人教版高一数学第一学期期末测试卷1(有答案)

合集下载

高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)

高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)

高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0B .1C .2D .32.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y =B .3y x =C .cos y x =D .||y ln x =3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( )A .()0,2B .[]0,2C .(1+D .1⎡⎣6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .807.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .810.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)941451log log 3log 5log 272⋅--+. 19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】{}1013M =-,,,,{}13N =-,{}1M N ∴⋂=故选:B2.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y = B .3y x =C .cos y x =D .||y ln x =【答案】D 【解析】根据题意,依次分析选项:对于A ,2x y =,为指数函数,其定义域为R ,不是偶函数,不符合题意; 对于B ,3y x =,为幂函数,是奇函数,不符合题意;对于C ,cos y x =,为偶函数,在(0,)+∞不是增函数,不符合题意; 对于D ,,0(),0lnx x y ln x ln x x ⎧==⎨-<⎩,为偶函数,且当0x >时,y lnx =,为增函数,符合题意;故选:D .3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -【答案】B 【解析】0((1))(0)1f f f e ===,故选:B4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .【答案】B 【解析】lg lg 0,lg 0a b ab +=∴=,即1ab =.∵函数()f x 为指数函数且()f x 的定义域为R ,函数()g x 为对数函数且()g x 的定义域为()0,∞+,A 中,没有函数的定义域为()0,∞+,∴A 错误;B 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递增,即01b <<,ab 可能为1,∴B 正确;C 中,由图象知指数函数()f x 单调递减,即01a <<,()g x 单调递增,即01b <<,ab 不可能为1,∴C 错误;D 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递减,即1b >,ab 不可能为1,∴D 错误. 故选:B.5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(12,12+D .12,12⎡⎤⎣⎦【答案】C 【解析】()11x f x e =->-,所以,()221g b b b =-+>-,整理得2210b b --<,解得1212b <故选:C.6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .80【答案】B 【解析】设此矩形面向河的一边的边长为x ,相邻的一边设为y , 由题意得200xy =, 设围栏总长为l 米,则240l x y =+≥=, 当且仅当2x y =时取等号, 此时20,10x y ==; 则围栏总长最小需要40米; 故选:B.7.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立, 即当[,2]x t t ∈+时,不等式22x t x +>恒成立 即2x t <恒成立 即22t t +< 解得2t >故实数t 的取值范围是(2,)+∞ 故选:A8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】∵1log log log log a b a a b a b b+=+,又1,1a b >>,∴log 0a b >,即1log 2log a a b b +≥=当且仅当a b =时等号成立, 而11,28a b ==时有110log log log 2log 3a b a a b a b b +=+=>,显然1,1a b >>不一定成立; 综上,所以有1,1a b >>是log log 2a b b a +≥充分不必要条件. 故选:A9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .8【答案】B 【解析】∵集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭, 集合{2,4,6}S =,|1,{0,1,2}2k T x x k S ⎧⎫==-∈=⎨⎬⎩⎭, ∴{}1,2,3,4,6ST =, ∴{}0,1,2,3,4,6ST T=. ∴集合STT ⋃元素的个数为6个.故选:B.10.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦【答案】D 【解析】 由t π=,可得2=2ππωω=⇒因为3y f x π⎛⎫=-⎪⎝⎭是奇函数 所以sin 23x πϕ⎛⎫+- ⎪⎝⎭是奇函数,即,3k k z πϕπ-=∈又因为()06f f π⎛⎫<⎪⎝⎭,即()2sin sin 3k k ππππ⎛⎫+<+⎪⎝⎭所以k 是奇数,取k=1,此时43πϕ= 所以函数()5sin 2sin 233f x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭因为()f x 在[)0,t 上没有最小值,此时2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭所以此时432,332t πππ⎛⎤-∈ ⎥⎝⎦解得511,612t ππ⎛⎤∈ ⎥⎝⎦. 故选D.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞. 12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 【答案】2 【解析】()g x 的零点即为()0g x =的解.当1x ≤时,令322x -=,解得12x =,符合;当1x >,令22x =,解得x =()g x 的零点个数为2.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.【答案】10【解析】 由tan 1tan()241tan πααα--==+,解得tan 3α=-,因为22sin(2)2cos 2)(2sin cos cos sin )422πααααααα-=-=-+2222222sin cos cos sin 2tan 1tan 2cos sin 21tan ααααααααα-+-+=⨯=++222(3)1(3)21(3)10⨯--+-==+-. 14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.【答案】6,10000 【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA ﹣lgA 0=lg1000﹣lg0.001=3﹣(﹣3)=6. 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lgx+3,5=lgy+3,解得x=106,y=102,∴62101000010x y ==. 故答案耿:6,10000.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 【答案】2 9 【解析】因为34a =,所以3log 4a =,又2log 3b =, 因此32lg 4lg3log 4log 32lg3lg 2ab =⋅=⋅=;222log 32log 3log 944229b ====. 故答案为:2;9.16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【答案】121- 【解析】根据题意,得3212A B A B ⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B ==-.故答案为:1,12- 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.【答案】35247【解析】由已知得3cos 5α==-,所以445tan 335α==--,242243tan 27413α⎛⎫⨯- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭. 故答案为:35;247. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+. 【答案】(1)3;(2)174. 【解析】(1)根据指数幂的运算法则,可得()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭222333333(24441399)1[()]22--⎛⎫=--+ -⎪⎝-+⎭==.(2)根据对数的运算法则,可得941451log log 3log 5log 272⋅--+ 325211111log 2log log 5log 2414224341722=-⨯+-+=-+-+=.19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.【答案】(1)奇函数,证明见解析;(2)()0,1. 【解析】()1要使函数有意义,则{1010x x +>->,即{11x x >-<,即11x -<<, 即函数的定义域为()1,1-,则()()()()()()log 1log 1log 1log 1a a a a f x x x x x f x ⎡⎤-=-+-+=-+--=-⎣⎦, 则函数()f x 是奇函数.()2若1a >,则由()0.f x >得()()log 1log 10a a x x +-->,即()()log 1log 1a a x x +>-, 即11x x +>-,则0x >, 定义域为()1,1-,01x ∴<<,即不等式的解集为()0,1.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值.(2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 【答案】(1)12sin 13α=,12tan 5α=-(2)3πβ=【解析】 (1)55cos 132x α==-⇒=-, ∴5,62P ⎛⎫- ⎪⎝⎭∴12sin 13α==,612tan 552α==--;(2)由1cos 7α=,02πα<<,得sin 7α=, 由13cos()14αβ-=,02πβα<<<,得02παβ<-<,得sin()αβ-=所以cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317142=⨯=, 又02πβ<<,∴3πβ=.21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.【答案】(1)T π=;单调递增区间为[,]63k k ππππ-+,k Z ∈;单调递减区间为5[,]36k k ππππ++ ,k Z ∈; (2)6x k ππ=+或2x k π=+π,k Z ∈.【解析】(1)2()cos cos f x x x x -cos 21222x x +=-1sin 262x π⎛⎫=-- ⎪⎝⎭,即()1sin 262f x x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. 因为sin y x =的单调增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,令222262k x k πππππ-≤-≤+,解得63k xk ππππ,k Z ∈.因为sin y x =的单调减区间为32,222k k ππππ⎡⎤+⎢⎥⎣⎦+,k Z ∈,令3222262k x k πππππ-++≤≤, 解得536k x k ππππ++≤≤,k Z ∈. 所以()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)函数1()sin 262f x x π⎛⎫=-- ⎪⎝⎭的零点, 令1sin(2)062x π--=,即1sin(2)62x π-=.2266x k πππ-=+或52266x k πππ-=+,k Z ∈ 解得6x k ππ=+或2x k π=+π,k Z ∈所以()f x 的零点为6x k ππ=+或2x k π=+π,k Z ∈22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.【答案】(1)±1;(2)1,5⎛⎫-∞- ⎪⎝⎭. 【解析】(1)由函数2()21x xaf x a -=⋅+为奇函数,可得()()f x f x -=-, 代入可得:222121x x x xa aa a ----=⋅+⋅++, 整理可得:2222(2)1(2)x a a x -=-,所以21a =, 解得:1a =±;(2)若0a >,由(1)知1a =,所以212()12121x x xf x -==-++, 由2x 为增函数,21x u =+为增函数且210x u =+>, 又因为2u 为减函数,所以2u-为增函数, 所以()f x 为增函数, 又因为()f x 为奇函数,由()(())20xf f x f t +⋅<可得:()20x f x t +⋅<,即21+2021x x x t -⋅<+在[1,1]x ∈-上恒成立, 若0t ≥,1x =时不成立,故0t <, 令2x s =,则1(,2)2s ∈, 整理可得:2(1)10t s t s ⋅++-<, 令2()(1)1g s t s t s =⋅++-,若1122t t +-≤或122t t +-≥ 需131()0242g t =-<,(2)610g t =+<,可得1156t -≤<-或12t ≤-,若11222t t +<-<,需1()02t g t+-<, 解得1125t -<<-,综上可得:实数t 的取值范围为1,5⎛⎫-∞- ⎪⎝⎭.。

