电流转速双闭环直流调速系统matlab仿真实验

合集下载

哈工大_基于matlab的直流电机双闭环调速系统的设计与仿真设计

哈工大_基于matlab的直流电机双闭环调速系统的设计与仿真设计

一、设计参数设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为:额定功率200W ; 额定转速48V ; 额定电流4A ;额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2;电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5;电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ;要求转速调节器和电流调节器的最大输入电压==**im nmU U 10V ; 两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。

试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%;空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。

二、设计过程1、稳态参数计算根据两调节器都选用PI 调节器的结构,稳态时电流和转速偏差均应为零;两调节器的输出限幅值均选择为10V电流反馈系数;*nom 10 1.25/24im U VV A I Aβλ===⨯转速反馈系数:*100.02min/500/min nm nom U Vn V rn r ===⋅2、电流环设计1) 确定时间常数电流滤波时间常数0.2oi T ms =,按电流环小时间常数环节的近似处理方法,则s T T T oi s i 0003.00002.00001.0=+=+=∑2)选择电流调节器结构电流环可按典型Ⅰ型系统进行设计。

电流调节器选用PI 调节器,其传递函数为1()i ACR ii s G s K sττ+= 3)选择调节器参数超前时间常数:i τ=T L =0.008s电流环超调量为5%i σ≤,电流环开环增益:取0.5i i K T ∑=,则0.50.51666.670.0003I i K T ∑=== 于是,电流调节器比例系数为0.00881666.6717.7781.25 4.8i i I s R K K K τβ⨯=⋅=⨯=⨯ 4)检验近似条件电流环截止频率1666. 67 1/ci I K s ω== (1)近似条件1:13ci sT ω≤现在113333.3330.0003ci s T ω==>,满足近似条件。

双闭环直流调速系统仿真(Matlab)

双闭环直流调速系统仿真(Matlab)

Wcli (s)
Ti
1 s2 1
s 1
KI
KI
联系仿真实例,经计算可得
136.2 W cli(s)0.00367s2s136.2
根据经验公式,转速环的开环传函为
Wn(s)
KN(ns1)
s2(Tns1)
同理可得 Wn(s)03.041.67s34s3399.s12
通过MATLAB指令可得其闭环传函为
图1 原始调速系统结构框图
2021/7/1
3
对于该系统,联系仿真实例,经计算可得其开环传递函数为
3 5 G (s) 0 .1 2 9 (0 .0 0 1 6 7 s 1 )(0 .0 0 1 s2 0 .0 5 s 1 )
借助于MATLAB仿真软件,绘制Bode图如图2所示。
图2 原始控制系统伯德图
主程序文件main.m 和目标函数文件optm.m,运行主程序,得到 kp,ki,kp1,ki1的
存储空间,在Command window键入gatool,调用出遗传算法工具箱的人机接 口,在里面设置相关参数,设置完毕后点击start按钮开始运行。经过迭代,
会得到 kp,ki,kp1,ki1的最优解,参数值如图7所示,将再其带入图6中即可
Id(s)
R
Tm s
1 n(s) Ce
电流环
Tois 1
Ton s 1
2021/7/1
图3 双闭环直流调速系统动态结构框图
5
3.仿真环境中步长的选择
刚性是指其Jacobian(雅可比)矩阵的特征值
相差悬殊。在解的性态上表现为,其中一些解
变化缓慢,刚性方程,又称为Stiff方程。
根据经验公式,电流环闭环传递函数公式为

运动控制系统-转速、电流双闭环直流调速系统MATLAB仿真例程

运动控制系统-转速、电流双闭环直流调速系统MATLAB仿真例程
L 0.0216H ,
取电枢电阻为 Ra 0.18 ,晶闸管导通电阻 R 0.001 ,总的电阻为
R 0.18
取 U a U b U c 323V 取电机的转动惯量 J 2.34 仿真结果如下:
这与 1 的模型仿真结果相近。
根据题目数据逆推基本参数: 由Tl
Tm
L L 0.012s L 0.00216H R 0.18
GD 2R GD 2 375C eC m
0.18 0.12s 30 2 375 0.196
GD 2 GD 2 91.7Байду номын сангаас7958 J 2.34 4g
设 A 相电压最大值为 U a ,当 U cm 6.5V 时,
90 (9 U cm ) 31.5
Cos Cos 31.5 0.8526

