土的粉煤灰用量为:fb f m m β00==431*25%=108(kg/m 3);每方混凝土的矿粉用量为:s b s m m β00==431*25%=108(kg/m 3);每方混凝土的水泥用量为:mc0=mb0-mf0-ms0=431-108-108=215(kg/m 3); 5.根据Dmax = 25mm 及砂的细度模数、设计的性能,结合泵送混凝土要求,选取砂率为42%;6.重量法计算每立方米混凝土粗集料,细集料用量(假定混凝土的密度为2400kg/m 3)mb o +mg o +ms o +mw o =2400 (1) ms o /(mg o +ms o )×100%=βs (2) 由公式(1)和(2)得:mg o =1062kg/m 3,ms o =769kg/m 3;(碎石按(5~10)mm :(10~25)mm=10%:90%进行掺配); 7.试验室计算配合比为:mb 0(mc 0+mf 0+ms 0) :ms 0 :mg 0 :mw 0 :m 外 :阻锈剂 = 431(215+108+108):769 :1062 :131 :3.79 : 7三、试配a)按计算配合比试拌25L 混凝土拌和物,各种材料用量为: 水泥: 215×0.025=5.375㎏ 粉煤灰:108×0.025=2.70㎏ 矿粉: 108×0.025=2.70㎏ 水: 131×0.025=3.275㎏ 砂: 769×0.025=19.225㎏ 碎石: 1062×0.025=26.55㎏ 减水剂:3.36×0.025=0.084㎏ 阻锈剂: 7×0.025=0.175 kg测定坍落度为200㎜,扩展度480㎜、490㎜,棍度上,粘聚性良好,保水性无,含砂多。

矿粉分级以及性能介绍

矿粉分级以及性能介绍

矿粉⏹⏹从1969年起,英国、德国等发达国家就开始了超细矿渣粉在混凝土中作为矿物掺合料的应用。

自上世纪90年代起,我国开始了超细矿渣粉的应用研究工作。

2000年,国家标准《用于水泥和混凝土的粒化高炉矿渣粉》GB/T18046—2000正式颁布。

2002年,国家标准《高强、高性能混凝土用矿物外加剂》颁布实施。

在该标准中,正式将超细矿渣粉命名为“矿物掺合料”,纳入混凝土第六组分。

从此,超细矿渣粉作为一个独立的新产品横空出世,并立即被广泛地接受和应用。

1.矿粉的概念⏹磨细矿粉即磨细水淬高炉矿渣粉,又称矿渣微粉,其英文缩写为GGBS 或GGBFS⏹磨细矿粉是以高炉水淬矿渣为主要原料经干燥、粉磨处理而制成的超细粉末材料;是制备高性能水泥和混凝土的优质混合材。

2.矿粉的技术指标⏹矿粉的活性指数是采用标准试验测试确定的,简单的说:矿粉替代50%水泥,拌合制作标准砂浆试件,然后测试砂浆28天强度。

含矿粉砂浆强度与不含矿粉基准砂浆强度比,就是矿粉的活性指数。

⏹常用的S95是一个矿粉等级。

其中…S‟表示矿粉,来源于英文SLAG(矿渣)。

…95‟表示活性指数不小于95%。

⏹标准:S105/95/75,7天活性指数:不小于95、75、55,28天活性指数:不小于105、95、75⏹流动度比:小于85、90、95⏹密度。

2.8g/cm3,比表面积:不小于350m2/kg2.矿粉的技术指标⏹粒化高炉矿渣的质量可用质量系数K得大小来表示:⏹K=(CaO + Al2O3 + MgO)/(SiO2 + MnO + Ti O 2)⏹式中CaO 、Al2O3 、MgO、SiO2 、MnO 、Ti O 2为相应氧化物的重量百分数。

⏹质量系数反应了矿渣中活性组分与低活性和非活性组分之间比值。

质量系数越大,则矿渣的活性越好。

3.矿粉和粉煤灰的区别⏹(1)两者来源不同:粉煤灰来源于热电厂排放的烟气经收尘处理后收集得到的飞灰;而磨细矿粉则是由炼铁高炉排出的熔融态矿渣经水淬(粒化)后再进行干燥、磨细加工而得到的超细粉末。

矿粉和粉煤灰的掺量

矿粉和粉煤灰的掺量

1)混凝土拌和料和易性得到改善掺加适量的粉煤灰可以改善混凝土拌和料的流动性、粘聚性和保水性,使混凝土拌和料易于泵送、浇筑成型,并可减少坍落度的经时损失。

(2)混凝土的温升降低掺加粉煤灰后可减少水泥用量,且粉煤灰水化放热量很少,从而减少了水化放热量,因此施工时混凝土的温升降低,可明显减少温度裂缝,这对大体积混凝土工程特别有利。

(3)混凝土的耐久性提高由于二次水化作用,混凝土的密实度提高,界面结构得到改善,同时由于二次反应使得易受腐蚀的氢氧化钙数量降低,因此掺加粉煤灰后可提高混凝土的抗渗性和抗硫酸盐腐蚀性和抗镁盐腐蚀性等.同时由于粉煤灰比表面积巨大,吸附能力强,因而粉煤灰颗粒可以吸咐水泥中的碱,并与碱发生反应而消耗其数量。

游离碱数量的减少可以抑制或减少碱集料反应。

通常3既的粉煤灰掺量即可避免碱集料反应。

(4)变形减小粉煤灰混凝土的徐变低于普通混凝土。

粉煤灰的减水效应使得粉煤灰混凝土的干缩及早期塑性千裂与普通混凝土基本一致或略低,但劣质粉煤灰会增加混凝土的干缩。

(5)耐磨性提高粉煤灰的强度和硬度较高,因而粉煤灰混凝土的耐磨性优于普通混凝土。

但混凝土养护不良会导致耐磨性降低。

(6)成本降低掺加粉煤灰在等强度等级的条件下,可以减少水泥用量约10%~15%,因而可降低混凝土的成本。

两者的允许掺量不同:粉煤灰在水泥中的允许掺加量为20-40%,但在混凝土中最大掺量一般不超过35%;磨细矿粉在水泥或混凝土中的掺加量则可达20-70%。

一些欧洲国家甚至允许掺到85%。

两者在混凝土中的掺加方式不同:粉煤灰一般采用“超量”取代水泥方式以保证混凝土强度达标;磨细矿粉则通常采用“等量”取代水泥方式配制混凝土,其强度仍然可以满足设计要求。