高一数学上学期期末考试试题(含解析)新人教版 新 版.doc

高一数学上学期期末考试试题(含解析)新人教版 新 版.doc

2019学年上学期期末考试高一数学试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则=()A. B. C. D.【答案】D【解析】,所以,故选D。

2. 等于()A. B. C. D.【答案】B【解析】,故选B。

3. 已知角的终边上一点的坐标为(),则角的最小正值为( )A. B. C. D.【答案】D【解析】试题分析:因为,,所以点在第四象限.又因为,所以角的最小正值为.故应选B.考点:任意角的三角函数的定义.4. 要得到的图像, 需要将函数的图像()A 向左平移个单位B 向右平移个单位C. 向左平移个单位 D 向右平移个单位【答案】A【解析】,所以是左移个单位,故选A。

5. 已知,则()A. B. C. D.【答案】C【解析】,得,,故选C。

6. 函数的最小值和最大值分别为()A. -3,1B. -2,2C. -3,D. -2,【答案】C【解析】试题分析:因为,所以当时,;当时,,故选C.考点:三角函数的恒等变换及应用.视频7. 下列四个式子中是恒等式的是()A. B.C. D.【答案】D【解析】由和差公式可知,A、B、C都错误,,正确。

故选D。

8. 已知()A. ﹣3B. 3C. ﹣1D. 1【答案】B【解析】,,所以,所以当时取最小值,故选B。

9. 已知向量,若与垂直,则的值等于()A. B. C. 6 D. 2【答案】B所以,则,故选B。

10. 设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】,故选A。

点睛:本题考查平面向量的线性表示。

利用向量加法的三角形法则,以及题目条件,得到,再利用向量减法的三角形法则,,代入得到答案,11. 在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则的值等于()A. 1B.C.D.【答案】B【解析】由题易知,直角三角形的直角边边长为,所以,所以,故选B。

高一上学期数学期末考测试卷(基础)(解析版)--人教版高中数学精讲精练必修一

高一上学期数学期末考测试卷(基础)(解析版)--人教版高中数学精讲精练必修一

3 5

sin
3π 4
5 13
3π 4
π 4
π 2
,则
sin
的值为

【答案】 56 65
【解析】∵ π 3π , 0 π ,∴ π π 0 , 3π 3π π ,
4
4
4
24
44

sin
π 4
1
cos2
π 4
4 , 5
cos
3π 4
1 sin2
3π 4
A.1
B. 0
C. 3
D. 3
【答案】AC
【解析】由于命题 p : x R , x2 2x 2 a 0 为真命题,则 22 4 2 a 4a 4 0 ,解得 a 1.
符合条件的为 A、C 选项.故选:AC.
10.(2023·全国·高一专题练习)已知不等式
ax2
bx
c
0
的解集为
所以 CD 选项符合,AB 选项不符合.
故选:CD
12.(2023·辽宁大连 )下列结论正确的有( )
A.函数 f (x) ax ax (a 0 且 a 1) 是奇函数;
B.函数 f (x) loga (2x 1) 1(a 0 且 a 1) 的图像恒过定点 1,1 ;
C. f (x) log2 (x2 mx 1) 的定义域为 R,则 m (, 2) (2, ) ; D. f (x) log2 (x2 mx 1) 的值域为 R,则 m (, 2] [2, ) . 【答案】ABD 【解析】函数 f (x) ax ax (a 0 且 a 1) 的定义域为 R,
【答案】(1),1∪2, ;
(2)答案见解析;
(3) ,2 2 3 .

全新人教高一数学上册期末试卷含答案

全新人教高一数学上册期末试卷含答案

全新人教高一数学上册期末试卷含答案
一、单选题
1.函数的定义域为()
A .B.C.D.
2.已知函数在区间上是减函数,则实数的取值范围是()A .B.
C.D.
3.关于函数,下列命题正确的是()
A.由可得是的整数倍
B.函数的表达式可改写成
C .函数的图象关于点对称
D.函数的图象关于直线对称
4.已知函数的图象向左平移个单位长度,横坐标伸长为原来的2倍得函数的图象,则在下列区间上为单调递减的区间是()A.B.C.D.
5.设,则().
A.B.C.D.
6.已知偶函数满足,当时,;若函数
有3个零点,则k的取值范围是()
A.B.C.D.
7.函数的零点所在一个区间是().
A.B.C.D.
8.已知全集,集合,则()
A.B.C.D.
9.已知函数,则下列说法不正确的是()
A .的最小正周期是B.在上单调递增
C.是奇函数D.的对称中心是
10.已知函数是定义在上的奇函数,且函数在上单调递增,则实数的值为()
A.B.C.1D.2
11.()
A.0B.1C.-1D.2
12.已知,且为第四象限的角,则的值等于( )
A.B.C.D.
二、填空题
13.若将函数的图象向左平移个单位后,所得图象关于轴对称,则实数的值为__________.
14.的值是__________.
15.已知扇形的周长为6 cm ,面积为2 cm2,则扇形的圆心角的弧度数为. 16.设和是方程的两根,则________.。

