第十章 组变形时杆件的强度计算

合集下载

材料力学-组合变形杆件的强度计算

材料力学-组合变形杆件的强度计算

当压力作用在截面形心附近的一个区域内时,可保证
中性轴不穿过横截面。
截面核心
横截面上不 偏心压缩杆件
出现拉应力
压力必须作用 在截面核心上
截面核心的边界如何确定 ?
当压力作用在截面核心的边界上时,与此 相对应的中性轴正好与横截面相切。
ay =-
iz2 yF
az =-
iy2 zF
截面核心 是凸区域
yF
向,设钢的 [s ] = 160 MPa。试按第三强度理论校核
轴的强度。
5 kN 1.5 kN·m
12 kN
12.5 kN
2.1 kN
7 kN 9.1 kN
1.5 kN·m
4.5 kN
与P206 例 9-8 略有不同
内力图
作业:
9-17(a)、23
在 xz 平面内
产生平面弯曲
Mz = F ·yF 纯弯曲
在 xy 平面内
产生平面弯曲
压-弯-弯 组合变形
F My
Mz
FN = F
My = F ·zF Mz = F ·yF
FN My
Mz
轴力FN 引起的:
s =- F
A
弯矩 Mz 引起的:
s =- Mz y
Iz
弯矩 My 引起的:
s =- My z
l
y
s F、q 共同引起的: = s + s = FN - M ( x ) y
smax =
FN A

Mmax Wz
A
Iz
smin =
FN - Mmax A Wz
smin =
FN - Mmax A Wz
smax >s
smax =s

杆件的强度计算公式

杆件的强度计算公式

杆件的强度计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

(2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力应力的单位如何表示答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。

应力的单位为Pa。

1Pa=1N/m2工程实际中应力数值较大,常用MPa或GPa作单位1MPa=106Pa1GPa=109Pa3.应力和内力的关系是什么答:内力在一点处的集度称为应力。

4.应变和变形有什么不同答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。

单位横向长度上的变形称横向线应变,以ε/表示横向应变。

5.什么是线应变什么是横向应变什么是泊松比答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为l l∆=ε(4-2)拉伸时ε为正,压缩时ε为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为横向应变ε/为 a a∆=/ε(4-3)杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。

因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。

(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。

组合变形杆件的强度计算

组合变形杆件的强度计算
现 Wz 和 Wy 两个未知量,所以要首先假设一个 Wz /Wy 的比值,然后按式 (6-50) 解求出 Wz (或 Wy ),并进一步确定出截面形状和尺寸,然后再按式 (6-50)进行强 度校核,逐次渐进可得出较合理的截面尺寸。通常,矩形截面取 Wz /Wy = 1. 2 ~ 2, 工字形截面可取 Wz /Wy = 8 ~ 10,槽形截面可取 Wz /Wy = 6 ~ 8。
(3) 强度计算示例
【例6-25】如图6-48a 所示屋架上的桁条,可简化为两端铰支的简支梁,如图6-48b 所 示。梁的跨度 l = 4 m ,屋面传来的荷载可简化为均布荷载 q = 4 kN/m。 屋面与水平 面的夹角 φ =25 o 。桁条的截面为h = 280 mm、b = 140 mm 的矩形,如图6-48c 所示。 桁条材料的许用应力[σ] = 10 MPa。 试校核其强度。
c 点处有最大拉应力,α 点处有最大压应力,且 σc = [σa] = σmax,由式 (6-34) 可得最大 正应力为
max
M zmax ymax Iz
M ymax zmax Iy
M zmax Wz
M ymax Wy
(6-49)
Iy 。 zmax
(2) 强度条件
(2) 内力计算
虽然在斜弯曲梁的横截面上有弯矩也有剪力,但剪力影响较小,强度通常由弯 矩引起的正应力控制。因此,内力分析时只计算弯矩即可。
在距固定端为x 的任意横截面m‒m 上由Fy 和Fz 引起的弯矩分别为
M z Fy l x F l x cos M cos M y Fz l x F l x sin M sin
Iz
Iy
Iy
根据叠加原理,将两个正应力 '和 ''叠加,即得 K 点处总的弯曲正应力,也即 斜弯曲梁内任意一点正应力的计算公式

