旋翼机构造特点与飞机性能分析

旋翼机构造特点与飞机性能分析
旋翼机构造特点与飞机性能分析

第十六届(2000)全国直升机年会论文

旋翼机构造特点与飞行性能分析

张克高

(中国民用航空学院)

摘要:旋翼机是近几年国内引进的一种新型超轻型飞机,由于该机型具

备直升机和飞机的某些特征,而且旋翼机是与固定翼飞机和直升机有着不

同特点的另一类航空器。对旋翼机而言,它滑跑起飞时(不能悬停顶杆起

飞),是通过发动机带动旋翼产生升力,其滑跑相对气流是由发动机直接带

动推进螺旋桨旋转,进而驱动旋翼机向前。本文根据旋翼机使用情况,提

供飞行员和地面指挥人员,避免事故。

1 旋翼机与直升机、飞机,基本构造的差异。

旋翼机直升机飞机垂直安定面和方向舵有无有

水平安定面和升降舵无无有

机翼和付翼无无有

旋翼桨叶有有无

旋翼总桨距无有无

旋翼主轴是否倾斜后倾6-8度前倾4.5度否

尾螺旋桨无有无

推进螺旋桨有无有

2 旋翼机操纵特点

由于旋翼机是介于直升机和飞机之间的一种航空器,因此其旋翼机操纵上具有某些

特性。

例如:旋翼机起飞时,因没有总桨距不能按直升机正常起飞程序进行起飞,以类似飞机滑跑起飞,由于旋翼机无飞机的机翼,造成旋翼机必定用发动机带动旋翼产生升力,这又类似直升机滑跑起飞。旋翼机起飞升空后,发动机与旋翼脱离。旋翼无动力旋转,起飞过程中旋翼起到飞机的机翼、付翼和升降舵的作出。其操纵环节如下方块图。

3 旋翼机飞行性能分析

1) 旋翼机起飞阶段飞行性能

旋翼机在起飞阶段飞行员紧握手操纵摩擦离合器,通过软轴和齿轮减速带动旋翼旋转。迎风(刹住机轮),发动机转速保持在1350-1700转/分,发动机带动旋翼转动,随着旋翼转速的增加操纵杆向后拉,在旋翼转速达到150转/分以上时,松开机轮刹车,开始滑跑,随即增大油门,前推杆,滑跑动力移向推进螺旋桨,由于此时发动机和旋翼连接,为克服旋翼反扭矩,需用方向舵保持方向,当旋翼转速达到200转/分时,松开手操纵磨擦离合器。旋翼与发动机脱开,旋翼进入自转状态,操纵杆前推约3-4度,当旋翼转速增至280转/分,在无风条件下,两个中等重量的人需40英里(65公里)/小时的地面速度升空,双人正常爬升空速为55-70英里/小时。油门加满,发动机5800转/分。

2) 旋翼机爬升阶段飞行性能

爬升空速55-65英里/小时(25-30米/秒),发动机5800转/分,旋翼处于风车状态,其受力状态如下:

图1 旋翼机受力

旋翼机爬升条件是:Y1》=G P》G2+Y2 旋翼旋转方向如图2

前行桨叶气动力与来流角和攻角之间的关系;由图3可知来流角?越大升力越大,但超过临界来流角,升力不但不能增加反之减少。其表达如下式:

升力增加A: La Sin(?a-?a)=Da Cos(?a-?a)

升力减少B:Lb Sin(?b-?b)=Db Cos(?b-?b)

V

图2 旋翼旋转方向

4 旋翼机操作限制

空速限制:在任何条件下,不得超过165公里/小时的速度。

旋翼转速限制:

1) 旋翼转速低于150转/分,以发动机全功率起飞,会导致旋翼上下震动,甚至会造成旋翼打地。飞行时旋翼转速不能低于270转/分但绝不容许超过395转/分;

2) 少于一个G 载荷系数,会使旋翼转速下降,如不及时增加旋翼转速,会引发旋翼振动。

5 旋翼机事故分析

旋翼机是属于一般范畴内的飞行器,不是提供特技飞行表演的,所有的飞行动作必须是正常的飞行,急剧的坡度转弯不得超过60度,应避免突然拔起或下滑。俯冲不可超过地平线的45度。