人教版高一数学上期末试题及答案

人教版高一数学上期末试题及答案

高一数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出四个选项中,只有一个是符合题目要求.1.设集合}6,5,4,3,2,1{=U ,}3,2,1{=A ,}6,5,2{=B ,则)(B C A U 等于( )(A )}2{ (B )}3,2{ (C )}3{ (D )}3,1{2.α是第四象限角,34tan -=α,则αsin 等于( ) (A )54 (B )54- (C )53 (D )53- 3.设⎪⎩⎪⎨⎧<-=->+=)0(,1)0(,1)0(,1)(x x x x x x f ,则=)]0([f f ( )(A)1 (B)0 (C)2 (D)1-4.如果31sin(=-)απ,那么=+)απ2cos(等于( ) (A )31- (B )31 (C ) 322 (D ) 322- 5.函数xx e e x f 1)(2-=的图像关于( ) (A )原点对称 (B )y 轴对称 (C )x 轴对称 (D )关于1=x 对称6.已知函数x y ωtan =在⎪⎭⎫ ⎝⎛-4,4ππ内是增函数,则( ) (A )20≤<ω (B )02<≤-ω (C )2≥ω (D )2-≤ω 7.设18log ,12log ,6log 642===c b a ,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )a b c >>8.︒-︒20sin 155sin 22的值为( ) (A )12 (B ) 12- (C ) 1- (D ) 1 9.已知函数)cos()(ϕω+=x A x f ,R x ∈(其中πϕπω<<->>,0,0A ),其部分图象如图所示,则ϕω,的值为( ) (A)43,4πϕπω== (B) 4,4πϕπω-== (C) 4,2πϕπω== (D) 4,2πϕπω-==10. 若函数)(x f 的零点与82ln )(-+=x x x g 的零点之差的绝对值不超过5.0, 则)(x f 可以是( )(A)63)(-=x x f (B)2)4()(-=x x f (C) 1)(2-=-x e x f (D))25ln()(-=x x f11.使奇函数)2cos()2sin(3)(θθ+++=x x x f 在]4,0[π上为增函数的θ值为( ) (A)3π- (B)6π- (C)65π (D)32π 12.已知函数⎩⎨⎧>≤≤=)1(log )10(sin )(2018x x x x x f π,若c b a ,,互不相等,且)()()(c f b f a f ==,则c b a ++取值范围是( ) (A))2018,2( (B) )2019,2( (C) )2018,3( (D) )2019,3(二、填空题(本题共4个小题,每小题5分)13.=︒660cos .14.已知方程05)2(2=-+-+a x a x 的两个根均大于2,则实数a 取值范围是 .15.设()f x 是以2为周期的奇函数,且2()35f -=,若sin 5α=,则(4cos 2)f α的值等于 , 16. 已知函数(1)y f x =+是定义域为R 的偶函数,且()f x 在[1,)+∞上单调递减,则不等式(21)(2)f x f x ->+的解集为 .三、解答题(本题共6个小题,共70分)17.(本小题满分10分) 已知集合{}{}42,20,01sin 22>=<<>-=-x x x B x x x A π (1)求集合A 和B ;(2)求B A .18.(本小题满分12分)已知若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-= 求(1)求αcos 的值;19.(本小题满分12分)已知函数2cos sin 34cos 4)(2++-=x x a x x f ,若)(x f 图象关于点)0,12(π对称.(1)求实数a ,并求出)(x f 单调减区间;(2)求)(x f 的最小正周期,并求)(x f 在]6,4[ππ-上的值域.20.(本小题满分12分)已知函数3)ln(2ln )(2+-=ex a x x f ,],[21e e x -∈(1)当1=a 时,求函数()f x 值域;(2)若4ln )(+-≤x a x f 恒成立,求实数a 取值范围.21.(本小题满分12分) 设函数1cos 2)32cos()(2+++-=a x x x f π,且]6,0[π∈x 时,)(x f 的最小值为2. (1)求实数a 的值;(2)当]2,2[ππ-∈x 时,方程2123)(+=x f 有两个不同的零点βα,,求βα+的值.22.(本小题满分12分)已知函数()223x x f x m =⋅+⋅,m R ∈.(1)当9m =-时,求满足(1)()f x f x +>实数x 的范围;(2)若9()()2x f x ≤对任意的x R ∈恒成立,求实数m 范围.高一数学答案 )3,31(-}2------6分31)4cos(=+απ ∴322)4sin(=+απ------4分642+=------6分33)24cos(=-βπ ∴36)24sin(=-βπ------10分∴935)24sin()4sin()24cos()4cos()]24()4cos[()2cos(=-++-+=--+=+βπαπααα------12分19、(1)∵0)12(=πf ∴1=a ------2分 ∴)62sin(4)(π-=x x f ------4分∴单调递减区间为)](65,3[Z k k k ∈++ππππ------6分π=------8分 ∵]6,4[ππ-∈x ∴]6,32[62πππ-∈-x ------10分 ∴]2,4[)(-∈x f ------12分1ln 2ln )(2+-=x x x ------1分 令]2,1[ln -∈=x t ------2分∴12+-=t t y ∴]4,0[∈y ------4分(2)∵4ln )(+-≤x a x f ∴012ln ln 2≤---a x a x 恒成立 令]2,1[ln -∈=x t ∴0122≤---a at t 恒成立------5分 设122---=a at t y ------∴当1212≤≤a a 即时,034max ≤+-=a y ∴143≤≤a ------8分 当1212>>a a 即时,0max ≤-=a y ∴1>a --------11分 综上所述,43≥a ------12分 21、(1)a x x f +++=2)32sin(3)(π------2分 ∵]6,0[π∈x ∴]32,3[32πππ∈+x ------4分∴]1,23[)2sin(∈+πx ∴227)(min =+=a x f ∴23-=a ------6分2123+ ∴21)32sin(∈+πx ------8分 ∵]2,2[ππ-∈x ∴]34,32[32πππ-∈+x ------10分 6532ππβ=+ ∴4,12πβπα=-= ∴6πβα=+------12分)()1(x f x >+ ∴2232--<x x ∴1)32(2<-x ∴2>x ------6分 x )29( ∴x x m )23(2)23(2-≤--------8分 令0)23(>=x t ∴t t m 22-≤ 1-= ∴1-≤m ------12分。