1、“单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量:(a)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为20-30%;(b)对于地下结构、强度要求中等的混凝土结构,掺量一般为30-50%;(c)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%;(d)对于有较高耐久性能要求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。

调整双掺控制混凝土成本——浅谈双掺在实际应用中节约成本

调整双掺控制混凝土成本——浅谈双掺在实际应用中节约成本

3 . 矿渣粉 采用唐 山丰南兴 旺建材有 限公司¥ 9 5 矿粉 , 重要 控制 比表面 积 , 主 要 性能 指标 如表 3 : 4 . 细集 料 : 采用遵 化 中砂 , 细度 模数 2 . 8 0 , Ⅱ区级 配 , 洁净 , 含泥 量2 . 3 %, 泥
块 含量 0 . 2 %, 表 观密 度2 6 0 0 k g / m , 堆 积密 度 1 4 4 0 k g / m 。 5 . 粗 骨料 : 选 用 三河 碎石 , 粒径 5 mm ~2 5 am , r 洁净, 级 配 良好 , 含 泥量0 . 5 %, 泥 块含 量0 . 1 %, 针 片状 3 . 4 %, 压 碎指 标5 . 9 %。 表 观密度 2 7 8 0 k g / m , 8 . 水: 现场 饮用 水 。
结合 国道 l 】 2 线潮 白河特大桥 项 目实际情 况 , 从全 国建筑行业 发展来看 , 今 后双 掺混 凝土应 用越来 越广 泛 , 而且数量 比较 大 , 试验室 在 以后 工作 中对掺合 料及 原材 料 的质量 控制越 来越 重要 。
1 . 水泥采 用天津冀 东水 泥厂盾 石牌普通 硅酸盐 水泥 ( P. 0 4 2 . 5 ) , 主要 性能 指 标如表 l : 2 . 粉煤灰 采用唐 山 陡河 电厂 n级粉 煤灰 , 重点控 制含碳 量 。 主要性 能指 标
如 表2 :
比不变的情况下进行的, 通过对掺合料掺量的调整以达到节省水泥用量的目 的, 但是 首先 必须满 足混凝土 抗压强度 的要求 , 以保证结 构的安全 , 同时混凝 土
[ 摘 要] 本 文主要 研究 对混凝 土 中掺加粉 煤 灰和矿 渣粉 进行调 节 , 通过 控制 掺合料 自身的质 量 , 增加掺 合料 用量 以节 约水泥 用量 , 从 而节 约混凝 土 的成本

粉煤灰和矿粉对混凝土性能和强度的影响研究

粉煤灰和矿粉对混凝土性能和强度的影响研究

粉煤灰和矿粉对混凝土性能和强度的影响研究粉煤灰和矿粉是混凝土中主要的掺合料,拌和混凝土时掺加一定量的活性矿物掺合料可以改善混凝土性能。

将粉煤灰、矿粉在C35混凝土中单掺或双掺,并分别设置若干组不同掺量的粉煤灰、矿粉的混凝土试验。

通过观察混凝土和易性及不同龄期的混凝土强度变化,比较了粉煤灰、矿粉单掺时混凝土各项性能的差异。

通过复合掺入粉煤灰和矿粉,调节两者之间的掺加比例,充分发挥两者之间的综合功能。

标签:混凝土;粉煤灰;矿粉;和易性;强度0 引言随着混凝土技术的不断发展,矿物掺合料作为混凝土基本材料组分已经越来越普遍。

矿粉和粉煤灰均为火山灰质活性掺合料,且均为工业废渣收集加工而成,成本低于水泥。

它们中含有较多的活性SiO2、活性Al2O3,能与Ca(OH)2在常温下起化学反应生成稳定的水化硅酸钙和水化铝酸钙。

这些成分有助于混合料的硬化,增加强度。

此外,粉煤灰和矿粉中存在大量球形玻璃状颗粒,这些颗粒是拌和物和易性得以改善的主要原因。

同时粉煤灰、矿粉的粒度比水泥颗粒的小,能够填充于水泥颗粒的空隙,构成最密堆积,有利于强度的发展[1]。

在混凝土中掺入一定量的活性矿物掺合料取代部分水泥,充分利用粉煤灰的“三大效应”和矿粉良好的填充效应及活性。

可起到节约成本、改善环境、改善混凝土工作性能、提高抗压强度和耐久性能。

1 原材料1.1 水泥采用临沂沂东中联水泥有限公司生产的P.O42.5级水泥,标准稠度用水量为28%,28d抗压强度为47.8MPa。

1.2 粉煤灰采用华能日照电厂的F类Ⅰ级粉煤灰,45μm方孔筛筛余为8.5%,需水量比为95%,表观密度为2.15g/cm3。

1.3 矿粉采用日照普泰矿粉有限公司生产的S95级矿粉,比表面积为450m2/kg,28d 活性指数为98%。

1.4 砂和碎石采用沂河河砂,细度模数为2.4的Ⅱ区中砂,含泥量为1.9%,泥块含量为0.5%;采用5-31.5mm连续级配碎石,含泥量为0.5%,泥块含量为0.4%,压碎值指标5.4%,针片状颗粒含量为5.0%。

C30配合比计算案例(C30混凝土配合比设计计算书)

C30配合比计算案例(C30混凝土配合比设计计算书)

一、设计依据普通混凝土配合比设计规程《JGJ55-2011》二、设计目的和要求(1)设计坍落度180±20mm;(2)混凝土设计强度为30MPa°三、材料(1)水泥:P.042.5,28d胶砂抗压强度48.6MPa,安定性合格;(2)砂:II区中砂,细度模数2.6;(3)碎石:最大粒径25mm,连续级配;(4)外加剂:聚竣酸高性能减水剂,固含量12%,掺量1.8%,减水率25%;(5)粉煤灰:F-H级粉煤灰,细度18.3%,需水量比99%;(6)粒化高炉矿渣粉:S95级,流动度比98%,28d活性指数101%;(7)拌和水:饮用水。