U cm 1.17 K s Cos
U a 322.5 V
Ua
2
取平波电感 L 0.02H ,电机电枢电感为 La 0.0016H ,总的电感
在一个由三相零式晶闸管整流装置供电的转速、 电流双闭环 调速系统中,已知电动机的额定数据为:
U N 220V
PN 60KW

, IN
308A
, nN
1000r / min
, 电 动 势 系 数
C e 0.196V min/ r ,
主回路总电阻 R
0.18 ,触发整流环节的
放大倍数 K s
8 V ,U cm 6.5 V

10 V 0.01 1000r / min
8 V 0.017316 1.5 308A

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。

本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。

文章将以1200字以上的篇幅进行详细阐述。

一、系统设计直流电机双闭环调速系统由速度环和电流环构成。

速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。

通过控制电机的期望电压和实际电压,达到对电机速度的调控。

二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。

包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。

这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。

三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。

在直流电机双闭环调速系统中,可以选择PID控制策略。

PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。

四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。

根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。

通过仿真可以得到系统的动态响应曲线,评估系统的性能。

五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。

通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。

总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。

通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。

转速、电流双闭环直流调速系统及其MATLAB仿真研究

转速、电流双闭环直流调速系统及其MATLAB仿真研究

成绩南京工程学院课程设计说明书(论文) 课程设计说明书(论文)转速、电流双闭环直流调速系统及其 MATLAB 仿真研究课 程 名 称电机控制技术院(系、部、中心)电力工程学院 设 计 地 点 指 导 教 师 工程实践中心 9#229 李先允南京工程学院课程设计任务书课程名称电机控制技术电力工程学院院(系、部、中心)年 6 月 28 日指导教师李先允1.课程设计应达到的目的 《电机控制技术》是电气工程及其自动化专业的专业课程,内容包括交、直流调 速和位置控制。

本课程要求学生在掌握基本理论的基础上,逐步培养运用理论去分析解决 现场实际问题的能力,而不是机械地仅仅掌握理论而已。

本课程设计正是为达到这一目的 而设计的。

通过课程设计,检验学生是否掌握自动控制的基本理论和系统设计方法,训练学生 设计控制系统和使用仿真软件的能力,培养学生分析试验结果的专业素养。

2.课程设计题目及要求课程设计的题目:转速、电流双闭环直流调速系统及其 MATLAB 仿真研究课程设计的要求: 某晶闸管供电的双闭环直流调速系统, 整流装置采用三相桥式电路, 参数设置如下: 直流电动机:Pnom=150kW;nnom=1000r/min;Inom=700A;Ra=0.05 主回路:Rd=0.08;Ld=2mH;全控桥式整流 m=6 负载及电动机转动惯量:GD2=125kg·m2 要求:稳态指标:无静差; 动态指标:电流超调量 δi<=5%;空载起动到额定转速时的转速超调量 δn%<=5%.3.课程设计任务及工作量的要求〔包括课程设计计算说明书、图纸、实物样品等要求〕课程设计任务: 1. 2. 3. 4. 5. 问题的提出。

理论知识的准备过程。

系统相关模型的参数设置以及传递函数的表达式建立。

利用 MATLAB 软件建立转速,电流双闭环调速系统的数学模型。

仿真结果,并对结果进行分析。

课程设计工作量的要求: 1.编制仿真程序:重点在于数学模型的过程建立 2.分析仿真结果:能够根据实验仿真的结果进行分析。

双闭环直流电动机调速系统设计及MATLAB仿真基于直流电动机调速系统的研究

双闭环直流电动机调速系统设计及MATLAB仿真基于直流电动机调速系统的研究

双闭环直流电动机调速系统设计及MATLAB仿真基于直流电动机调速系统的研究摘要:本文研究了双闭环直流电动机调速系统的设计及MATLAB仿真。

首先介绍了直流电动机调速系统的基本原理,然后通过建立数学模型,设计了双闭环调速系统的控制器,并利用MATLAB进行了系统的仿真实验。

仿真结果表明,双闭环调速系统能够有效地提高电动机的调速性能,使其在不同负载条件下保持稳定的转速。

关键词:双闭环调速系统、直流电动机、MATLAB仿真1.引言直流电动机调速系统是工业自动化控制中的常用控制系统之一、它广泛应用于机械设备、工业生产线以及交通运输等领域。