工程力学之组 合 变 形

工程力学之组 合 变 形

工程力学第10章组合变形学习目标(1)了解组合变形的概念及其强度问题的分析方法;(2)掌握斜弯曲、拉伸(压缩)与弯曲和偏心压缩的应力及强度计算。

10.1 组合变形的概念例如,烟囱的变形,除自重W引起的轴向压缩外,还有水平风力引起的弯曲变形,同时产生两种基本变形,如图10-1(a)所示。

又如图10-1(b)所示,设有吊车的厂房柱子,作用在柱子牛腿上的荷载F,它们合力的作用线偏离柱子轴线,平移到轴线后同时附加力偶。

此时,柱子既产生压缩变形又产生弯曲变形。

再如图10-1(c)所示的曲拐轴,在力F作用下,AB 段同时产生弯曲变形和扭转变形。

10.1 组合变形的概念图10-110.1 组合变形的概念上述这些构件的变形,都是两种或两种以上的基本变形的组合,称为组合变形。

研究组合变形问题依据的是叠加原理,进行强度计算的步骤如下:(1)将所作用的荷载分解或简化为几个只引起一种基本变形的荷载分量。

(2)分别计算各个荷载分量所引起的应力。

(3)根据叠加原理,将所求得的应力相应叠加,即得到原来荷载共同作用下构件所产生的应力。

(4)判断危险点的位置,建立强度条件。

10.2例如图10-2(a)所示的横截面为矩形的悬臂梁,外力F作用在梁的对称平面内,此类弯曲称为平面弯曲。

斜弯曲与平面弯曲不同,如图10-2(b)所示同样的矩形截面梁,外力F的作用线通过横截面的形心而不与截面的对称轴重合,此梁弯曲后的挠曲线不再位于梁的纵向对称面内,这类弯曲称为斜弯曲。

斜弯曲是两个平面弯曲的组合,本节将讨论斜弯曲时的正应力及其强度计算。

10.2图10-210.210.2.1 正应力计算斜弯曲时,梁的横截面上同时存在正应力和切应力,但因切应力值很小,一般不予考虑。

下面结合图10-3(a)所示的矩形截面梁说明斜弯曲时正应力的计算方法。

图10-310.2.1 正应力计算10.2.1.1 外力的分解由图10-3(a)可知:10.2.1.2 内力的计算如图10-3(b)所示,距右端为a 的横截面上由F y 、F z 引起的弯曲矩分别是:10.2 10.2.1 正应力计算10.2.1.3 应力的计算由M z 和M y (即F y 和F z )在该截面引起K 点的正应力分别为:F y 和F z 共同作用下K 点的正应力为:10.210-110.210.2.1 正应力计算10.2.1.3 应力的计算通过以上分析过程,我们可以将组合变形问题计算的思路归纳为“先分后合”,具体如下:10.210.2.2 正应力强度条件同平面弯曲一样,斜弯曲梁的正应力强度条件仍为:10-2即危险截面上危险点的最大正应力不能超过材料的许用应力[σ]。

工程力学(静力学与材料力学)-10-组合受力与变形杆件的强度计算

工程力学(静力学与材料力学)-10-组合受力与变形杆件的强度计算
max M y
TSINGHUA UNIVERSITY
My Mz
max M y
x
z
max M z
第10章 组合受力与变形杆件的强度计算
斜弯曲
TSINGHUA UNIVERSITY
对于圆截面,因为过形心的任 意轴均为截面的对称轴,所以当横 截面上同时作用有两个弯矩时,可 以将弯矩用矢量表示,然后求二者 的矢量和,这一合矢量仍然沿着横 截面的对称轴方向,合弯矩的作用 面仍然与对称面一致,所以平面弯 曲的公式依然适用。