四、配合比设计计算(一)计算配制强度(fbu,O)由于缺乏强度标准差统计资料,因此根据《规程》表4.0.2选择强度标准差O为5.0MPa o表4.0.2C25-C45C5O-C55Σ 4.0 5.0 6.0根据公式fcu,02fcu,k+1.645B式中:fcu,0——混凝土试配强度(MPa)fcu,k ----- 设计强度(MPa)6 ----- 标准差,取5试配强度:fcu,0=fcu,k+l∙645σ230+1.645X5238.2(MPa)(二)混凝土水胶比(W/B)(1)确定矿物掺合料掺量应根据《规程》中表3.0.5-1的规定,并考虑混凝土原材料、应用部位和施工工艺等因素来确定矿物掺合料掺量。

表最大掺量(%)采用硅酸盐水泥采用普通硅酸盐水泥≤0.404535粉煤灰>0.404030粒化高炉矿渣≤0.406555粉>0.405545钢渣粉—3020磷渣粉—3020硅灰—1010≤0.406555复合掺合料>0.405545注:1采用其它通用硅酸盐水泥时,宜将水泥混合材掺量20%以上的混合材量计入矿物掺合料;2复合掺合料各组分的掺量不宜超过单掺时的最大掺量;3在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合表中复合掺合料的规定。

保温砂浆强度与容重随粉煤灰和矿粉掺量变化的研究

保温砂浆强度与容重随粉煤灰和矿粉掺量变化的研究
我 们 也 知 道 , 质 粉 煤 灰 有 明显 的 碱 水 作 用 , 显 著 改 优 能
2 实 验 方 法
2 1 配 合 比 的 确 定 .
采 用 水 胶 比 为 1 2 胶 材 用 量 为 5 0k / :、 0 g m。的 泡
善 砂浆 的和易 性 ;掺 人 矿 粉 代 替水 泥 , 能 降低 水 泥 既
容 重.但 矿粉 易产生 泌水 , 其 与粉 煤 灰共 同掺 人 , 将 能 改善 泌水现 象 , 增加 浆 体 的 粘 聚 性.本 文通 过 实 验 建
立 强 度 与 容 重 的关 系 , 找 出 最 合 适 的保 温 砂 浆 配 比. 寻
先 将 准 确 称 量 的 各 种 粉 状 有 机 物 与 水 泥 、 沫 球 泡 混 合 均 匀 , 后 参 照 GB T1 6 1 1 9 ( 泥 胶 砂 强 然 / 77 — 9 9 水 (
增 长 , 在 矿 粉 掺 量 为 1 、 煤 灰 掺 量 为 2 %时 , 温砂 浆 强 度 相 对 较 高 , 重 相 对 较 低 , 即是 要 找 的平 衡 砂 浆 强 度 但 O 粉 O 保 容 这
与 容 重 矛盾 的最 优 掺 量 . 关 键 词 : 保 温 砂 浆 ; 粉 ; 煤 灰 ; 度 ; 重 矿 粉 强 容 文 献 标 识 码 : A DOI 1 . 9 9 jis . 6 1 9 6 2 1 . 1 0 1 :0 3 6 /.s n 1 7 —6 0 . 0 0 0 . 0
中 图分 类号 : TU5 8 2
商 品砂浆 因其 具有 许 多 独 特 的优 点 , 年来 在 我 近 国得到 了迅速 发展 .保 温砂浆 是商 品砂 浆 的 一个 重要 类 型.随着建 筑 节 能要 求 的不 断 提 高 , 温砂 浆 近 年 保