无论是新学员还是由飞过“运—五” 、“初教-6”等飞行员,在操纵旋翼机时,必需

了解旋翼机构造特点,及飞行性能特性,否则会造成不可挽回的损失。

图 3

例如:某型旋翼机单人左坐(右坐无平衡配重)试飞时,2边爬升旋翼振动,上下挥舞,引发旋翼打坏垂直方向舵,造成飞行事故。旋翼机所受力和力矩如图4所示:

X 轴

Z轴

图4 力与力矩

旋翼机由于左坐单独飞行,必然形成一个附加的力矩MX,为保持旋翼机的平衡,飞行员向右压杆M`X=YZ*A=MX Y=YY+YZ A:分力YZ到重心距离。此时升力下降,如果飞行员欲继承增速向左压杆并蹬左舵向左转弯,造成迎面气流下降,引起升力Y的下降,导致转速的下降,旋翼的振动。为克服惯性力升力Y的分量YZ使力矩MX增加,拉力P产生一个附加的低头力矩,当飞行员为克服旋翼机向左下方偏斜时,由于旋翼转速的下降,正常修整飞机姿态已不起作用,因此猛拉杆,旋翼桨盘后倒过大,旋翼打尾面造成事故。

参考资料

[1] GEOGE H. SAUNDERS DYNAMICS OF HELICOPTER FLIGHT 1975

[2] JOHN B. HODSON JOYS OF THE GYROPLANE THE ROLLS-ROYCE MAGAZINE 1984 3

[3] 张克高编航空器概论中国民航学院 1997年 11月

[4] 泰克—150 空中摩托(学名旋翼机)使用说明书。

[5] 汤镇南旋翼机的飞行特点及其应用南京航空学院直升机研究所

[6] USSR MOSCOW HELICOPTER MN—17 SERVICE MANUAL

旋翼机构造特点与飞行性能分析

作者:张克高

作者单位:中国民用航空学院

相似文献(3条)

1.期刊论文刘志军.吕强.王东来.LIU Zhi-jun.LV Qiang.WANG Dong-lai小型四旋翼直升机的建模与仿真控制-计算

机仿真2010,27(7)

针对实现对小型四旋翼直升机的飞行控制,为提高飞行性能和加强稳定性,根据四旋翼直升机特有的机械结构和飞行原理,利用牛顿-欧拉方程建立了小型四旋翼直升机的飞行动力学数学模型,而且对该型进行了合理的简化.同时在Matlab/Simulink仿真环境下,采用直升机动力学模型搭建了模块化、层次化的系统仿真图,并通过PID控制算法对直升机悬停状态进行仿真,实现了直升机姿态控制.仿真结果表明在具有小扰动的条件下,模型能够仿真小型四旋翼直升机的飞行状态,满足直升机飞行姿态的控制要求.

2.期刊论文朱清华.张呈林.倪先平.王华明.Zhu Qinghua.Zhang Chenglin.Ni Xianping.Wang Huaming改进遗传算法

的纵列式直升机总体参数优化设计-南京航空航天大学学报2006,38(1)

研究纵列式双旋翼直升机总体参数的优化设计方法,在分析双旋翼气动干扰对旋翼气动特性影响的基础上,采用改进的遗传算法,以运输效率为目标、以飞行性能和重量效率等参数为约束条件,建立优化设计模型,优化纵列式直升机总体参数.以CH-47D纵列式直升机为优化算例,计算结果表明,本文提出的优化方法是可行的,优化效果良好.