传统的直流电动机调速系统采用单闭环控制,其调速性能较差,对负载扰动不敏感。

因此,研究双闭环直流电动机调速系统,对于提高电动机的调速性能具有重要意义。

2.直流电动机调速系统设计原理直流电动机调速系统是通过调节电源电压或者改变电动机绕组的接线方式来实现。

系统主要由电动机、控制器以及反馈元件组成。

在传统的单闭环调速系统中,控制器根据电机的转速反馈信号与给定的转速信号之差,产生输出信号控制电机的转速。

然而,单闭环调速系统对负载扰动不敏感,容易出现转速不稳定等问题。

双闭环调速系统是在传统的单闭环调速系统的基础上增加了一个速度环,用于对电机的速度进行闭环控制。

速度环通过调节电机的输出力矩,实现对电机转速的调节。

双闭环调速系统可以及时调整电机输出力矩,使电机在负载扰动下保持稳定的转速。

3.双闭环直流电动机调速系统的控制器设计双闭环直流电动机调速系统的控制器主要由速度环控制器和电流环控制器组成。

速度环控制器根据速度反馈信号与给定的速度信号之差,产生电压控制信号,用于控制电机的输出力矩。

电流环控制器根据电流反馈信号与给定的电流信号之差,产生电压控制信号,用于控制电机的转矩。

具体的控制器设计需要根据电机的数学模型和系统性能要求进行。

4.MATLAB仿真实验本文利用MATLAB软件对双闭环直流电动机调速系统进行了仿真实验。

利用Matlab仿真平台设计双闭环直流调速系统

利用Matlab仿真平台设计双闭环直流调速系统

1 设计任务及要求1、已知条件:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V 、136A 、1460r/min ,Ce=0.132 min/r , 允许过载倍数1.5 。

闸管放大系数:Ks=40 。

电枢回路电阻:R 0.5 。

o时间常数:T1=0.03s ,Tm=0.18s 。

电流反馈系数:0.05V/A( 10V/1.5I nom )转速反馈系数:0.007Vmin /r( 10V /n nom)2 、技术要求:稳态指标:无静差;动态指标:电流超调量i 5% ;空载起动到额定转速时的转速超调量n% 10% 。

3 、设计要求:①简述单闭环直流调速系统的基本构成和工作原理。

②分析所设计系统的静态性能指标和动态性能指标。

③根据动态性能指标设计校正装置。

④设计出系统的Simulink 仿真模型,验证所设计系统的性能。

⑤给出所设计系统的性能指标:上升时间t r 、超调量p% 、调节时间t s 、最大启动电流Idmax 、稳态误差e ss 。

2 系统的基本结构和工作原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。

为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。

双闭环直流调速系统是由电流和转速两个调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。

双闭环直流调速系统较单闭环相比具有动态响应快、抗干扰能力强等优点,具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。

具有单闭环不能比拟的优势。

双闭环调速系统的结构示意图如下图1:双闭环调速系统结构原理图如下图2 :渊电源输出*" ---3Hj图2 双闭环调速系统结构原理图触发电踣匸桥-功放rIF1 Io"电源H+II个柠3系统的静态性能和动态性能指标3.1系统的静态性能指标为了分析双闭环调速系统,必须先绘出它的稳态结构框图。

直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告

本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。

二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。

内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。

电流调节器的给定信号un。

与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。

在这个电压的作用下电机的电流及转矩将相应地发生变化。

电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。

这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。

当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。

反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。

外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。

另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。

这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。

直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。

实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。

双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。

实验步骤:
1.建立直流电动机的数学模型。

2.设计速度环控制器。

3.设计电流环控制器。

4.进行系统仿真实验。

实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。

同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。

实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。

实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。

实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。

通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。

同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。

通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。

电流转速双闭环直流调速系统matlab仿真实验

电流转速双闭环直流调速系统matlab仿真实验

实用文档仿真设计报告内容学院专业班级学号学生姓名指导教师完成日期年月日转速、电流双闭环直流调速系统的Simulink 仿真设计一、系统设计目的直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。