不同标号混凝土水泥、粉煤灰、矿粉、砂、石用量

不同标号混凝土水泥、粉煤灰、矿粉、砂、石用量

不同标号混凝土水泥、粉煤灰、矿粉、砂、石用量不同标号混凝土的水泥、粉煤灰、矿粉、砂、石用量会根据混凝土的强度等级和工程要求而有所不同。

一般情况下,混凝土的配合比可以参考以下比例:
- 水泥:根据混凝土的设计强度等级确定,一般情况下,每立方米混凝土需要200~450千克水泥。

- 粉煤灰:在一些强度等级要求不高的混凝土中,可以适量添加粉煤灰以减少水泥用量。

一般情况下,粉煤灰的使用量为水泥用量的15~30%。

- 矿粉:矿粉是一种细颗粒物料,可以替代部分水泥用量,提高混凝土的工作性能和抗裂性能。

根据具体工程要求,矿粉的使用量一般为水泥用量的5~20%。

- 砂:砂是混凝土中的骨料之一,用于填充水泥和矿粉之间的空隙。

根据混凝土的配合比,砂的使用量一般为水泥用量的2~2.5倍。

- 石:石是混凝土中的骨料之一,用于提供混凝土的强度和承载力。

根据混凝土的配合比,砂的使用量一般为水泥用量的3~4倍。

需要注意的是,以上用量只是一个大致的范围,实际应根据具体的工程要求和实验试验结果进行调整,以达到设计要求。

另外,还要根据原材料的质量及供应情
况进行适当调整。

矿粉以及矿粉+粉煤灰对混凝土性能的影响

矿粉以及矿粉+粉煤灰对混凝土性能的影响

矿粉以及矿粉+粉煤灰对混凝土性能的影响1,矿粉比表面积在430~520m2/kg之间,掺量在30%~40%范围,增强效应表现得最为显著。

2,单掺矿粉会使混凝土的粘聚性提高,凝结时间有所延长,泌水量有增大的迹象,可能对混凝土泵送带来一定的不利影响。

3,矿粉和?级粉煤灰复配配制混凝土,可以充分发挥二者的“优势互补效应”,使混凝土的坍落度增加,和易性和粘聚性变好,泌水也得到了改善,同时混凝土成本可显著降低。

(2)矿粉以及矿粉+粉煤灰对混凝土耐久性的影响1)降低混凝土水化热。

对要求严格控温的大体积混凝土,矿粉和粉煤灰复配是理想的矿物掺合料组合,降低了混凝土的水化热,可以有效地减少混凝土早期温缩裂缝的出现。

2)大幅度提高了混凝土抗渗性能。

3)保证了抗碳化能力。

在达到相同强度的条件下掺矿粉混凝土和普通硅酸盐水泥混凝土具有相同的抗碳化能力。

4)保证了抗冻融能力。

矿粉混凝土和普通硅酸盐水泥混凝土在强度和含气量相同的条件下抗冻融能力基本相同;适当掺加引气剂,适当的含气量和间距系数对提高混凝土的抗冻融能力十分必要。

5)混凝土收缩。

考虑前3d的自收缩,无论是配制c30混凝土,还是配制c50混凝土,采用单掺矿粉,与基准混凝土相比,收缩值均无明显变化。

6)混凝土抗裂性能。

矿粉与粉煤灰复掺改善抗裂性效果优于矿粉单掺。

混凝土早期强度对混凝土早期抗裂性有重要影响,混凝土24h强度越高,混凝土早期越易开裂。

混凝土早期抗裂性与早期强度之间可能存在一个临界值,小于该强度值,混凝土不易开裂,大于该强度值,混凝土容易开裂。

该值与环境条件及约束状态有关。

粉煤灰、矿渣粉及二者复合使用存在的问题尽管粉煤灰与矿渣粉复合使用能够优势互补,但不是随便复合就能够达到应有的目的。

为了更好地发挥二者各自的优势,应选择合适的复合方式和复合比例。

本人根据以往的使用经验认为:最佳方案是?级粉煤灰与比表面积400m2/kg以上的矿渣粉复合,配制低强度等级混凝土时矿渣粉的量大于粉煤灰的量,配制高强度等级混凝土时粉煤灰的量大于矿渣粉的量;其次是?级粉煤灰与350~400m2/kg矿渣粉复合,配制低强度等级混凝土时粉煤灰的量大于矿渣粉的量;配制高强度等级混凝土时矿渣粉的量大于粉煤灰的量;最后是?级粉煤灰与比表面积350~400m2/kg的矿渣粉复合或?级粉煤灰与400m2/kg以上的矿渣粉复合,前者比较适合配制高强度等级混凝土,后者比较适合配制低强度等级混凝土。

矿粉和粉煤灰双掺在商品混凝土中应用研究

矿粉和粉煤灰双掺在商品混凝土中应用研究
境。
中砂 :天然中砂,细度模数 2 . 7 ,泥含量 1 - 3 %,泥块
含量 0 . 2 %。
减水剂:高效缓凝 B T - 9 型减水剂。 胶砂减水率为 2 0 . 1 %。
以C 3 0为例 ,通过改变矿粉和粉煤灰的掺量,设计不 同配合 比进行相关试验,研究分析矿粉和粉煤灰对混凝土
㈣ ㈣
( 3 )双掺矿粉、粉煤灰后,混凝土拌合物坍落度增加
明显 ,这主要是由于二者发挥了 “ 优势互补效应”,弥补
了单掺性能上的缺陷。
பைடு நூலகம்
3 . 2 矿粉、粉煤灰对混凝土力学性能的影响
由图 3 可以,不论单掺矿粉 、粉煤灰还是双掺 ,混凝 土前期强度均低于基准配比,随着掺量的增加 ,降低更为 明显 ,这主要是因为矿粉 、粉煤灰均采用等量取代水泥, 其取代量越大 ,水泥用量越少,使得水泥早期水化产物减 少 ,矿粉、粉煤灰水化条件不足。单掺矿粉 3 0 %以内,其
( 1 5 ,1 5 )
0 O O O O O O O 0 O
( 1 O ,1 5 1
( 2 0 ,l 5 1
3 试验 结果分析
; §瑚 Ⅲ 姗 掀 3 . 1 矿粉、粉煤灰对混凝土工作性能的影响
矿粉 、粉煤灰掺量对混凝土拌合物坍落度、混凝土凝
文章 编 号: 1 0 0 7 — 0 4 6 X ( 2 0 1 4 ) 0 1 — 0 0 0 8 — 0 3
粉媒灰 :
矿粉和粉煤灰双掺在商 品混凝土中应用研究
S t u d y o f A p p l i c a t i o n o f S l a g P o w d e r a n d F l y A s h i n R e a d y - Mi x e d C o n c r e t e

泵送陶粒混凝土配合比设计及其应用(1)

泵送陶粒混凝土配合比设计及其应用(1)

泵送陶粒混凝土配合比设计及其应用用粘土陶粒、粉煤灰和矿粉、机制砂、高效泵送剂配制出LC7.5轻质混凝土,表观密度低至1400Kg/m3,并经过实际试验成功完成了40m的泵送距离,提高了陶粒混凝土的工作度,成功完成陶粒混凝土的泵送,机制砂的使用既利用了废弃物资源又创造了经济效益。

主要技术难点:由于黏土陶粒密度为210-300Kg/m3小于水的密度,且陶粒的表面光滑与砂浆的粘结性差,在泵送过程中,由于泵管的压力使得大多数的陶粒冲向泵管的前头造成堵管,另在泵送过程中常常需要要移动泵车而暂停泵送,在此时由于陶粒比水轻上浮,使得陶粒与水泥砂浆分离容易造成堵管;解决办法:由于陶粒的密度比较小,为尽量避免陶粒与水泥砂浆出现分离,应尽量减少混凝土的用水量,尽量选用合理的混凝土坍落度,1、掺入机制砂(与河砂比例8:2)调整以增大陶粒与水泥砂浆的摩擦力,同时提高细砂的综合细度模数减低混凝土用水量;2、掺入一定比例的粉煤灰和矿粉改善混凝土的和易性,减少混凝土用水量;3、掺入高效泵送剂减少混凝土用水量,改善混凝土的和易性。

1 混凝土实验设计要求混凝土强度设计等级为LC7.5,参照普通混凝土配合比设计要求,其设计强度应为f cu0=f cuk+1.645σ=15.2MPa。

2原材料P.O42.5水泥,平度山水水泥;高效泵送剂(JS-II),聚羧酸韩国爱敬,青岛环能陶粒(粒径5~20mm);机制砂(细度模数3.5),河砂(细度模数2.6);粉煤灰和矿粉(Ⅱ级)潍坊电厂;矿粉S95潍坊钢厂。

3试验结果与讨论3.1粉煤灰和矿粉掺量的确定粉煤灰和矿粉作为传统的矿物掺和料应用在混凝土中已经30多年了,其品质及其均匀性是保证混凝土质量的前提。

粉煤灰和矿粉在高性能混凝土中的掺量,根据其品质、均匀性和混凝土设计要求的不同而适当调整。

本文先根据要求确定LC7.5混凝土的基准配合比,然后按超量取代法用粉煤灰和矿粉置换部分水泥,经过抗压强度试验确定粉煤灰和矿粉的最终掺量,试验配合比及结果见表1。

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表矿粉粉煤灰是一种常用的混凝土掺合料,其掺量对混凝土性能有着显著的影响。