max=
My Wy

Mz Wz
max
第10章 组合受力与变形杆件的强度计算
斜弯曲
最大正应力叠加公式应用限制

max
TSINGHUA UNIVERSITY

My Wy

Mz Wz

max=
My Wy

Mz Wz
本章将介绍杆件在斜弯曲、拉伸(压缩)与弯曲组 合、弯曲与扭转组合以及薄壁容器承受内压时的强度问题。
第10章 组合受力与变形杆件的强度计算
TSINGHUA UNIVERSITY
斜弯曲 拉伸(压缩)与弯曲的组合 弯曲与扭转组合 圆柱形薄壁容器应力状态与强度计算 结论与讨论
返回总目录
第10章 组合受力与变形杆件的强度计算
斜弯曲
TSINGHUA UNIVERSITY
以矩形截面为例,当梁的横截面上同时作用两个弯矩My 和 Mz(二者分别都作用在梁的两个对称面内)时,两个弯矩在同一 点引起的正应力叠加后,得到总的应力分布图。
Mz
第10章 组合受力与变形杆件的强度计算

第十章 组合变形时杆件的强度计算

第十章 组合变形时杆件的强度计算

第十章 组合变形时杆件的强度计算教学目标:了解组合变形的特点,掌握组合变形的强度计算。

重点、难点:组合变形的强度计算。

学时分配:4学时。

一、拉伸(压缩)与弯曲的组合拉伸或压缩与弯曲的组合变形是工程中常见的情况。

如图1(a)所示的起重机横梁AB ,其受力简图如图1(b)所示。

轴向力x F 和Ax F 引起压缩,横向力Ay F ,W ,y F 引起弯曲,所以杆件产生压缩与弯曲的组合变形。

对于弯曲刚度EI 较大的杆,由于横向力引起的挠度与横截面的尺寸相比很小,因此,由轴向力引起的弯矩可以略去不计。

于是,可分别计算由横向力和轴向力引起的杆横截面上的正应力,按叠加原理求其代数和,即得横截面上的正应力。

下面我们举一简单例子来说明。

图1悬臂梁AB (如图2(a)所示),在它的自由端A 作用一与铅直方向成ϕ角的力F (在纵向对称面xy 平面内)。

将F 力分别沿x 轴y 轴分解,可得sin cos x y F F F F ϕϕ==x F 为轴向力,对梁引起拉伸变形(如图2(b)所示);y F 为横向力,引起梁的平面弯曲(如图2(c)所示)。

距A 端x 的截面上的内力为 轴力 N sin x F F F ϕ== 弯矩 cos z y M F x F x ϕ=-=-⋅在轴向力x F 作用下,杆各个横截面上有相同的轴力N x F F =。

而在横向力作用下,固定端横截面上的弯矩最大,max cos M F l ϕ=-⋅,故危险截面是在固定端。

图2与轴力N F 对应的拉伸正应力t σ在该截面上各点处均相等,其值为N t sin x F F F A A Aϕσ===而与max M 对应的最大弯曲正应力b σ,出现在该截面的上、下边缘处,其绝对值为 max b cos z zM Fl W W ϕσ== 在危险截面上与N F ,max M 对应的正应力沿截面高度变化的情况分别如图3(a)和图3(b)所示。

将弯曲正应力与拉伸正应力叠加后,正应力沿截面高度的变化情况如 图3(c)所示。

杆件的轴向拉压变形及具体强度计算

杆件的轴向拉压变形及具体强度计算

根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A

2、设计截面:
A

FN

3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106

4
F
90106 Pa 90MPa
x
2

FN 2 A2

20103 152 106

89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。

第十章弯曲强度和刚度

第十章弯曲强度和刚度
试设计木梁不同截面的尺寸。
截h/面b=设3b/2计应尽可h 能使 h/b=1
b
材料远离中性b 轴。
b
Wz =bh 2/6 =3b 3/8
Wz=b3/6
强度条件:
强度条件:
3 b3 M max
8 [s ]
b3 Mmax
6 [s ]
M
h/b=2/3 h O
sbmax
W z=2b 3/27
强度条件:
2b 3 Mmax
M
o_
x
Fl
弯矩图
3) 画内力图。 悬臂梁在固定端A处弯矩值最大。
5
例2 求外伸梁AB的内力。y F FAy 3F
解:1)求约束反力: 受力如图。
0
A
FAx
aa
FB 45 B x
a
有平衡方程:
SMA(F)=2aFBcos45+Fa-3Fa=0 SFx=FAx-FBsin45=0 SFy=FAy+FBcos45-F-3F=0
d
M
AB aa bb AB
变形后
中性轴
中性层与横截面的交线称为中性
轴。
中性层(面)
15
y
M
z
中性轴 x
smax压
smax拉
横截面上各点的正应力s 的大小与该点到中性
轴的距离y成正比。
中性轴以上,s为负,是压应力,纤维缩短。 中性轴以下, s为正,是拉应力,纤维伸长。
到中性轴距离相同各处,应力相等。
Fa +
M=F(3a-x)
-
x
Fa
8
作梁的内力图的 一般步骤
y F
FAy
3F
0
A