根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。

按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink 对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。

在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。

对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。

采用MATLAB 软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK 进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。

二、系统理论分析2.1 双闭环直流调速系统工作原理电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到最大给定值, 电动机以最大电流恒流加速启动。

电动机的最大电流可通过整定速度调节器的输出限幅值来改变。

在转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。

对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化,校正和补偿电动机的转速偏差。

另外电流调节器的小时间常数, 还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度稳定于某一转速。

matlab对直流双闭环调速系统进行仿真

matlab对直流双闭环调速系统进行仿真

用MATLAB对转速电流双闭环控制的直流调速系统仿真仿真步骤一直流调速系统参数设计双闭环直流调速系统的设计的设计原则:先设计内环(即电流环),再将内环看成外环的一个环节,进而设计外环(即转速环)。

电流调节器参数的设计(1)确定时间参数:1)整流装置滞后时间常数s T=0.0017s2) 电流滤波时间常数oi T =0.002s3) 电流环小时间常数之和i T ∑=oi T +s T =0.0037(2) 计算电流调节参数1) 电流反馈系数:β=*imN U I λ=101.5136⨯=0.052) 电机转矩时间常数:=m T 223.530.50.183753759.550.132e m GD R C C ⨯==⨯⨯s 3) 电磁时间常数:0.03l LT s R== 4) 电流调节器选用PI 调节器,其传递函数为:11()i ACR Pi Li i S W S K KiK S Sττ+=+= 其中:0.03i l T s τ==0.030.51.013220.00370.0540i i i s R K T K τβ∑⨯==≈⨯⨯⨯转速调节器参数设计: (1) 时间常数1) 电流环等效时间常数:i 1220.00370.0074IT K ∑==⨯= 2) 转速滤波时间常数:00.01n T = 3) 转速环小时间常数:010.0174n n IT T s K ∑=+= (2) 计算转速调节参数:1) 取h=5,则ASR 的超调时间常数为:0.087n n hT s τ∑== 2) 转速开环增益:22216396.422250.0174N n h K s h T -∑+==≈⨯⨯ 3) 比例系数:(1)2e mn n h C T K h T Rβα∑+==11.7二 仿真结构图转速电流闭环控制系统仿真模型电流调节器PI-ACR参数转速调节器PI-ASR参数三设定模型仿真参数仿真算法为ode15,仿真时间1.5s。

基于MATLAB的双闭环直流调速系统仿真研究

基于MATLAB的双闭环直流调速系统仿真研究

基于MATLAB的双闭环直流调速系统仿真研究双闭环直流调速系统是一种常用的控制系统结构,用于控制直流电动机的速度。

在这个系统中,有两个闭环控制环节:一个用于速度控制,另一个用于电流控制。

本文将基于MATLAB对双闭环直流调速系统进行仿真研究。

首先,我们需要建立直流电动机的数学模型。

直流电动机可以用以下方程描述:$$\begin{cases}J\frac{d\omega(t)}{dt} = T_e(t) - B\omega(t)\\L\frac{di(t)}{dt} = V(t) - R_i(t) - Ke\omega(t)\end{cases}$$其中,$J$是转动惯量,$\omega(t)$是转速,$T_e(t)$是机械负载转矩,$B$是摩擦系数,$L$是电机绕组电感,$i(t)$是电机电流,$V(t)$是电机电压,$R_i(t)$是电机内阻,$Ke$是电机反电动势系数。

为了进行仿真研究,我们需要假设一些参数值。

这里我们假设$J=0.01$ kg·m²,$B=0.1$ N·m·s/rad,$L=0.5$ H,$R=1$ Ω,$K_e=0.1$ V/(rad/s)。

接下来,我们需要设计控制器。

在这里,我们使用PID(比例积分微分)控制器,它是一种常用的控制器类型,可根据控制需求调整控制响应。

根据速度控制闭环调节器,PID控制器的传递函数为:$$C(s)= K_p + \frac{K_i}{s} + K_ds$$其中,$K_p$,$K_i$和$K_d$分别是比例增益,积分增益和微分增益。