为了研究矿粉粉煤灰掺量对混凝土的影响,进行了一系列的试验,并总结出了矿粉粉煤灰掺量影响系数表。

本文将介绍这个影响系数表的内容,并分析其中的一些关键信息。

矿粉粉煤灰掺量影响系数表主要包含了矿粉粉煤灰掺量与混凝土性能之间的关系。

表中列出了不同矿粉粉煤灰掺量下混凝土的强度、抗渗性、耐久性等指标的变化情况。

我们来看矿粉粉煤灰掺量对混凝土强度的影响。

根据影响系数表可以看出,随着矿粉粉煤灰掺量的增加,混凝土的抗压强度逐渐提高。

这是因为矿粉粉煤灰中的细颗粒能填充混凝土中的孔隙,增加了混凝土的致密性,从而提高了混凝土的强度。

然而,当矿粉粉煤灰掺量超过一定范围后,混凝土强度的提高趋势会逐渐减缓,甚至出现下降。

这是因为过高的矿粉粉煤灰掺量会导致混凝土的骨料相对减少,影响了混凝土的力学性能。

除了强度,矿粉粉煤灰掺量还对混凝土的抗渗性能有一定影响。

影响系数表显示,随着矿粉粉煤灰掺量的增加,混凝土的渗透系数逐渐降低。

这是因为矿粉粉煤灰中的细颗粒能够填充混凝土中的微孔和毛细孔,减少了混凝土的渗透性。

然而,当矿粉粉煤灰掺量过高时,混凝土的抗渗性能会受到一定的影响。

这是因为过高的矿粉粉煤灰掺量会增加混凝土的孔隙率,降低混凝土的渗透抵抗能力。

矿粉粉煤灰掺量还会对混凝土的耐久性能产生一定影响。

影响系数表显示,适量的矿粉粉煤灰掺量能够提高混凝土的耐久性,如抗硫酸盐侵蚀性能和抗氯离子渗透性能等。

这是因为矿粉粉煤灰中的活性成分可以与混凝土中的游离钙离子反应,生成稳定的胶凝物质,提高混凝土的耐久性。

然而,当矿粉粉煤灰掺量过高时,混凝土的耐久性能可能会下降。

这是因为过高的矿粉粉煤灰掺量会增加混凝土中的孔隙率,降低混凝土的耐久性。

矿粉粉煤灰掺量影响系数表为我们提供了一个参考,帮助我们选择适当的矿粉粉煤灰掺量来改善混凝土性能。

在选用矿粉粉煤灰时,需要根据具体工程的要求和矿粉粉煤灰的性质来确定最佳掺量。

C30混凝土配合比计算、强度详解

C30混凝土配合比计算、强度详解

【干货推送】C30混凝土配合比计算、强度详解,历年都会考一、设计依据1、普通混凝土配合比设计规程《JGJ55-2011》2、施工图纸等相关标准二、设计目的和要求1、设计坍落度180±20mm;2、混凝土设计强度为30MPa。

三、组成材料1、水泥:P.042.5,28d抗压强度47MPa;2、砂:II区中砂,细度模数2.7;3、碎石:5~25mm合成级配碎石(5~10mm;10~25mm=30%:70%);4、外加剂:聚羧酸高性能减水剂,掺量1.8%,减水率25%;5、粉煤灰:F-II级粉煤灰;6、粒化高炉矿渣粉:S95级;7、拌和水:饮用水。

四、配合比设计计算1、计算配制强度(fcu,0)根据公式fcu,0≥fcu,k+1.645δ式中:fcu,0——混凝土试配强度(MPa)fcu,k——设计强度(MPa)δ——标准差,取5试配强度fcu,0= fcu,k+1.645σ=30+1.645×5=38.2(MPa)2、混凝土水胶比(W/B)W/B=ɑa×fb/(fcu,0+ɑa×ɑb×fb)式中:ɑa,ɑb——回归系数,分别取0.53,0.20,fb——胶凝材料强度。

已知,水泥28d胶砂抗压强度为47.0MPa,方案一:粉煤灰掺量为30%,影响系数取0.75,则胶凝材料强度为:47.0×0.75=35.3MPa;方案二:矿粉、粉煤灰双掺,各掺20%,影响系数:粉煤灰取0.8矿粉取0.98。

则胶凝材料强度为:47.0×0.8×0.98=36.8MPa;由水胶比公式求得:方案一:W/B=0.53×35.3/(38.2+0.53×0.20×35.3)=0.45。

方案二:W/B=0.53×36.8/(38.2+0.53×0.20×36.8)=0.46。

3、确定用水量碎石最大粒径为25mm,坍落度75~90mm时,查表用水量取210kg,未掺外加剂、坍落度180mm时单位用水量为:(180-90)/20×5+210=232.5kg/m3。

粉煤灰、矿粉、减水剂的作用

粉煤灰、矿粉、减水剂的作用

大掺量粉煤灰混凝土的作用及其机理分析1.粉煤灰的主要作用粉煤灰在混凝土中的主要作用表现在以下几个方面:(1)填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。

(2)对水泥颗粒起物理分散作用,使其分布得更均匀。

当混凝土水胶比较低时,水化缓慢的粉煤灰可以提供水分,是水泥水化更充分。

(3)粉煤灰和富集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用。

(4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利。

(5)粉煤灰高性能混凝土的性能粉煤灰是一种呈玻璃态实心或空心的球状微颗粒,比水泥粒子小得多,比表面积极大,表面光滑致密,其成分主要是活性氧化硅或氧化铝。

掺入混凝土中的粉煤灰主要产生以下几方面影响:1.活性效应:在常温下,由于粉煤灰的水化反应比水泥慢,被粉煤灰取代的那部分水泥的早期强度得不到补偿,所以混凝土早期强度随粉煤灰掺量的增加而降低。

随着时间的推移,粉煤灰中活性部分SiO2和AI2O3与水泥水化生成的Ca(OH)2发生反应,生成大量水化硅酸凝胶。

粉煤灰外部的一些水化产物在成长过程中也会象树根一样伸入颗粒空隙中,填充空隙,破坏界面区Ca(OH)2的择优取向排列,大大改善了界面区,促进了混凝土后期强度的增长。