组合变形杆件的强度—斜弯曲梁的应力和强度计算(建筑力学)

组合变形杆件的强度—斜弯曲梁的应力和强度计算(建筑力学)
6
180 120 2 6
mm 3
4.32 105 mm 3
屋面坡度为1:2,则
tan 1 sin 0.4472
2
cos 0.8944
斜弯曲梁的强度计算
(3)强度校核
max
M zmax M ymax
Wz
Wy
M max cos
Wz
M max sin
Wy
cos sin
M max( Wz
A处的正应力为最大拉应力,点C处的正应力为最大压应力:
yA yC ymax
zA zC zmax
max min
t max
cmax
My Iy
zmax
Mz Iz
ymax
My Wy
Mz Wz
M
sin
Wy
cos
Wz
M z 2.51 0.336 2 3.172 kN m M y 1.256 2 2.215 kN m
斜弯曲梁的强度计算
抗弯截面系数为:
Wz
bh2 6
0.6h h2 6
0.1h3
Wy
hb2 6
h (0.6h)2 6
0.06h3
由强度条件:
max
Mz Wz
My Wy
3.172 106 0.1h3
2.512 106 0.06h3
73.587 106 h3
≤[
]
h ≥ 3 73.587 106 194.5(mm) 10
取h = 200mm,b = 120mm。
斜弯曲梁的应力计算 一、斜弯曲的概念
对称截面梁在水平和铅垂两纵向 对称平面内同时承受横向外力的作用, 这时梁分别在水平纵对称面和铅垂纵 对称面内发生对称弯曲,称为斜弯曲 (即为两个相互垂直平面内的弯曲) x

杆件应力及强度计算

杆件应力及强度计算
2 2
P
BC
FNAB 30 103 149Mpa 6 AAB 201 10
FNBC 26 103 2.6Mpa 4 ABC 100 10
拉伸、压缩与剪切
•斜截面上的应力
P
拉压的内力和应力
有些材料在破坏时并不总是沿横截面,有的是沿斜截面。因此要进 一步讨论斜截面上的应力。 k 设拉力为P,横截面积 为A, P
材料力学
长沙理工大学
蔡明兮
2018年8月8日星期三
第四章
杆件应力与强度计算
拉伸、压缩与剪切
•横截面上的应力
A、几何方面: 根据实验现象,作如下假设:
拉压的内力和应力
平截面假设:变形前的横截面,变形后仍然保持为横截面, 只是沿杆轴产生了相对的平移。 应变假设:变形时纵向线和横向线都没有角度的改变,说明 只有线应变而无角应变。


o

o

拉伸、压缩与剪切
•高温短期
When t 250o ~ 300o C When t 2时间的影响
以低碳钢为例,当温度升高,E、S降低。
b b
& &
在低温情况下。象低碳钢, p 、S增大,减小。即发生冷脆现象。
max
s
拉伸、压缩与剪切
剪切的实用计算:
剪切和挤压的实用计算
FS A
剪切的强度条件:
P
P
FS [ ] A
Q

) [1 ] (塑性材料) (0.6 ~ 0.8 [] 0.8 ~ 1.0) [1 ] (脆性材料) ( [1 ] 为材料的许用拉应力
拉伸、压缩与剪切
2、选择截面