3.期刊论文郭家舜.王三民.刘海霞某新型直升机传动系统弯-扭耦合振动特性研究-振动与冲击2009,28(10)

倾转旋翼机是一种新型直升机,是各航空强国争相研究的航空前沿技术,传动系统作为倾转旋翼机的关键系统,其振动特性对直升机的飞行性能和飞行安全有直接影响.以该型直升机发动机短舱内的传动系统为研究对象,根据其传动结构,采用集中质量法,在考虑时变啮合刚度等因素的情况下,建立了新型直升机传动系统的弯-扭耦合动力学模型和动态响应方程,根据倾转旋翼机的飞行特点,针对其在起降、巡航和过渡三种状态下的旋翼激励对传动系统动态响应进行了数值求解,最后研究了传动系统中齿轮啮合的动载系数的变化特点,得出在过渡状态下系统存在拍振现象的结论.研究工作对倾转旋翼直升机的传动系统的可靠性分析、动态效率分析和动态优化设计等均有重要意义,并为我国新型直升机传动系统的研制奠定基础.

本文链接:https://www.360docs.net/doc/8510166702.html,/Conference_3402620.aspx

授权使用:中国科学研究院软件所(中国科学研究院软件所),授权号:0b57dd9e-777b-429c-b0ba-9e3801013c11

下载时间:2010年11月24日

飞机航线运行应进行的性能分析

飞机航线运营应进行地飞机性能分析 .目地 本通告为航空承运人申请某种机型在某一航线地运行资格进行飞机性能分析提供指导. 本通告是对现行民用航空规章 中有关飞机性能要求地归纳和细化,民航地区管理局对航空承运人为某种机型申请某一航线地运行资格进行审定时,可使用本通告. 文档收集自网络,仅用于个人学习 .适用范围 按部运行地航空承运人. .发送范围 主发 咨询通告 各管理局、运输航空公司 抄报 总局领导 抄送 航安办、规划司、运输司、适航司、机场司,空管局、安技中心,机场设计院(所),学院,各航站、通用航空公司文档收集自网络,仅用于个人学习 .相关规章、规定 《公共航空运输承运人运行合格审定规则》分部“航路地批准”、分部“飞机性能使用限制”;---《关于制定起飞一发失效应急程序地通知》;《民用飞机运行地仪表和设备要求》、、、、、. 文档收集自网络,仅用于个人学习 .背景材料 -部《公共航空运输承运人运行合格审定规则》分部对航路批准地基本要做出了具体规定,飞机对于航线地飞机性能地适应性是其中地一部分. 地分部“飞机性能使用限制”对飞机在机场和航线运行地使用性能要求做出了更具体地规定.航空承运人地运行规范分部“航路批准、限制和程序”中也包含了飞机性能使用限制地内容. 文档收集自网络,仅用于个人学习 为了准确地执行-部地有关规定,结合民航运行管理地实际情况,我们将飞机从起飞到着陆整个运行过程应考虑地飞机性能使用问题进一步细化和归纳,在广泛调查研究和征求意见地基础上,制定了《飞机航线运营应进行地飞机性能分析》咨询通告. 文档收集自网络,仅用于个人学习 .对飞机航线运营应进行地飞机性能分析地批准办法 航空承运人地某种机型开辟或加入某一航线运行,要参照本通告对飞机使用性能要求地各个方面进行分析后,作为航线运行资格申请地附件之一报地区管理局.地区管理局对将所附地飞机使用性能分析作为对航空承运人该种机型在这一航线运行资格进行审查地重要内容之一,连同其它项目审查合格后最终通过修改运行规范地方式予以批准. 通告中所述地某种机型开辟或加入某一航线需了解机场服务方面地事项,诸如配餐、给排水、垃圾处理等是否满足要求,这本身不是飞机性能使用问题,但为使航空公司不遗漏这些项目,我们也把这些要求列入通告中. 文档收集自网络,仅用于个人学习 .飞机航线运营应进行地飞机性能分析,详细内容见附录. .对飞机性能分析地要求 航空承运人作飞机性能分析时要按交叉检查地原则至少要有名飞机性能工作人员进行. 在航空承运人获得该机型在该航线地运行批准后,要将为飞机航线运营所做地飞机性能分析存盘.地区管理局和航空承运人各保存份. 文档收集自网络,仅用于个人学习 . 实际运行时地做法 飞机在每次飞行时,要按根据当时地跑道状况、实际业载、机场和航路地温度、风计算地起飞重量、航线油量实施运行.不要拘泥于分析中给出地该机型在该航线冬夏两季地参考起飞重量和参考业载. 文档收集自网络,仅用于个人学习 附录