根据电流控制闭环调节器,PID控制器的传递函数为:$$C(s) = K_{p1} + \frac{K_{i1}}{s} + K_{d1}s$$其中,$K_{p1}$,$K_{i1}$和$K_{d1}$分别是比例增益,积分增益和微分增益。

在进行仿真研究时,我们可以选择合适的参数值,并根据需要进行调整。

实验三 双闭环直流调速系统MATLAB仿真

实验三 双闭环直流调速系统MATLAB仿真

实验三双闭环直流调速系统MATLAB仿真
一、实验目的
1.掌握双闭环直流调速系统的原理及组成;
2.掌握双闭环直流调速系统的仿真。

二、实验原理
一、实验内容
基本数据如下:
直流电动机:220V, 136A, 1460r/min.Ce=0.132Vmin/r.允许过载倍数为1.5;晶闸管装置放大系数: Ks=40;Ts=0.0017s;
电枢回路总电阻: ;
时间常数: ;
电流反馈系数: ;
电流反馈滤波时间常数: ;
电流反馈系数: ;
转速反馈系数α=0.007vmin/r
转速反馈滤波时间常数:
设计要求:设计电流调节器, 要求电流无静差, 电流超调量。

转速无静差, 空载起动到额定负载转速时转速超调量。

并绘制双闭环调速系统的动态结构图。

四、实验步骤
1. 根据原理和内容搭建电路模型;
2. 设置各元器件的参数;
3. 设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。

4. 仿真实现。

五、实验报告
1.Idl=0和Idl=136A时电流和转速的输出波形
2.讨论PI 调节器参数对系统的影响.
τi =TL,s
i i K R
T KT Kp βτ•∑=
…………………………取KT=0.5 转速环设计成典型二型系统
h =5, T 087.0)2(=+==∑∑on i n n T T h hT τ Kn=7.112)1(=∑+=
n
RT h CeTm
h Kn αβ
取11.7 , 11.7/0.087。

转速、电流双闭环直流调速系统及其MATLAB仿真研究

转速、电流双闭环直流调速系统及其MATLAB仿真研究

《自动控制系统》课程主题设计转速、电流双闭环直流调速系统及其MATLAB仿真研究目录课程设计任务书前言1课程设计的目的2课程设计的内容第一章直流双闭环调速系统原理1.1系统的组成1.2系统的原理图第二章转速、电流双闭环直流调速器的设计2.1电流调节器的设计2.2转速调节器的设计第三章系统仿真心得体会参考文献前言对最常用的转速、电流双闭环调速系统的工程设计方法进行了详细的推导。

然后采用Matlab/Simulink方法对实际系统进行仿真,找出推导过程被忽略的细节部分对调速系统的影响,给出工程设计和实际系统之间产生差距的原因,有助于在实际中设计出较优的系统。

1课程设计的目的《自动控制系统课程设计》是学习理论课程之后的实践教学环节。

目的是使学生巩固和加深课程的理论知识,结合实际,融会贯通。

进一步培养学生独立分析和解决实际工程技术问题的能力。

充分发掘自身的潜力,开拓思路设计双闭环直流调速系统。

并掌握其系统的组成、工作原理、调节器的设计及Simulink仿真等内容,同时在计算、绘图、编号、设计说明书等方面得到训练,为今后的学习工作奠定基础。

2 课程设计的主要内容晶体管整流装置采用三相桥式全控整流,整流变压器绕组按△-Y 连接。

直流他励电动机的额定数据为: 440V,200A,1460r/min;允许过载倍数λ>1.5;触发整流放大系数Ks=36,整流回路总电阻R=0.7Ω(包括电枢电阻),时间常数T l=0.06s,T m=0.7s。

电流反馈系数转速α=0.05V/A,反馈系数测速α=0.008V•min/r发电机采用永磁式,额定数据为:23.1W,110V,0.21A,1900 r/min。

稳态性能指标要求:(1)响应无误差;(2)电流环超调量σ≤0.05;(3)转速环按典型II型系统设计;要求:在给定输入作用下的调节时间最短第一章直流双闭环调速系统原理1.1系统的组成转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。