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!人教版高一数学上册期末考试试卷及答案人教版高一数学上册期末考试试卷及答案(含解析)这个学期马上就要结束了,我们也应该做好期末考试的准备了,那么关于高一数学期末试卷怎么做呢?以下是本店铺准备的一些人教版高一数学上册期末考试试卷及答案,仅供参考。

人教A版新教材高一上学期期末考试数学试卷(共五套)

人教A版新教材高一上学期期末考试数学试卷(共五套)

人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题及答案

人教版高中数学必修一期末测试题一、选择题(每小题5分,共60分)1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4log 8log 22=48log 2C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元B .6.00元C .7.00元D .8.00元8.方程2x=2-x 的根所在区间是( ). A .(-1,0)B .(2,3)C .(1,2)D .(0,1)9.若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x 416-的值域是( ). A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ). A .f (x )=x1 B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)12.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .1二、填空题(每小题4分 , 共16分)13.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 14.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 15.函数y =2-log 2x 的定义域是 . 16.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(12分)已知全集R U =, A =}52{<≤x x ,集合B 是函数lg(9)y x =-的定义域.(1)求集合B ;(2)求)(B C A U .(8分)18.(12分) 已知函数f (x )=lg(3+x )+lg(3-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并说明理由.19.(12分)已知函数(),2c bx x x f ++=且()01=f .(1)若0b =,求函数()x f 在区间[]3,1-上的最大值和最小值;(2)要使函数()x f 在区间[]3,1-上单调递增,求b 的取值范围.(12分)20.(12分)探究函数),0(,4)(+∞∈+=x xx x f 的图像时,.列表如下:⑴ 函数)0(4)(>+=x xx x f 的递减区间是 ,递增区间是 ; ⑵ 若对任意的[]1,3,()1x f x m ∈≥+恒成立,试求实数m 的取值范围.21. (12分)求函数212log (43)y x x =-+的单调增区间.22.(14分) 已知0,1a a >≠且, ()211x x a f x a a a ⎛⎫=- ⎪-⎝⎭.(1)判断()f x 的奇偶性并加以证明; (2)判断()f x 的单调性并用定义加以证明;(3)当()f x 的定义域为(1,1)-时,解关于m 的不等式2(1)(1)0f m f m -+-<.参考答案一、选择题 1.B解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1}.2.C 3.C 4.C 5.A 6.B 7.C 8.D 9.D解析:由log 2 a <0,得0<a <1,由b⎪⎭⎫⎝⎛21>1,得b <0,所以选D 项.10.C解析:∵ 4x>0,∴0≤16- 4x<16,∴x 416-∈[0,4).11.A解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确. 12.A 13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x-11是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B . 二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞). 18.参考答案:(-8,+∞). 三、解答题19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3,∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg(3-x )+lg(3+x )=f (x ), ∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2). 21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为500003600 3-=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。

人教版高一上学期期末数学试卷(有答案)

人教版高一上学期期末数学试卷(有答案)