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算


FP a2
ww w
5
.k hd
b
m
上表面

σa 4 = σb 3
习题 10-7 图
和 ε 2 。证明偏心距 e与 ε1 、 ε 2 之间满足下列关系:
FP

ww w
e=
ε1 − ε 2 h × ε1 + ε 2 6

后 答

FP
M = FP e
习题 10-8 图
解:1,2 两处均为单向应力状态,其正应力分别为: 1 处:
第10章
组合变形与变形杆件的强度计算
10-1 根据杆件横截面正应力分析过程, 中性轴在什么情形下才会通过截面形心?试分析 下列答案中哪一个是正确的。 (A)My = 0 或 Mz = 0, FN ≠ 0 ; (B)My = Mz = 0, FN ≠ 0 ; (C)My = 0,Mz = 0, FN ≠ 0 ; (D) M y ≠ 0 或 M z ≠ 0 , FN = 0 。 正确答案是 D 。 解:只要轴力 FN x ≠ 0 , 则截面形心处其拉压正应力一定不为零, 而其弯曲正应力一定为零, 这样使其合正应力一定不为零,所以其中性轴一定不通过截面形心,所以答案选(D) 。 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:中性轴上正应力必须为零。由上题结论中性轴不一定过截面形心;另外当轴力引起的 拉(压)应力的绝对值大于弯矩引起的最大压(拉)应力的绝对值时,中性轴均不在截面内, 所以答案选(D) 。 并且垂 10-3 图示悬臂梁中, 集中力 FP1 和 FP2 分别作用在铅垂对称面和水平对称面内, 直于梁的轴线,如图所示。已知 FP1=1.6 kN,FP2=800 N,l=1 m,许用应力 σ =160 MPa。 试确定以下两种情形下梁的横截面尺寸: 1.截面为矩形,h=2b; 2.截面为圆形。

(参考资料)材料力学72-必做题

(参考资料)材料力学72-必做题

第二章杆件内力与内力图2-2(b)、(d)、(g)试作图示各杆的轴力图,并确定最大轴力| F N |max 。

2-3(b)试求图示桁架各指定杆件的轴力。

2-4(c)试作图示各杆的扭矩图,并确定最大扭矩| T |max 。

2-5图示一传动轴,转速n =200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。

(1)试绘该轴的扭矩图。

(2)若将轮C与轮D对调,试分析对轴的受力是否有利。

2-8(a)、(c)、(e)、(g)、(h)试列出图示各梁的剪力方程和弯矩方程。

作剪力图和弯矩图,并确定|F s |max及|M |max值。

2-9(a)、(c)、(d)、(f)、(g)、(i)、(k)、(l)、(m)试用简易法作图示各梁的剪力图和弯矩图,并确定|F s |max及|M |max值,并用微分关系对图形进行校核。

2-10设梁的剪力图如图(a)(d)所示(见教材p39)。

试作弯矩图和荷载图。

已知梁上无集中力偶。

2-11(b)试用叠加法绘出图示梁的弯矩图。

2-6一钻探机的功率为10 kW,转速n =180 r/min。

钻杆钻入土层的深度l= 40m。

若土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。

2-14图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁AB的内力图。

第三章轴向拉压杆件的强度与变形计算3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。

3-5变截面直杆如图所示。

已知A1=8cm2,A2=4cm2,E=200GPa 。

求杆的总伸长量。

3-7图示结构中,AB为水平放置的刚性杆,1、2、3杆材料相同,其弹性模量E=210GPa ,已知l =1m,A1=A2=100mm2,A3=150mm2,F P=20kN 。

工程力学组合受力与变形时的强度计算

工程力学组合受力与变形时的强度计算


FN A
M W


3103
d 2

8 103
d 3
81.1

MPa
81.9
4
32
位置?
例题:图示钢板受集中力P=128KN作用,当板在
一侧切去深4cm的缺口时,求缺口截面的最大正应 力?若在板两侧各切去深4cm的缺口时,缺口截面 的最大正应力为多少?(不考虑应力集中) 10
P
360
求: 1.链环直段部分横截面上 的最大拉应力和最大压应力; 2. 中性轴与截面形心之间 的距离。
解:根据平衡,截面上将
作用有内力分量FNx 和Mz
Fx 0 M C 0
得到 FNx=800 N
Mz= 12 N·m
x FNx
FNx A