基于MATLAB的双闭环直流调速系统仿真研究

基于MATLAB的双闭环直流调速系统仿真研究

基于MATLAB的双闭环直流调速系统仿真研究双闭环直流调速系统是一种常见的电机控制系统,通过使用两个闭环来控制电机转速和电流,能够使电机稳定运行并满足特定的转速和负载要求。

MATLAB作为一种功能强大的计算软件,可以提供一系列的工具和函数,用于建模、仿真和分析各种控制系统。

双闭环直流调速系统一般由速度环和电流环组成。

速度环用于控制电机的速度,通过测量电机的转速与设定值之间的误差,并将误差信号馈入控制器进行比例、积分、微分运算,最后将输出信号作为电机的控制电压。

电流环则用于控制电机的电流,通过将输出信号与电机的电流进行比较,并通过控制电机的电流调节器来控制电机的电流。

在MATLAB中进行双闭环直流调速系统的仿真研究,主要包括以下步骤:1.建立系统模型:根据实际的电机参数以及控制器的特性,建立电机系统的数学模型。

一般可以使用传递函数来描述电机的动态特性。

2.设计控制器:根据系统的性能要求,设计速度环和电流环的控制器。

可以使用PID控制器或者其他控制算法来实现控制器的设计。

3. 进行仿真实验:根据所设计的控制器和系统模型,进行仿真实验。

在MATLAB中,可以使用Simulink工具箱来搭建系统模型,并通过逐步调整控制器参数,在不同的工况下进行仿真实验,并观察系统的响应。

4.分析结果:根据仿真实验的结果,通过分析系统的响应曲线,评估系统的性能。

可以观察系统的稳态误差、超调量、调节时间等指标,以及系统的抗干扰性能和稳定性。

5.优化控制器参数:根据仿真实验的结果,对控制器参数进行优化调整,以获得更好的系统性能。

可以使用MATLAB提供的优化算法来自动求解最优参数。

总结,基于MATLAB的双闭环直流调速系统仿真研究可以通过建立系统模型、设计控制器、进行仿真实验、分析结果和优化控制器参数等步骤来完成。

通过这些步骤,可以评估控制系统的性能,并对系统进行改进和优化,以满足实际的控制需求。

双闭环直流电动机调速系统设计及MATLAB仿真

双闭环直流电动机调速系统设计及MATLAB仿真

双闭环直流电动机调速系统设计及M A T L A B仿真(共21页)-本页仅作为预览文档封面,使用时请删除本页-目录1、引言..................................................错误!未定义书签。