自转旋翼机的基本构造和原理-1

自转旋翼机的基本构造和原理 自转旋翼机的基本构造包括: 机身、旋翼、尾翼、起落装置、动力装置、座舱仪表。如图3-1所示。 图3-1 自转旋翼机的基本构造 一、机身 机身的主要功能是为其它部件提供安装结构。机身的常见材料是金属材料和复合材料。可以是焊接或是螺栓连接,也可以采用搭配组合方式来实现。 二、旋翼 旋翼的主要功能是为自转旋翼机提供必须的升力和控制能力。常见的结构是带桨毂倾斜控制的跷跷板式旋翼。翘翘板式旋翼,也就是两片桨叶刚性地连接在一起,当一片桨叶向上运动时,另一片桨叶向下运动。

图3-2 跷跷板式结构的旋翼头 三、尾翼 尾翼由垂直尾翼和水平尾翼组成。主要功能是为自转旋翼机提供稳定性及偏转控制。 四、起落装置 起落装置的功用是提供航空器起飞、着陆和地面停放之用。它可以吸收着陆冲击能量,减少冲击载荷,改善滑行性能。 自转旋翼机一般有三个起落架,其中两个主要起落架位于重心附近的机身两侧,起主要的支撑作用,另一个起落架在机头或机尾。若在机尾,则称为后三点式,较适合在粗糙道面上行进;若在机头,则称为前三点式,为大多数自转旋翼机所采用,并且该前轮可通过方向舵脚蹬控制偏转,以便地面滑行时灵活转弯。轮式起落架一般设有减震装置,能吸收大部分着陆能量,可以在硬性路面上进行滑行起飞和降落。能在水上起降的自转旋翼机,采用浮桶式起落架。

五、动力装置 为自转旋翼机提供动力,推动其前进的装置称为动力装置。它由发动机、燃料系统以及导管、附件仪表等组成。在地面,动力装置提供旋翼系统预旋的动力;飞行时,动力装置不为旋翼系统提供动力。 六、座舱仪表 座舱仪表是提供给飞行员观察和判断飞行状态,以做出正确的操纵控制。它们一般包括发动机仪表(如转速表、油压表等)、气动仪表(如空速表、升降速度表等)、电子仪表(如地平仪、导航仪)等。不同的自转旋翼机根据结构复杂程度选装不同配置的仪表。图3-6为常见的自转旋翼机座舱仪表。 图3-6 常见的自转旋翼机座舱仪表

多旋翼无人机的结构和原理

多旋翼无人机的结构和原理 翼型的升力: 升力的来龙去脉这是空气动力学中的知识,研究的内容十分广泛,本文只关注通识理论,阐述对翼型升力和旋翼升力的原理。 根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小。由于机翼一般是不对称的,上表面比较凸,而下表面比较平(翼型),流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了升力。[摘自升力是怎样产生的]。所以对于通常所说的飞机,都是需要助跑,当飞机的速度达到一定大小时,飞机两翼所产生的升力才能抵消重力,从而实现飞行。 旋翼的升力飞机,直升机和旋翼机三种起飞原理是不同的。飞机依靠助跑来提供速度以达到足够的升力,而直升机依靠旋翼的控制旋转在不进行助跑的条件下实现垂直升降,直升机的旋转是动力系统提供的,而旋翼旋转会产生向上的升力和空气给旋翼的反作用力矩,在设计中需要提供平衡旋翼反作用扭矩的方法,通常有单旋翼加尾桨式(尾桨通常是垂直安装)、双旋翼纵列式(旋转方向相反以抵消反作用扭矩)等;而旋翼机则介于飞机和直升机之间,旋翼机的旋翼不与动力系统相连,由飞行过程中的前方气流吹动旋翼旋转产生升力(像大风车一样),即旋翼为自转式,传递到机身上的扭矩很小,无需专门抵消。 而待设计的四旋翼飞行器实质上是属于直升机的范畴,需要由动力系统提供四个旋翼的旋转动力,同时旋翼旋转产生的扭矩需要进行抵消,因此本着结构简单控制方便,选择类似双旋翼纵列式加横列式的直升机模型,两个旋翼旋转方向与另外两个旋翼旋转方向必须相反以抵消陀螺效应和空机动力扭矩。