4FNx πd 2


π
4 800 122 106
简支梁在中点受力的情
形下,最大弯矩
Mmax=FPl / 4。得到两个 平面弯曲情形下的最大
d
弯矩:
c
M max
FPz
FPx l FPsin l
4
4
M max
(FPy )

FPy l 4

FP
cos l 4
在Mmax(FPy)作用的截面上,截面上边缘的角点 a、b 承受最大压应力;下边缘的角点c、d 承受最 大拉应力。
Pz P cos
以y为中性轴弯曲 M y Pz (l x)
P cos(l x) M cos
M z Py (l x)
P sin(l x) M sin
M z y M y sin M y z M z cos

材料力学 第十章组合变形(1,2,3)

材料力学 第十章组合变形(1,2,3)
C 10kN
1.2m
解:求支反力,由平衡方程
FB B
FA
' FA
F ' A 0,
FA FB 5kN
A
1.6m 1.6m
m g f A
10kN C
m FAy
作折杆的受力图,折杆及 受力对称,只需分析一半 即杆AC 将FA分解, 得杆的轴力 FN、弯矩M (x)
B
FAx
FN FAx 3kN
3 10 8 10 t 81.1 2 3 c d / 4 d / 32 81.9
3 3
M W
[例10-2]圆截面杆的偏心压缩时不产生拉 力的载荷作用范围
P
y
P
y
Pa
a
z

z
CL11TU12
P
y
Pa
y
P
y
Pa
z
z
z
P
y y
Pa
y
P
z
Pa
z P
y y
z
Pa
y
P

CL11TU10
解: X A 3kN, A 4kN Y
任意横截面x上的内力:
FN X A 3kN FS YA 4kN M ( x) YA x 4 x
1 1截面上危险截面, 其上:FN 3kN,M 8kN m

FN A
M W
t FN M c A W
CL11TU5
y0 Iz tg tg z0 Iz
为中性轴与z轴夹角
3.强度计算:
1)危险截面:当x=0时 M Z , M y 同时取最大,固定端处为危险面 2)危险点:危险面上 D1 , D2点 3)最大应力

10第十章连接强度计算

10第十章连接强度计算
栓群接头问题。螺栓均为单剪。
Fr
i 1
8
i i
D0 其中ri = D0 / 2, 故F 均相等。 T 8F i 2
F
T 4D0
又由轴的最大切应力可得:
T maxWP max
D3
16

FS F
max D 3
4 D0 16
17.1 103 N
名义切应力为: 由
δ1 δ1
F δ
F
b
F
d
F
解:F 通过铆钉群中心,故每个 铆钉受力均等,均 为F / 3。 由于对接,铆钉又受双剪。 剪切强度为:
F 6 95.5MPa 2 d 4
2 1
d
F/3
1
F
2
< [τ]
F/3
∴ 铆钉剪切强度足够。
b
F/ 6
F/ 6
F/3
F/ 6 F/ 6
∵ δ<2δ1
∴ 需校核主板(或铆钉)中间段的挤压强度。
Fbs Abs
bs
bs
Fbs
F
挤压面积:Abs = dδ 挤压强度条件:
bs
Fbs bs Abs
[σbs]——容许挤压应力. 钢材[σbs] =(1.7—2.0)[σ]
3、拉伸强度计算 σ
FN = F F
名义拉应力: t
FN At
At =(b- d )δ
拉伸强度条件:
第十章
连接件的强度计算
作者:黄孟生
§10-1 概述
工程中几个杆件彼此连接时,起连接作用
的部件件称为连(联)接件。
F F δ d δ
铆接
F b F