2.微集料密实填充及颗粒形态效应:均匀分散在混凝土中的粉煤灰颗粒不会大量吸水,不但起着滚珠作用,而且与水泥粒子组成了合理的微级配,减少填充水数量,影响系统的堆积状态,提高堆积密度,具有减水作用,使新拌混凝土工作性优良,硬化混凝土微结构更加均匀密实。

而且,不会发生泌水离析现象,可施工性和抹面性好,抗渗性、抗冻性好。

3.交互作用:水泥、粉煤灰、外加剂等不同粉料间会产生物理、化学的交互作用。

粉煤灰和矿粉对混凝土性能影响的试验研究

粉煤灰和矿粉对混凝土性能影响的试验研究

鳃 霞 各混 蛩l。混 块含 量l
意 瀛 程霞 竭 ÷ 瘫 霞{ I
模数
% 薯 。 %| |
( k g / m  ̄ )
( k g / m 3 )
经济 的配 合 比¨ 1 1 。
1 原 材料 及试 验 方案
1 . 1 原 材 料 及 其 主 要 性 能
试 验所用原材 料为 : 冀东普 通硅酸盐 4 2 . 5级 水
表 2 粉煤 灰的 试验 结果
| j 一 名称 爱j 囊 - 睨轰 面
阪 。
话牲撩 %
点探 讨 粉 煤 灰与 矿 粉 的最 佳 掺合 比列 , 进 而 确定 最 佳
双掺 比例 对 同一 强 度 等级 混凝 土常 规性 能 的影 响 , 在 保 证 混凝 土 质量 和施工 可 操作 性 的前 提 下 , 获 得较 为
工 程 材 料 与 设 备 器
Eng i n eer i n g Ma t e r i al & Equ i p me nt
粉 煤 灰 和 矿 粉 对 混 凝 土性 能 影 响 的试 验 研 究
武永 志 , 邹 晓侠
( 青 岛 第 一 市 政 工 程 有 限公 司 , 山 东 青 岛 2 6 6 0 0 0 )
中图分类号 : T U 5 2 8 . 2 文 献标 志 码 : B 文章 编 号 : 1 0 0 9 — 7 7 6 7 ( 2 0 1 4 ) 0 2 — 0 1 6 3 — 0 5
Ex p e r i me n t a l I n v e s t i g a t i o n o f Fl y As h a n d Mi n e r a l Po wd e r I n lu f e n c e s o n Co n c r e t e Pe r f o r ma n c e

粉煤灰和矿粉掺入比例对预拌混凝土成本的影响

粉煤灰和矿粉掺入比例对预拌混凝土成本的影响

粉煤灰和矿粉掺入比例对预拌混凝土成本的影响作者:***来源:《粘接》2021年第04期摘要:如今在混凝土中的生产制造中,适当的掺入一定比例的矿粉以及粉煤灰已经很常见,其首要的目的就是可以优化混凝土的各项性能指标,其次这种双掺技术还可以大大地节约混凝土的生产制造成本。

于是掺量的具体数值如何确定才能同时满足提高性能和降低成本的要求,这就成为了设计制造中的研究方向但。

经过笔者的大量研究以及分析,再加上基于正交试验的结果分析,在本文中展示了笔者建立了双掺粉煤灰和矿粉的数学模型,这样就能为成本的控制提供量化的依据。

关键词:矿粉;粉煤灰;双掺;混凝土性能;正交试验中图分类号:TU528 文献标识码:A 文章编号:1001-5922(2021)04-0115-05Abstract:Nowadays, in the production and manufacturing of concrete, it is very common to appropriately mix certain proportion of mineral powder and fly ash. Its primary purpose is to optimize the performance indexes of concrete. Secondly, this double-mixing technology can greatly save the production and manufacturing cost of concrete. Therefore, how to determine the specific value of admixture to meet the requirements of improving performance and reducing cost at the same time,which has become the research direction in design and manufacturing. After a lot of research and analysis by the author, coupled with the result analysis based on the orthogonal experiment, this paper shows that the author has established a mathematical model of double fly ash and mineral powder, which can provide a quantitative basis for the cost control.Key words:mineral powder; fly ash; double mixing; concrete performance; orthogonal test0 引言现如今,在绝大多数的建筑行业中,在混凝土的设计制造中运用粉煤灰以及矿粉的双掺技术已经是众所周知,其目的首先是为了优化混凝土的各项指标性能这,其次就是可以节约成本。

加粉煤灰和矿粉的c 30混凝土配合比

加粉煤灰和矿粉的c 30混凝土配合比

加粉煤灰和矿粉的c 30混凝土配合比下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!混凝土配合比中加粉煤灰和矿粉的C30混凝土配合比优化方案1. 引言混凝土在建筑领域中扮演着至关重要的角色,而混凝土配合比的合理性直接影响着混凝土的性能和使用寿命。

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表矿粉粉煤灰掺量影响系数表是描述矿粉粉煤灰掺量对材料性能影响程度的一种表格。

本文将就矿粉粉煤灰掺量与材料性能之间的关系进行探讨,并根据相关研究结果给出一份参考影响系数表。

矿粉粉煤灰是一种常用的水泥掺合料,其加入水泥中可以改善混凝土的各项性能,降低成本,提高可持续性。

然而,矿粉粉煤灰的掺量对混凝土性能的影响是复杂的,需要进行深入的研究。

在研究中,我们选取了常见的混凝土性能指标,包括抗压强度、抗折强度、抗渗性能、收缩性能等,通过大量的试验和数据分析,得出了不同矿粉粉煤灰掺量下这些性能指标的影响系数。

首先是抗压强度。

根据实验结果,我们发现随着矿粉粉煤灰掺量的增加,混凝土的抗压强度会逐渐下降。

这是因为矿粉粉煤灰的颗粒细小、比表面积大,会填充水泥颗粒之间的空隙,导致混凝土的致密度降低,从而降低了抗压强度。

其次是抗折强度。

研究表明,矿粉粉煤灰的掺量对混凝土的抗折强度影响较小。

在一定范围内,适量的矿粉粉煤灰可以填充混凝土中的微裂缝,提高其抗折强度。

但当矿粉粉煤灰掺量过高时,由于其颗粒细小,会增加混凝土的内部孔隙,导致抗折强度下降。

再次是抗渗性能。

矿粉粉煤灰的掺入可以改善混凝土的抗渗性能。

矿粉粉煤灰中的玻璃体和其他活性物质可以填充混凝土中的毛细孔,减少渗透压,提高抗渗能力。

随着矿粉粉煤灰掺量的增加,混凝土的渗透系数逐渐降低。

最后是收缩性能。

矿粉粉煤灰的掺入可以减少混凝土的收缩。

这是因为矿粉粉煤灰中的活性物质可以填充混凝土中的毛细孔,减少水分迁移,降低收缩。

然而,过高的矿粉粉煤灰掺量也会增加混凝土的内部孔隙,导致收缩性能下降。

综合以上实验结果,我们得出了一份矿粉粉煤灰掺量影响系数表,以供工程设计和混凝土施工参考。

在这份表格中,我们将不同矿粉粉煤灰掺量下的抗压强度、抗折强度、抗渗性能、收缩性能等指标的影响程度进行了量化描述,帮助工程师和施工人员更好地选择合适的矿粉粉煤灰掺量,以满足工程要求。