人教版高一(上)期末数学试卷一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或03.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a25.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.187.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=,并求出=.14.(5分)如图所示几何体的三视图,则该几何体的表面积为.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.参考答案与试题解析一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)【解答】解:由,解得x>且x≠1.的定义域是(,1)∪(1,+∞).∴函数f(x)=log(2x﹣1)故选:B.2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或0【解答】解:当a=0时,两直线重合;当a≠0时,由,解得a=,综合可得,a=,故选:A.3.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)【解答】解:∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3,x3>﹣x1,又f(x)是定义在R上单调递减的奇函数,∴f(x1)<f(﹣x2)=﹣f(x2),f(x2)<f(﹣x3)=﹣f(x3),f(x3)<f(﹣x1)=﹣f(x1),∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,∴三式相加整理得f(x1)+f(x2)+f(x3)<0故选B4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a2【解答】解:由斜二测画法的规则知与x′轴平行的线段其长度不变以及与横轴平行的性质不变,正方形对角线在y′轴上,可求得其长度为a,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2a,∴原平面图形的面积为=故选:C.5.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③【解答】解:由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选A.6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.18【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,侧高为,故棱台的高h==2,故棱台的体积为:=,棱锥的底面是棱台上底面的一半,故底面面积为2,高为2,故棱锥的体积为:×2×2=,故组合体的体积V=﹣=,故选:B7.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.【解答】解:已知如图所示:过O做平面PBA的垂线,交平面PBC于Q,连接PQ则∠OPQ=90°﹣45°=45°.∵cos∠OPA=cos∠QPA×cos∠OPQ,∴cos∠QPA=,∴∠QPA=45°,∴∠QPB=45°∴cos∠OPB=cos∠OPQ×cos∠QPB=.故选C.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)【解答】解:设g(x)=2016x+log2016(+x)﹣2016﹣x,g(﹣x)=2016﹣x+log2016(+x)﹣2016x+=﹣g(x);g′(x)=2016x ln2016++2016﹣x ln2016>0;∴g(x)在R上单调递增;∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;∴g(3x+1)>g(﹣x);∴3x+1>﹣x;解得x>﹣;∴原不等式的解集为(﹣,+∞).故选:D.10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)【解答】解:由题意,存在x<0,使f(x)﹣g(﹣x)=0,即e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,令m(x)=e x﹣﹣ln(﹣x+a),则m(x)=e x﹣﹣ln(﹣x+a)在其定义域上是增函数,且x→﹣∞时,m(x)<0,若a≤0时,x→a时,m(x)>0,故e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,若a>0时,则e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为e0﹣﹣ln(a)>0,即lna<,故0<a<.综上所述,a∈(﹣∞,).故选:C12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=1,并求出=.【解答】解:∵函数f(x)=(a>0),x1+x2=1,∴f(x1)+f(x2)=f(x1)+f(1﹣x1)=+=+==1,∴=1007+f()=1007+=.故答案为:1,.14.(5分)如图所示几何体的三视图,则该几何体的表面积为16+2.【解答】解:由已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,其直观图如下图所示:E和F分别是AB和CD中点,作EM⊥AD,连接PM,且PD=PC,由三视图得,PE⊥底面ABCD,AB=4,CD=2,PE═EF=2在直角三角形△PEF中,PF==2,在直角三角形△DEF中,DE==,同理在直角梯形ADEF中,AD=,根据△AED的面积相等得,×AD×ME=×AE×EF,解得ME=,∵PE⊥底面ABCD,EM⊥AD,∴PM⊥AD,PE⊥ME,在直角三角形△PME中,PM==,∴该四棱锥的表面积S=×(4+2)×2+×4×2+×2×2+2×××=16+2.故答案为:16+2.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.【解答】解:当x1∈[2,5]时,可得A(2,4),B(5,﹣2).设P(﹣1,﹣1),则k PA==,k PB==,∴的取值范围是.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.【解答】解:以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂直线为z轴,建立空间直角坐标系,在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°,∴P到平面ABCD的距离为PCsin30°=.∴A(1,0,0),P(0,﹣1,),B(1,2,0),C(0,2,0),=(1,1,﹣),=(1,3,﹣),=(0,3,﹣),设平面PAB的法向量=(x,y,z),则,取z=1,得=(),设平面PBC的法向量=(a,b,c),则,取c=,得=(2,1,),设二面角A﹣PB﹣C的平面角为θ,则cosθ===,sinθ==,tanθ==.∴二面角A﹣PB﹣C的正切值为.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.【解答】解:设A(a,0),B(0,b),则直线l的方程为:+=1.把点P(3,2)代入可得:+=1.(a,b>0).∴1≥2,化为ab≥24,当且仅当a=6,b=4时取等号.=ab≥12,l的方程为:+=1,即4x+6y﹣24=0∴S△AOB18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.【解答】(Ⅰ)解:由该四棱锥的三视图可知,该四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,且PC=2.…(1分)∴V P=S▱ABCD•PC=.…(3分)﹣ABCD(Ⅱ)证明:∵E、O分别为PC、BD中点∴EO∥PA,…(4分)又EO⊄平面PAD,PA⊂平面PAD.…(6分)∴EO∥平面PAD.…(7分)(Ⅲ)不论点E在何位置,都有BD⊥AE,…(8分)证明如下:∵ABCD是正方形,∴BD⊥AC,…(9分)∵PC⊥底面ABCD且BD⊂平面ABCD,∴BD⊥PC,…(10分)又∵AC∩PC=C,∴BD⊥平面PAC,…(11分)∵不论点E在何位置,都有AE⊂平面PAC,∴不论点E在何位置,都有BD⊥AE.…(12分)19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【解答】解:(1)令x=0,得y=a﹣2.令y=0,得(a≠﹣1).∵l在两坐标轴上的截距相等,∴,解之,得a=2或a=0.∴所求的直线l方程为3x+y=0或x+y+2=0.(2)直线l的方程可化为y=﹣(a+1)x+a﹣2.∵l不过第二象限,∴,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1].20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.【解答】解:(1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点G,连接OG,因为PC∥平面BDD1B1,平面BDD1B1∩平面APC=OG,故OG∥PC,所以,OG=PC=.又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1,故∠AGO是AP与平面BDD1B1所成的角.在Rt△AOG中,tan∠AGO=,即m=.所以,当m=时,直线AP与平面BDD1B1所成的角的正切值为4.(2)可以推测,点Q应当是A I C I的中点,当是中点时因为D1O1⊥A1C1,且D1O1⊥A1A,A1C1∩A1A=A1,所以D1O1⊥平面ACC1A1,又AP⊂平面ACC1A1,故D1O1⊥AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.【解答】解:(1)证明:如图,取DA1的中点G,连FG,GE;F为A1C中点;∴GF∥DC,且;∴四边形BFGE是平行四边形;∴BF∥EG,EG⊂平面A1DE,BF⊄平面A1DE;∴BF∥平面A1DE;(2)证明:如图,取DE的中点H,连接A1H,CH;AB=4,AD=2,∠DAB=60°,E为AB的中点;∴△DAE为等边三角形,即折叠后△DA1E也为等边三角形;∴A1H⊥DE,且;在△DHC中,DH=1,DC=4,∠HDC=60°;根据余弦定理,可得:HC2=1+16﹣4=13,在△A1HC中,,,A1C=4;∴,即A1H⊥HC,DE∩HC=H;∴A1H⊥面DEBC;又A1H⊂面A1DE;∴面A1DE⊥面DEBC;(3)如上图,过H作HO⊥DC于O,连接A1O;A1H⊥面DEBC;∴A1H⊥DC,A1H∩HO=H;∴DC⊥面A1HO;∴DC⊥A1O,DC⊥HO;∴∠A1OH是二面角A1﹣DC﹣E的平面角;在Rt△A1HO中,,;故tan;所以二面角A1﹣DC﹣E的正切值为2.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.【解答】附加题:(本题共10分)解:(1)g(x)=a(x﹣1)2+1+b﹣a,当a>0时,g(x)在[2,3]上为增函数,故,可得,⇔.当a<0时,g(x)在[2,3]上为减函数.故可得可得,∵b<1∴a=1,b=0即g(x)=x2﹣2x+1.f(x)=x+﹣2.…(3分)(2)方程f(2x)﹣k•2x≥0化为2x+﹣2≥k•2x,k≤1+﹣令=t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=0,∴k≤0.…(6分)(3)由f(|2x﹣1|)+k(﹣3)=0得|2x﹣1|+﹣(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|+﹣(2+3k)=0有三个不同的实数解,∴由t=|2x﹣1|的图象(如右图)知,t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,记φ(t)=t2﹣(2+3k)t+(1+2k),则或∴k>0.…(10分)。