杆件的强度计算公式资料讲解

杆件的强度计算公式资料讲解

杆件的强度计算公式资料讲解杆件的强度、刚度和稳定性计算1.构件的承载能⼒,指的是什么?答:构件满⾜强度、刚度和稳定性要求的能⼒称为构件的承载能⼒。

(1)⾜够的强度。

即要求构件应具有⾜够的抵抗破坏的能⼒,在荷载作⽤下不致于发⽣破坏。

(2)⾜够的刚度。

即要求构件应具有⾜够的抵抗变形的能⼒,在荷载作⽤下不致于发⽣过⼤的变形⽽影响使⽤。

(3)⾜够的稳定性。

即要求构件应具有保持原有平衡状态的能⼒,在荷载作⽤下不致于突然丧失稳定。

2.什么是应⼒、正应⼒、切应⼒?应⼒的单位如何表⽰?答:内⼒在⼀点处的集度称为应⼒。

垂直于截⾯的应⼒分量称为正应⼒或法向应⼒,⽤σ表⽰;相切于截⾯的应⼒分量称切应⼒或切向应⼒,⽤τ表⽰。

应⼒的单位为Pa。

1 Pa=1 N/m2⼯程实际中应⼒数值较⼤,常⽤MPa或GPa作单位1 MPa=106Pa1 GPa=109Pa3.应⼒和内⼒的关系是什么?答:内⼒在⼀点处的集度称为应⼒。

4.应变和变形有什么不同?答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表⽰。

单位横向长度上的变形称横向线应变,以ε/表⽰横向应变。

5.什么是线应变?什么是横向应变?什么是泊松⽐?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表⽰。

对于轴⼒为常量的等截⾯直杆,其纵向变形在杆内分布均匀,故线应变为l l?=ε(4-2)拉伸时ε为正,压缩时ε为负。

线应变是⽆量纲(⽆单位)的量。

(2)横向应变拉(压)杆产⽣纵向变形时,横向也产⽣变形。

设杆件变形前的横向尺⼨为a,变形后为a1,则横向变形为aaa-=1横向应变ε/为a a=/ε(4-3)杆件伸长时,横向减⼩,ε/为负值;杆件压缩时,横向增⼤,ε/为正值。

因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。

(3)横向变形系数或泊松⽐试验证明,当杆件应⼒不超过某⼀限度时,横向应变ε/与线应变ε的绝对值之⽐为⼀常数。

此⽐值称为横向变形系数或泊松⽐,⽤µ表⽰。

杆件的强度计算公式

杆件的强度计算公式

杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

(2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力应力的单位如何表示答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用6表示;相切于截面的应力分量称切应力或切向应力,用T表示。

应力的单位为Pa。

21 Pa=1 N /m2工程实际中应力数值较大,常用MPa或GPa作单位61 MPa=106Pa91 G P a=109P a3.应力和内力的关系是什么答:内力在一点处的集度称为应力。

4.应变和变形有什么不同答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以&表示。

单位横向长度上的变形称横向线应变,以& /表示横向应变。

5.什么是线应变什么是横向应变什么是泊松比答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以&表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为_1l(4-2 )拉伸时&为正,压缩时&为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a,变形后为a i,则横向变形为a a1a横向应变& /为/ _aa(4-3 )杆件伸长时,横向减小,& /为负值;杆件压缩时,横向增大,£/为正值。

因此,拉(压)杆的线应变& 与横向应变& /的符号总是相反的。

(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变& /与线应变&的绝对值之比为一常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 组合变形时杆件的强度计算
教学目标:了解组合变形的特点,掌握组合变形的强度计算。

重点、难点:组合变形的强度计算。

学时分配:4学时。

一、拉伸(压缩)与弯曲的组合
拉伸或压缩与弯曲的组合变形是工程中常见的情况。

如图1(a)所示的起重机横梁AB ,其受力简图如图1(b)所示。

轴向力x F 和Ax F 引起压缩,横向力Ay F ,W ,y F 引起弯曲,所以杆件产生压缩与弯曲的组合变形。

对于弯曲刚度EI 较大的杆,由于横向力引起的挠度与横截面的尺寸相比很小,因此,由轴向力引起的弯矩可以略去不计。

于是,可分别计算由横向力和轴向力引起的杆横截面上的正应力,按叠加原理求其代数和,即得横截面上的正应力。

下面我们举一简单例子来说明。

图1
悬臂梁AB (如图2(a)所示),在它的自由端A 作用一与铅直方向成ϕ角的力F (在纵向对称面xy 平面内)。

将F 力分别沿x 轴y 轴分解,可得
sin cos x y F F F F ϕϕ
==
x F 为轴向力,对梁引起拉伸变形(如图2(b)所示);y F 为横向力,引起梁的平面弯曲(如
图2(c)所示)。