矿粉粉煤灰掺量影响系数表是一份重要的参考工具,可以帮助工程设计和混凝土施工人员更好地了解矿粉粉煤灰掺量对材料性能的影响。

分析混凝土配制中掺入矿粉及粉煤灰的影响

分析混凝土配制中掺入矿粉及粉煤灰的影响

分析混凝土配制中掺入矿粉及粉煤灰的影响摘要:随着国内大规模的基础设施建设,双掺粉煤灰和矿粉技能在混凝土制造公司中应用日益遍及,工艺水平日趋老练,使得水泥混凝土研讨与应用技能得到较快开展。

掺加粉煤灰、矿粉等矿藏掺合料以满意现代混凝土的开展与需要,己成为水泥混凝土制造公司研讨的一个重要内容。

但粉煤灰、矿粉掺量的多少以及不同掺量时对混凝土强度,工作性的影响等成为混凝土生产企业急需解决的问题。

关键词:混凝土、粉煤灰、矿粉、配合比设计混凝土是由胶结资料、颗粒状集料和水以及必要时参加化学外加剂和矿藏掺合料按恰当份额合作,经硬化后形成的具有堆聚结构的复合资料。

混凝土是一种使用最为广泛的工程资料,它具有质料丰厚、造价低价、制作简单、外型便利、坚固耐久、修理费用低、耐火耐震等优秀险能。

但是,混凝土的抗拉、抗折强度低,脆性系数大,简单裂缝,自严重等缺陷。

这些缺陷约束了混凝土的使用范围,因而,混凝土要不断地进行技术革新。

如预应力混凝土及胀大混凝土的出现明混凝土的发展革新,高效减水剂也为混凝土的高性能化供给了保障。

一、粉煤灰、矿粉双掺混凝土技术随着现代水泥混凝土技术的展开,即以磨细矿渣粉、粉煤灰等为代表的矿物掺合料己变成除水泥、粗细集料及水外,两种主要的外掺物。

混凝土展开趋势己变成组分多元化。

新拌混凝土的施工功能,以及硬化混凝土的使用功能是混凝土的两个最基本的性育因此,高功能混凝土的定义通常也包含高作业性和长时间使用的力学功能和耐久功能两方面内容。

日本着重的是新拌混凝土的性质,认为高流态、免振自密实混凝土即是高功能混凝土;而欧美国家注重于混凝土硬化后的高功能,如较高的强度、耐久性和耐腐蚀性等。

事实上,这两种功能是相辅相成,缺一不可的。

现在,国内也在不断加强对混凝土的耐久性方面的研讨,努力实现混凝土的长时间使用性和经济效益的最大化。

无穷的工业废料的处理长时间困挠着人类。

将粉煤灰、高炉磨细矿渣粉用于填低地、填路基,或作为废料堆积、或填入海中,这么的处理不只糟蹋,而且有害人类的健康,由于这些资料形成陆地、空气与地下水的污染。

超细矿粉对混凝土各性能的影响

超细矿粉对混凝土各性能的影响

超细矿粉对混凝土各性能的影响1、超细矿粉和粉煤灰复合掺用时对混凝土的强度及工作性的影响。

单掺矿粉一般掺量为30%,如果是大体积混凝土可以控制到50%。

但由于单掺矿粉混凝土粘性变大,不利于施工,因此,一般混凝土搅拌站是将矿粉和粉煤灰双掺使用,粉煤灰的掺量为2 0%左右,矿粉的掺量为20%~30%。

通过双掺可以改善混凝土的许多性能,比如说工作性,因为矿粉的粘性好,可以减少由于单掺粉煤灰而引起的混凝土坍落度损失以及泌水和离析等问题,还可以通过矿粉后期强度的增大来补充由于单掺粉煤灰而引起的混凝土28d强度的降低,起到强度互补的作用。

超细矿粉在混凝土中与粉煤灰共同使用时表现出了十分明显的叠加效应,这方面可以大大减少混凝土中CH晶体的生成数量,另一方面又影响了CH晶体的形貌,对混凝土的结构和性能的发展具有重要影响。

随着龄期的延长,浆体结构日趋均匀和密实,这是浆体高强化的重要原因。

因此,在混凝土中,复合掺入超细矿粉可以极大地改善混凝土的界面粘结强度,更进一步地改善混凝土的性能。

2、超细矿粉对混凝土抗渗性能的影响。

矿粉对混凝土抗渗性的改进主要决定于矿粉的两个效应:(1)水化反应。

加入矿粉可以改善骨料与水泥石过渡区的微观结构,由于在过渡区中Ca(OH)2的定向排列,使得混凝土强度低,而且过渡过区的水灰比较大,缺陷多,开孔的气泡也多,因此抗渗性下降。

当加入矿粉后,矿粉中的活性成份与Ca (OH)2反应生成C—S—H凝胶,使界面的Ca(OH)2晶粒变小,孔隙率也得以明显的下降,微结构更为密实,从而使混凝土的抗渗性提高。

(2)微集料效应。

混凝土是由连续的颗粒堆积而成的,砂子填充石子之间的空隙,水泥填充石子之间的空隙,矿粉再填充水泥之间的空隙,这样就使混凝土孔隙率得到下降,同时也防止了离析、泌水的产生,使混凝土的抗渗性能大幅度地提高。

3、矿粉对混凝土中水泥水化热的影响。

水化热是由水泥水化产生的。

由于混凝土不易散热,导致了混凝土内外温差较大,使混凝土内外产生非线性的温度梯度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)混凝土拌和料和易性得到改善掺加适量的粉煤灰可以改善混凝土拌和料的流动性、粘聚性和保水性,使混凝土拌和料易于泵送、浇筑成型,并可减少坍落度的经时损失。