人教版高一数学第一学期期末测试卷1有答案

人教版高一数学第一学期期末测试卷1有答案

人教版高一数学第一学期期末测试卷〔一〕第一卷〔选择题,共60分〕一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.假设集合{1,1}A =-,{|1}B x mx ==,且AB A =,那么m 的值为〔 〕A .1B .1-C .1或1-D .1或1-或0D2.集合〔 〕A .B .C .D . B3.以下函数中,在R 上单调递增的是〔 〕A .B .C .D . C4.如下图,是全集,、是的子集,那么阴影部分所表示的集合是〔 〕A .B .C .D . B5.函数()f x 是R 上的增函数,(0,1)A -、(3,1)B 是图象上两点,那么(1)1f x +<的解集是〔 〕A .(1,2)-B .(1,4)C .(,1][4,)-∞-+∞D .(,1][2,)-∞-+∞A6.以下说法中不正确的选项是〔 〕A .正弦函数、余弦函数的定义域是R ,值域是B .余弦函数当且仅当时,获得最大值1C .正弦函数在上都是减函数D .余弦函数在上都是减函数 D7.假设sin cos αα-=,那么1tan tan αα+=〔 〕 A .4- B .4 C .8- D .8 C8.假设,那么的大小关系是〔 〕A .B .C .D . A9.函数的图象关于直线对称,那么的值是〔 〕A .B .C .D . B10.从甲地到乙地通话分钟的 费由元给出,其中,[]表示不超过〔 〕A .3.71B .3.97C .4.24 DA11.函数的零点所在的大致区间是〔 〕A .B .C .和D . B12.是定义在R 上的奇函数,当时,,那么不等式的解集是〔 〕A .B .C .D . D第卷〔非选择题,共90分〕二、填空题:本大题共4小题,每题5分. 13.方程232x x -=的解的个数为 . 14.函数sin(2)4y x π=-的单调递增区间为 .15.函数cos tan y x x=-的定义域是 .16.函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R ,那么实数a 的范围是 .三、解答题:解容许写出文字说明、证明过程或演算步骤. 17.〔此题总分值10分〕集合{2-32=0},{|112x z x ∈-≤-≤},{1,a 2+1,1} 〔1〕求⋂; 〔2〕假设⊆,务实数a 的值.解:(1) {1,2},{0,1,2,3}……………………….2 分⋂{1,2} (4)分(2). ⊆当a 2+1=2即1或-1时, 1{1,2,2}(舍)1符合题意; (6)分当1=2即1时, {1,1,1}(舍) (8)分∴ -1 (9)分18.〔此题总分值12分〕 定义域为R 的函数112()2x x f x a+-=+是奇函数.〔1〕求a 的值;〔2〕假设对随意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,务实数k的取值范围.〔1〕解:∵函数()f x 是定义域为R 的奇函数.∴()()0f x f x +-=对x R ∈恒成立.为计算便利,取1x =,那么112(1)(1)002041f f a a a-+-=⇒+=⇒-=⇒++2a =.〔2〕解:22(2)(2)0f t t f t k -+-<,22(2)(2)f t t f t k ∴-<--.()f x 为奇函数, 22(2)(2)f t t f t k ∴-<-+.由〔1〕得 112(21)211()2222(21)21x x x x x f x +--++===-++++,()f x 在定义域内为单调递减函数.2222t t t k ∴->-+,即:2320t t k --> 恒成立.19.〔此题总分值12分〕 〔Ⅰ〕化简:; 〔Ⅱ〕:,求的值.〔Ⅰ〕解:原式=……………………………3分==………………6分〔Ⅱ〕解:原式=……………………………9分 =9…………………………12分 20.〔此题总分值12分〕设函数()sin()f x A x ωϕ=+〔0A >,0ω>,||ϕπ≤〕的图象的最高点D 的坐标为(2,2),由最高点运动到相邻的最低点F 时,曲线及x 轴相交于点E (6,0).〔1〕求A 、ω、φ的值;〔2〕求函数()y g x =,使其图象及()y f x =图象关于直线8x =对称.〔1〕解:最高点D (2,2), A =2.由题意4T =6-2=4 ,T =16 ,T =ωπ2 ,∴ω=8π.∴f (x ) =2(8π+φ),过最高点D (2,2),∴8π×2+φ=2kπ+2π,φ=2kπ+4π.综上,A =2,ω=8π,φ=4π.〔2〕解:设P (x ,y )为y =g (x )上任一点,Q (,)是f (x )上关于x =8对称点.y = , 2x x +=8; y =,=16-x ,又=)48sin(20ππ+x .y =]4)16(8sin[2ππ+-⨯x =)482sin(2πππ+-x =)48sin(2ππ+-x .21.〔此题总分值12分〕 函数f (x )=221x x +(1)、求f (2)及f (21),f (3)及f (31);(2)、由〔1〕中求得结果,你能发觉f (x ) 及f (x1)有什么关系? 并证明你的结论;(3)、求f (1)(2)(3)+)20091()31()21()2009(f f f f +•••++++•••的值. 22. 〔本小题总分值12分〕 定义在区间2[,]3ππ-上的函数()y f x =的图象关于直线6π-=x 对称,当2[,]63x ππ∈-时,函数)22,0,0()sin()(πϕπωϕω<<->>+=A x A x f ,其图象如下图.(1)求函数)(x f y =在]32,[ππ-的表达式;(2)求方程22)(=x f 的解.解:〔1〕2[,]63x ππ∈-,21,,2,1436T A T πππω==-== 且()sin()f x x ϕ=+过2(,0)3π,那么2,,()sin()333f x x πππϕπϕ+===+当6x ππ-≤<-时,2,()sin()633333x f x x ππππππ-≤--≤--=--+而函数()y f x =的图象关于直线6π-=x 对称,那么()()3f x f x π=--即()sin()sin 33f x x x ππ=--+=-,6x ππ-≤<-〔2〕当263x ππ-≤≤时,63x πππ≤+≤,()sin()32f x x π=+=当6x ππ-≤<-时,()sin 22f x x x =-==-35,,,441212x ππππ∴=---或为所求.。

人教版2020--2021学年度上学期高一年级数学期末测试题及答案(含三套题)

人教版2020--2021学年度上学期高一年级数学期末测试题及答案(含三套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:150分 时间:120分钟)题号一 二 三 总分 得分一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.方程的解集为M ,方程的解集为N ,且那么( )A .21B .8C .6D .7 2.已知函数,则的值为( ).A .1B .2C .4D .5 3.、函数 的零点所在的区间是( ) A .(0,1) B .(1,3) C .(3,4) D .(4,+) 4.设A={}, B={}, 下列各图中能表示集合A 到集合B 的映射的是5.下列函数在其定义域内既是奇函数又是增函数的是( )A.y = x (x ∈(0,+∞))B.y = 3x(x ∈R)C.y = x (x ∈R)D.y = lg|x| (x ≠0)6.函数的值域是( )A. B. C. D. 7.已知二次函数的部分对应值如下表.-3 -2 -1 0 12 3 4 5 … -24 -10 0 68 6 0 -10 -24 …则不等式的解集为 ( )8.若奇函数...在上为增函数...,且有最小值7,则它在上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7二、填空题:本大题共6小题,每小题5分,共30分,9.已知幂函数的图象经过点(9,3),则062=+-px x 062=-+q x x {},2=N M =+q p 21,0(),0x x f x x x +≥⎧=⎨<⎩[(2)]f f -x x x f 3log 3)(+-=∞|02x x ≤≤|02y y ≤≤y0123123y123123B.x y123123 C.xy0123123213112-=x y (),1-∞()(),00,-∞+∞()1,-+∞()(,1)0,-∞-+∞),0()(2R x a c bx ax x f ∈≠++=x y 0)(<x f .A )0,(-∞.B ),3()1,(+∞--∞ .C )1,(--∞.D ),3(+∞()x f []3,1[]1,3--αx x f =)(=)100(f答 题10.设, 则a ,b ,c 的大小关系是(按从小到大的顺序).11.若函数在上是增函数,则实数的取值范围是 .12.已知定义在上的函数是偶函数,且时,,当时, 解析式是 .13.已知集合A ={x ∈R |ax 2-3x +2=0, a ∈R },若A 中元素至多有1个,则a 的取值范围是 .14.深圳市的一家报刊摊点,从报社买进《深圳特区报》的价格是每份0.60元,卖出的价格是每份1元,卖不掉的报纸可以以每份0.1元的价格退回报社。

人教版高一上期末数学试卷(有答案)

人教版高一上期末数学试卷(有答案)

人教版高一上期末数学试卷(有答案) 无明显问题的段落:一、选择题:1.已知集合M={x∈R|x^2+2x=0},N={2},则M∩N={2}。

2.若一个扇形的弧长是3,半径是2,则该扇形的圆心角为3/4π。

3.设x∈R,向量a=(3,x),b=(-1,1),若a⊥b,则||a||=6.4.二次函数f(x)=ax^2+bx+1的最小值为f(1)=0,则a-b=-2.5.已知点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①,②,③,④。