距A 端x 的截面上的内力为 轴力 N sin x F F F ϕ== 弯矩 cos z y M F x F x ϕ=-=-⋅
在轴向力x F 作用下,杆各个横截面上有相同的轴力N x F F =。

而在横向力作用下,固定端横截面上的弯矩最大,max cos M F l ϕ=-⋅,故危险截面是在固定端。

图2
与轴力N F 对应的拉伸正应力t σ在该截面上各点处均相等,其值为
N t sin x F F F A A A
ϕ
σ=
==
而与max M 对应的最大弯曲正应力b σ,出现在该截面的上、下边缘处,其绝对值为 max b cos z z
M Fl W W ϕ
σ=
= 在危险截面上与N F ,max M 对应的正应力沿截面高度变化的情况分别如图3(a)和图3(b)所示。

将弯曲正应力与拉伸正应力叠加后,正应力沿截面高度的变化情况如 图3(c)所示。

若t σ>b σ,则min σ为拉应力;若t σ<b σ,则min σ为压应力。

所以min σ之值须视轴向力和横向力分别引起的应力而定。

如图3(c)所示的应力分布图
是在t σ<b σ的情况下作出的。

显然,杆件的最大正应力是危险截面上边缘各点处的拉应力,其值为
max sin cos
z
F Fl A W ϕϕ
σ=
+
由于危险点处的应力状态为单轴应力状态,故可将最大拉应力与材料的许用应力相比较,以进行强度计算。

应该注意,当材料的许用拉应力和许用压应力不相等时,杆内的最大拉应力和最大压应力必须分别满足杆件的拉、压强度条件。

若杆件的抗弯刚度很小,则由横向力所引起的挠度与横截面尺寸相比不能略去,此时就应考虑轴向力引起的弯矩。

二、扭转与弯曲
机械中的传动轴与皮带轮、齿轮或飞轮等连接时,往往同时受到扭转与弯曲的联合作用。

由于传动轴都是圆截面的,故以圆截面杆为例,讨论杆件发生扭转与弯曲组合变形时的强度计算。

设有一实心圆轴AB ,A 端固定,B 端连一手柄BC ,在C 处作用一铅直方向力F ,如图4(a)所示,圆轴AB 承受扭转与弯曲的组合变形。

略去自重的影响,将力F 向AB 轴端截面的形心B 简化后,即可将外力分为两组,一组是作用在轴上的横向力F ,另一组为在轴端截面内的力偶矩Fa M =e (如图4(b)所示),前者使轴发生弯曲变形,后者使轴发生扭转变形。

分别作出圆轴AB 的弯矩图和扭矩图(如图4(c)和图4(d)所示),可见,轴的固定端截面是危险截面,其内力分量分别为
Fl M =,Fa M T ==e
在截面A 上弯曲正应力σ和扭转切应力τ均按线性分布(如图4(e)和图4(f)所示)。

危险截面上铅垂直径上下两端点1C 和2C 处是截面上的危险点,因在这两点上正应力和切应力
均达到极大值,故必须校核这两点的强度。

对于抗拉强度与抗压强度相等的塑性材料,只需取其中的一个点1C 来研究即可。

1C 点的弯曲正应力和扭转切应力分别为
W
M
=
σ,P W T =τ (a)
对于直径为d 的实心圆截面,抗弯截面系数与抗扭截面系数分别为
332d W π=, 3P 216
d W W π== (b) 围绕1C 点分别用横截面、径向纵截面和切向纵截面截取单元体,可得1C 点处的应力状态(如图4(g)所示)。

显然,1C 点处于平面应力状态,其三个主应力为
222142
1
2τσσσσ+±
=⎭⎬⎫,02=σ
图4
对于用塑性材料制成的杆件,选用第三或第四强度理论来建立强度条件,即r []σσ≤。

若用第三强度理论,则相当应力为
22r3134σσσστ=-=+若用第四强度理论,则相当应力为
2222r413133σσσσσστ+-+将(a)、(b)两式代入上式,相当应力表达式可改写为
σ=
r3W
σ==
r4
在求得危险截面的弯矩M和扭矩T后,就可直接利用式(8-8)建立强度条件,进行强度计算。

相关文档
最新文档