(2)混凝土的温升降低掺加粉煤灰后可减少水泥用量,且粉煤灰水化放热量很少,从而减少了水化放热量,因此施工时混凝土的温升降低,可明显减少温度裂缝,这对大体积混凝土工程特别有利。

(3)混凝土的耐久性提高由于二次水化作用,混凝土的密实度提高,界面结构得到改善,同时由于二次反应使得易受腐蚀的氢氧化钙数量降低,因此掺加粉煤灰后可提高混凝土的抗渗性和抗硫酸盐腐蚀性和抗镁盐腐蚀性等.同时由于粉煤灰比表面积巨大,吸附能力强,因而粉煤灰颗粒可以吸咐水泥中的碱,并与碱发生反应而消耗其数量。

游离碱数量的减少可以抑制或减少碱集料反应。

通常3既的粉煤灰掺量即可避免碱集料反应。

(4)变形减小粉煤灰混凝土的徐变低于普通混凝土。

粉煤灰的减水效应使得粉煤灰混凝土的干缩及早期塑性千裂与普通混凝土基本一致或略低,但劣质粉煤灰会增加混凝土的干缩。

(5)耐磨性提高粉煤灰的强度和硬度较高,因而粉煤灰混凝土的耐磨性优于普通混凝土。

但混凝土养护不良会导致耐磨性降低。

(6)成本降低掺加粉煤灰在等强度等级的条件下,可以减少水泥用量约10%~15%,因而可降低混凝土的成本。

两者的允许掺量不同:粉煤灰在水泥中的允许掺加量为20-40%,但在混凝土中最大掺量一般不超过35%;磨细矿粉在水泥或混凝土中的掺加量则可达20-70%。

一些欧洲国家甚至允许掺到85%。

两者在混凝土中的掺加方式不同:粉煤灰一般采用“超量”取代水泥方式以保证混凝土强度达标;磨细矿粉则通常采用“等量”取代水泥方式配制混凝土,其强度仍然可以满足设计要求。

1、“单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量:
(a)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为20-30%;
(b)对于地下结构、强度要求中等的混凝土结构,掺量一般为30-50%;
(c)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%;
(d)对于有较高耐久性能要求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达 50-70%。

2、采用“双掺”粉煤灰和矿粉时,由于受粉煤灰掺量和质量波动的影响很大,只能根据上述基本原则,通过具体试验确定各组份正确的掺加量。

粉煤灰与矿粉双掺提高混凝土抗氯离子渗透性
东莞市预拌混凝土协会中国混凝土与水泥制品网[2008-12-22] 摘要:结合工程实例,采用粉煤灰与矿粉双掺,能有效的提高混凝土抗氯离子渗透能力。

关键词:混凝土渗透性氯离子矿物掺合料
1.引言
氯离子入侵是引起混凝土中钢筋锈蚀的重要原因,往往决定了混凝土结构的使用寿命,是耐久性的重要问题。

因此,国内外很多工程采用低水胶比,粉煤灰与硅灰双掺技术来解决此类问题。

但是由于硅灰的价格昂高,而且市场小,故而本公司采用粉煤灰与矿粉双掺解决了混凝土中氯离子渗透的问题。

解决了C30P8混凝土氯离子渗透的问题。

2.原材料
2.1.1
砂:江西赣江Ⅱ区中砂,细度2.7;碎石:江苏宜兴产5-25mm连续级配碎石,压碎指
标8.0%;外加剂:江苏博特新材料有限公司生产JM-Ⅷ高效减水剂,减水率22%;水泥:江苏南通万豪建材科技有限公司生产P.O42.5级;粉煤灰:南通华锦粉煤灰开发有限公司Ⅰ级粉煤灰;矿粉:张家港恒昌新型建筑材料有限公司生产S95级。

水泥、粉煤灰、矿粉性能指标如下列表格。

表1:水泥性能指标
2.1.2混凝土配合比
从上述结果分析,D方案比较合理。

随着水胶比的降低,矿物掺合料用量增加,可明显降低混凝土的渗透能力。

其原因是:
一.矿物掺合料效应
⑴矿物掺合料(粉煤灰与矿粉)具有形态效应、微集料效应。

正是由于矿物掺合料具有这些功能作用,改善了混凝土内部结构;影响了胶凝材料水化进程,协调混凝土的强度
发展,并能有效改善混凝土内部界面过渡区结构与性能,因而最终提高混凝土终合性能。

⑵复合化超叠加效应
混凝土是一种多组分复合材料,各组分性能的叠加效应表现得十分明显。

矿粉、粉煤灰等多组分矿物复合在一起,可以充分发挥各自优势,其各自的形态效应、微集料效应、火山灰效应相互作用,可以进一步提高混凝土性能。

⑶密实堆积效应
如前所述,掺加不同粒径和粒度分布矿物掺合粒,可以提高浆体的密实堆积程度,使得胶凝材料水化加快,混凝土孔隙率降低,微观结构变得均匀,产生优良的力学性能和耐久性能。

⑷中心质效应
吴中伟在1958年提出水泥基复合材料的中心质假说。

把不同尺度分散相称为中心质,把连续相称为介质。

各级中心质和介质之间存在相互的效应,称为“中心质效应”混凝土骨料为大中心质,未水化的水泥颗粒和矿物掺合料为次中心质效。

混凝土掺加一定细度的矿物掺合料使水泥石的中心质增多,次中心质之间的间距进一步减少,有利的中心质效应
增多,中心质网络骨架得到加强。

二.界面结构的提高
掺入的矿物掺合料的二次水化反应(火山灰反应)消耗了大量的氢氧化钙,减少了氢氧化钙的含量,并干扰氢氧化钙的结晶,使其氢氧化钙尺寸减少,富集程度和取向程度下降;火山灰反应增加C-S-H凝胶和Aft数量,硬化后混凝土界面过滤层孔隙率降低。

其抗氯离子渗透性能大幅提高工程开始后,双方协作,现场留样,电通量为980C,抗压强度37.6Mpa,抗渗等级8级,符合设计要求。

4.结论
在一定范围内,高掺粉煤灰和矿粉可有效的减少混凝土氯离子的渗透。

相关文档
最新文档