其中可作为该平面其他向量基底的是①④。

6.已知函数f(x)=|x-1|,则与y=f(x)相等的函数是g(x)=1-x。

7.已知a=log3 2,b=log3 4,c=log3 5,则c>b>a。

8.已知函数f(x)=x^2-4x+5,若g(x)=f(x)-m为奇函数,则实数m的值为2.9.某人欲购买标价为2700元的商品,他可以享受的实际折扣率约为75%。

10.将函数y=f(x)的图象上所有点向左平行移动1个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴的方程是y=-1.11.函数y=f(x)的图象可能是D。

12.关于x的方程(a^2-1)x^2+2ax+a=0 (a>1且a≠-1)解的个数是2.二、填空题:13.函数f(x)=sin(x-π/2),则sinα=f(α+π/2),tan(π-α)=tanα。

14.已知角α为第四象限角,且tanα=-3/4,则cosα=4/5,sinα=-3/5.解得m=2c-1=2log3(5)-1。

故选:C.4.(3分)二次函数f(x)=ax2+bx+1的最小值为f(1)=0,则a-b=()A.-2 B.-1 C.1 D.3解:由题意可得f(1)=a+b+1=0,即a=-b-1,代入a-b中得a-b=-2b-1.所以选A。

5.(3分)设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①(3,1),②(1,1),③(1,-1),④(-2,-2)与(-1,2);其中可作为该平面其他向量基底的是()A.①② B.①③ C.①④ D.③④解:根据向量组共线或不共线的特性,可以排除②和④。

高中数学人教A版高一年级第一学期期末(必修1+必修4)数学考试卷(文档有答案)(最新整理)

高中数学人教A版高一年级第一学期期末(必修1+必修4)数学考试卷(文档有答案)(最新整理)

C
A
D
B
O
C.
16
按照弓形的面积计算实际面积为(
2
3 )平方米。
3
D.按照经验公式计算所得弧田面积比实际面积少算了大约 0.9 平方米(参考数据 3 1.73,
3.14 )。
(12) 定 义 域 为 R 的 偶 函 数 f x , 满 足 对 任 意 的 x R 有 f x 2 f x , 且 当 x 2,3 时 ,
.
三、解答题:共 70 分,解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分 10 分)
(1)计算:
(log2
3)2
log2
3
lg lg
6 2
log2
6
.
(2)若
tan
1 3
,求
sin 5 cos
2 cos sin
.
高一数学试题答案
第 4 页 (共 16 页)
(18)(本小题满分 12 分)
OAOB OB OC OB OC OA =0 , OB CA 0 OB CA ,
A
E O
同理 OA BC,OC AB O 为 ABC 的垂心,故选 D
B
D
C
(11)【解析】如图,由题意可得: AOB 2 ,OA 4 3
A
在 Rt△AOD 中,可得:∠AOD= ,∠DAO= ,OD= 1 AO= 1 4 2 ,
1 3
3
0,1

c
ln3
1

2
1

a
1 2
3
3
1 4

b
1 3
3
3
1 ,据此可知: b a ,综上可得: c b a ,故选 D. 3

(完整版)高中数学人教A版高一年级第一学期期末(必修1+必修4)数学考试卷(WORD文档有答案)

(完整版)高中数学人教A版高一年级第一学期期末(必修1+必修4)数学考试卷(WORD文档有答案)

实数 k 的取值范围; 3
( 2)若函数 f (x) 的图象过点 P(1, ) ,是否存在正数 2
m( m
1) ,使函数
g ( x) log m[ a 2x a 2x mf ( x)] 在 [1,log 2 3] 上的最大值为 0?
若存在,求出 m 的值;若不存在,请说明理由.
高一数学试题答案
第 6 页 (共 12 页)
高一数学试题答案
第 2 页 (共 12 页)
3.14) 。 (12) 定 义 域 为 R 的 偶 函 数 f x , 满 足 对 任 意 的 x R 有 f x 2
f x , 且 当 x 2,3 时 ,
fx
2x 2 12x 18 ,若函数 y f (x) log a x 1 在 R 上至少有六个零点, 则 a 的取值范围是
3
,故选 A .
3
(13) 2
1
( 14)
2
( 15) 5 , 4
5 (或 a )
4
9
( 16)
4
(13)【解析】函数 f x 的图象过点 2,4 ,可得 4 a 2 ,又 a 0 ,解得 a 2 . (14)【解析】 cos18o cos42o cos72o sin 42o cos18o cos42o sin18o sin 42o cos60o 1 .
D. 3
0,
) 的图象的一部分,
则该解析式为(

A . y 2 sin(2x )
3
3
C. y
2 sin(y 2 sin( x ) 3 24
D. y
2 sin(2 x
2 )
3
3
y
2
7
35

最新人教版高一数学上学期期末考试试题(附答案)

最新人教版高一数学上学期期末考试试题(附答案)

最新人教版高一数学上学期期末考试试题(附答案)最新人教版高一数学上学期期末考试试题(附答案)一、选择题(每题3分,共36分)1.已知集合$A=\{2,4,6\}$。

且当$a\in A$ 时,$6-a\in A$。

则 $a$ 为()A。

2 B。

4 C。

3 D。

12.$\sin(-1050)$ 的值为()A。

$\dfrac{3}{3}$ B。

$\dfrac{3}{2}$ C。

$0$ D。

$2$ 或$4$3.下列函数中,不满足 $f(2x)=2f(x)$ 的是()A。

$f(x)=|x|$ B。

$f(x)=x+1$ C。

$f(x)=-x$ D。

$f(x)=x-|x|$4.函数 $f(x)=|\cos x|$ 的最小正周期为()A。

$2\pi$ B。

$\pi$ C。

$3\pi$ D。

均不对5.函数 $y=2\sin x-2$ 的定义域为()A。

$[2k\pi,2k\pi+\dfrac{\pi}{4}]$,$k\in Z$ B。

$[2k\pi+\dfrac{\pi}{4},2k\pi+\dfrac{\pi}{2}]$,$k\in Z$C。

$[2k\pi+\dfrac{3\pi}{4},2k\pi+\pi]$,$k\in Z$ D。

$[2k\pi,2k\pi+3\pi]$,$k\in Z$6.函数 $f(x)=ax^2+bx+c$ 满足 $f(1)>0$,$f(2)<0$,则$f(x)$ 在 $(1,2)$ 上的零点()A。

至多有一个 B。

有1个或2个 C。

有且仅有一个 D。

一个也没有7.已知向量 $\bold{a}=(1,2,3)$,$|\bold{b}|=1$,且两向量夹 $120^\circ$,则 $|\bold{a}-\bold{b}|=$()A。