二、初始条件:...........................................错误!未定义书签。

三、设计要求:...........................................错误!未定义书签。

四、设计基本思路.........................................错误!未定义书签。

五、系统原理框图.........................................错误!未定义书签。

六、双闭环调速系统的动态结构图...........................错误!未定义书签。

七、参数计算.............................................错误!未定义书签。

1. 有关参数的计算 ...................................错误!未定义书签。

2. 电流环的设计 .....................................错误!未定义书签。

3. 转速环的设计 .....................................错误!未定义书签。

七、双闭环直流不可逆调速系统线路图.......................错误!未定义书签。

1.系统主电路图 ......................................错误!未定义书签。

2.触发电路 ..........................................错误!未定义书签。

3.控制电路 ..........................................错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 双闭环直流调速系统组成
为实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流。两者实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成转速、电流双闭环调速系统。
τi=Tl,Ki=(KiKsβ)÷(τiR)
2、确定时间常数
(1)整流装置滞后时间常数 。三相桥式电路的平均失控时间 ;
(2)电流滤波时间常数 。三相桥式电路每个波头的时间是3.33ms,为了基本滤平波头,应有 ,因此取 ;
(3)电流环小时间常数 。按小时间常数近似处理,取 。
3、确定将电流环设计成何种典型系统
仿真设计报告
内 容
学院
专业
班级
学年 月 日
转速、电流双闭环直流调速系统的Simulink仿真设计
一、系统设计目的
直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。
,取 ;
,取 ;
,取 。
图7 转速调节器原理图
四、系统仿真运行
4.1 双闭环直流调速系统定量仿真模型
4.2 双闭环直流调速系统定量仿真结果
4.2.1 转速环空载高速启动
4.2.2 转速环满载高速启动
4.2.3 转速环的抗扰
分析:可以使电流快速达到,并保持略低于的值,实现快速启动,最终达到恒速。且具有抗扰作用,使转速维持在给定值。空载能比满载更快速启动。
4、转速调节器的结构选择
转速调节器选用PI型,其传递函数为: 。
5、选择转速调节器参数
按跟随和抗干扰性能都较好的原则取h=5,则ASR超前时间常数: ;
转速开环增益: ;于是ASR的比例系数为: 。
6、计算转速调节器的电路参数
转速调节器原理图如图7所示,按所用运算放大器,取 ,各
电阻和电容值计算如下:
由仿真计算结果表明,利用MATLAB的simulink对各调速系统进行仿真设计,可以迅速直观地分析出系统的跟随性能、抗扰性能及稳定性,使得对系统进行分析、设计及校正变得更简单方便,大大缩短了系统调试周期,提高了开发系统效率。对于调速系统的设计,MATLAB的simulink确实是个经济、简单、快速、高效的工具。
二、系统理论分析
2.1 双闭环直流调速系统工作原理
电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化,校正和补偿电动机的转速偏差。另外电流调节器的小时间常数, 还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度稳定于某一转速。
根据设计要求 ,而且 ,因此,电流环可按典型Ⅰ型系统设计。
4、电流调节器的结构选择
电流调节器选用PI型,其传递函数为:
5、选择电流调节器参数
ACR超前时间常数: ;
电流环开环增益:因为要求 ,故应取 ,因此
于是,ACR的比例系数为 。
6、计算电流调节器的电路参数
图5 电流调节器原理图
电流调节器原理如图5所示,按所用运算放大器,取 ,各电阻和电容值计算如下:
图2理想启动过程
图3双闭环直流调速系统动态结构图
参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图如图3所示。
2.4 双闭环直流调速系统参数描述
参数:
三、系统模型设计
在设计双闭环调速系统时,一般是先内环后外环,调节器的结构和参数取决于稳态精度和动态校正的要求,双闭环调速系统动态校正的设计与调试都是按先内环后外环的顺序进行,在动态过程中可以认为外环对内环几乎无影响,而内环则是外环的一个组成环节。工程设计的步骤如下:
1对已知系统的固有特性做恰当的变换和近似处理,以简化调节器结构。
2根据具体情况选定预期特性,即典型Ⅰ系统或典型Ⅱ系统,并按照零极点相消的原则,确定串联调节器的类型。
3根据要求的性能指标,确定调节器的有关P、I、D参数。
4校正。
3.1 电流环的设计
1、电流环的简化:
图4简化后电流环
按典型I型系统设计,ACR选PI调节器。
图1 转速、电流双闭环直流调速系统
其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子变换器 -转速给定电压 Un-转速反馈电压 -电流给定电压 -电流反馈电压
2.3 双闭环直流调速系统分析
一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。这种理想的起动过程如图2所示。
五、仿真设计总结
本文通过建立直流电机转速、电流双闭环调速系统数学模型设计,根据具体指标参数,应用工程方法设计了电流调节器和转速调节器,设计中选择合适的调节器类型,给出了系统动态结构图并进行了仿真和性能分析。利用MATLAB及其中的仿真工具Simulink,对所设计的电流环和转速环的阶跃信号进行了仿真计算,很容易绘制出各单位扰动曲线,并计算出阶跃扰动响应性能指标,从阶跃扰动响应曲线及其指标得出:对扰动信号,该系统具有很强的抗扰性能。
,取 ;
,取 ;
,取 。
3.2 转速环的设计
1、转速环的简化:
图6 简化后的转速环
2、确定时间常数:
(1)电流环等效时间常数为 ;
(2)转速滤波时间常数 。根据所用测速发电机纹波情况,取 ;
(3)转速环小时间常数 。按小时间常数近似处理,取 。
3、转速环设计系统:
由于设计要求转速无静差,转速调节器必须含有积分环节;有根据动态设计要求,应按典型Ⅱ型系统设计转速环。
相关文档
最新文档