$\sqrt{3}$ B。

$3$ C。

$5$ D。

$7$8.将函数 $y=\sin(x+\phi)$,$(0<\phi<\pi)$ 的图像所有点的纵坐标不变,横坐标伸长到原来的2倍,再向左平移$\dfrac{1}{2}$ 个单位得到一个奇函数的图像,则$\phi=$()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D .余弦函数在[2k ,2k ](k Z)上都是减函数人教版高一数学第一学期期末测试卷(一)第I 卷(选择题,共60分)、选择题:本大题共 12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若集合 A { 1,1,B {x|mx 1},A . 1B . 1 D2. 已知集合A { y | yIn x, x 1}, BA . {y|0 y 1}B . {y|0B3. 下列函数中,在 R 上单调递增的是(A . y |xB . y log ; C且AUBA ,,则 m 的值为 ( )C. 1 或1D . 1或 1或0{y|y(2)x,x1},则AI B =()11y2}C .{y|- 2y 1} D)1x;•yx 3D . ytanx6.下列说法中不正确的是( )A .正弦函数、余弦函数的定义域是 R ,值域是[1,1]B.余弦函数当且仅当 x 2k (k Z)时,取得最大值13C. 正弦函数在[2k—,2k ](k Z)上都是减函数2 24 •如图所示,是全集,A 、B 是U 的子集,则阴影部分所表示的集合是(A . AlBC . AUBB B . BlC u AD . Al C u B5•已知函数f(x)是R 上的增函数,A(0,1)、B(3,1)是图象上两点, A • ( 1,2))1的解集是(那么f(x 1)B . (1,4)C. (, 1]U[4,)D . (, 1]U[2,)D7 .若sin cos5,则tan1( )2tanA. 4B. 4C. 8D. 8C8 .若a si n46o,b cos46°, c cos36°, 则a,b, c的大小关系是( )A. c a bB. a b cC. a c bD. b c aA9.函数y si n(2x)(0)的图象:关于直线x 对称,则8的值是( )A. 0B.— c.—D.42B10•已知从甲地到乙地通话m分钟的电话费由f(m) 1.06(0.5[m] 1)元给出,其中m 0, [m]表示不超过m的最大整数,(如[3]=3,[]=3),则从甲地到乙地通话时间为分钟的话费为( )A •B. 3.97 C. D.A11. 函数f (x) In x -的零点所在的大致区间是( )x1A. (1,2)B. (2,3)C. (1-)和(3,4)D. e,eB1 12. 已知y f (x)是定义在R上的奇函数,当x 0时,f(x) x 2,那么不等式f(x)—的解2集是( )A. x|05,3x 0 x B. x| -22C. x |3x 0,或05x D. x | x3,或05x 2222D第II卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分.13.方程2x3 2x的解的个数为_______________________14.函数y sin(2x 才)的单调递增区间为 ____________________15.函数y 、. cosx tan x的定义域是+2k,— 2k k Z22 216 .已知函数f(x) lg[(a 1)x (a 1)x 1]的值域为R,则实数a的范围是三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本题满分10分)已知集合M={x|x2—3x+2=0}, N={x z| 1 x 1 2}, Q={1, a2+1, a+1} (1 )求M N; (2)若M Q,求实数a的值.解:(1) M={1 , 2}, N={0, 1 , 2, 3} .......................... 分.2M N={1 , 2} ................................................................ 4-分(2). M Q当a2+1=2即a=1或一1时,a=1Q={1, 2, 2}(舍)a=1符合题意;……分当a+1=2 即a=1 时,Q={1, 1, 1}(舍)............................... 分..8 a=—1 ................................................................. 分 (9)18. (本题满分12分)2 si n3 cos 八(n )解:原式=.................. 分4 cos sin2ta n 3 八=9 ................................ 分124 tan20. (本题满分12分)已知定义域为R 的函数f (x)1 2x 2^是奇函数.(1) 求 a 的值;(2)若对任意的t R ,不等式f(t 2 2t) f (2t 2 k)0恒成立,求实数 k 的取值范围.(1)解:•••函数f(x)是定义域为R 的奇函数.f(x) f(x) 0对x R 恒成立.为计算方便,取x 1 ,f( 1)0 2 a 0 a 2 .(2)解:Q f(t 22t)f (2t 2k) 0 f(t 2 2t)f (2t 2k).Q f(x)为奇函数, f (t 22t) f( 2t 2k).由(1 )得 f (X)Y Y1 2 (2 1) 2 12 2 2(2 1),f (x)在定义域内为单调递减函数.t 2 2t 2t 2 k ,即:3t 2 2t k 0 恒成立., 1 0 ,二 k319. (本题满分12分)(I )化简:—匚缈20如60sin 160 V1 sin 2 20(n )已知:tan 3,求2C0右3si n(324cos( ) sin(—2)的值.)(I)解:原式=1 2sin20co s20sin 20cos 20分・3cos20 sin 20 sin 20 cos201 ................ 分设函数f(x) Asin( x ) ( A 0, 0, | | )的图象的最高点D的坐标为(2, 2),由最高(1 )求A 、3、$的值;(2)求函数y g(x),使其图象与y f(x)图象关于直线x 8对称.(1)解:最高点 D(2,.2), A = 2 .T2由题意一=6 — 2= 4 , T = 16 , T =,(3=—48f (x) = 2sn (—+ ®, Q 过最高点 D(2,2), 8(2)解:设P(x , y)为y = g (x)上任一点, Q(X o , y o )是f (x)上关于x = 8对称点.x x 0一y = y o ,=8; y = y o , x o = 16 — x ,又 y o = 2sin(x °).284y = . 2sin[—(16 x) -]=、2sin(2-x-) = . 2sin( —x -).848 4 8 421. (本题满分12分)2x已知函数f(x)=-综上,A = 2,3= —,$=—.8 4 —x 2"+ = 2k n — ,$ = 2k n+ —.8241 x2-1 - 1⑴、求f⑵与f( ), f(3)与f();2 31(2)、由(1)中求得结果,你能发现f(x)与f(—)有什么关系并证明你的结论;x⑶、求f(1)+f(2)+f (3) +??? f(2009) f(l) f(b ??? f (-)的值•2 3 200922. (本小题满分12分)2已知定义在区间[, ]上的函数y f (x)的图象关于直线x3时,函数f(x) Asin( x ) (A 0, 0,-2(1) 求函数y f(x)在[,2]的表达式;3、、42(2) 求方程f (x)—的解.即f(x) sin( x ) sinx ,—对称,当x [ ] 6 6 32),其图象如图所示2 T 解:(1) x [ -, ] , A 1,6 3 42且f (x) sin(x )过(——,0)3当x 一时,一x6 6 2,T 2, 13 6小2则,f (x)sin(x ) 3332,f ( x—)sin( x)3 33 3 3而函数y f (x)的图象关于直线x对称,则f(x) f( x )6 3x63 3x6f(x) (2)当sin(x —), x 6,_3]sin x,x [,6时,6,或—,x4 46 时,f(x)34' ~43 ,f(x)sin(x -)迪3 2—或—J12 12sin x ——,sin x2xx。

相关文档
最新文档