美军V-22鱼鹰倾转旋翼飞机性能优劣分析

2005年5月20日。美国空军在凯特兰空军基地组建了第一个V-22倾转旋翼机训练中队,围绕V-22用于运送特种作战部队的设计初衷展开系统训练。2005年6月。美国海军陆战队VMX-22作战试验与评估中队的全部8架“鱼鹰”集中在美国海军LHD 5“巴丹”号两栖攻击舰上。进行最后阶段的作战评估试验……这一系列事件标志着这种研制期长达25年的新型作战飞机真正投入了部署。V一22有着独特而优异的性能.但在技术上仍然存在着较严重的问题,对此。我国专家将进行详尽的分析。 美国研制的V一22“鱼鹰”倾转旋翼机,是一款颇受媒体关注的多功能垂直/短距起降航空器。其新颖的构思、优异的性能和宽广的适用范围,给人留下了深刻印象。但这种先进的三军通用型飞机的称谓却值得商榷,所采用的技术和总体设计方案也有许多需要改进的地方。 关于V-22的称谓 严格地讲,V一22“鱼鹰”一类的飞行器不应叫做“倾转旋翼机”。虽然相对干正常的飞行状态发动机、螺旋桨处在与飞机纵轴平行的位置),V一22的螺桨旋翼在短距起降、垂直起降、悬停、过渡飞行等状态时的确是“倾转”的,但它们并非单独偏转,而是随着发动机舱的转动而转动。因此,该机种的准确名称应该是“采用倾转发动机技术”的直升飞机。 美国人之所以将“鱼鹰”定义为倾转旋翼机,是沿用了贝尔直升机公司对XV-3的叫法。1955年8月试飞成功的XV-3垂直起降研究机,是一架真正意义上的倾转旋翼飞行器。该机的动力装置是一台450马力的涡轴发动机,飞行时,发动机输出的功率通过一个横轴传给设在左右翼尖上的螺桨旋翼,使之能够同步对转、产生拉力。两副工作中的螺桨旋翼可由一套特殊的操纵机构控制,在水平和垂直位置间来回转动,以改变拉力矢量的方向,从而构成“直升机状态”、“定翼机状态”和“过渡飞行状态”。试飞结果表明,XV-3能够在10秒钟之内完成 90。的飞行姿态转换。 1973年,应美国陆军和航空航天局的要求,贝尔公司结合XV-3倾转旋翼机的设计经验,研制了一种采用低桨盘载荷旋翼和倾转发动机技术的垂直起降航空器一一xV-15试验机。但贝尔直升机公司的技术人员仍将其称为“倾转旋翼机”。这大概是因为转动发动机舱的目的,也是为了改变螺桨旋翼的拉力矢量方向。虽然这两类“倾转”方案所采用的技术措施和控制机构不一样,但在功能、原理、效果方面则相差不大。后来,在XV-15基础上新开发的实用型V-22“鱼鹰”,亦承袭了这一称谓。 V-22的研制情况 与固定翼飞机相比,直升机最明显的长处是可以垂直起降和在空中悬停,对起降场所的依赖程度较低。不过,在平飞过程中,直升机由于旋翼的气动效率很低,100千克拉力最多可以拉动300千克重量,运输效率K(K=G/W)只有4左右;而以螺旋桨为动力的、同等功率的固定翼飞机的运输效率K可达12以上,100千克拉力最多可以拉动1500千克重量。由于效率高、经济性好,固定翼飞机的航程远远高于直升机。普通直升机的最大航程不过500千米左右,而轻型螺旋桨飞机的航程往往在1500~2000千米以上。另外,由于受旋翼工作特点的限制,直升机的最大飞行速度、飞行高度等技术指标也比同级别的固定翼飞机低许多。 采用倾转旋翼(或倾转发动机、倾转带发动机的机翼)方案,可以把直升机与固定翼飞机的优点较完美地结合起来,构建出一种独特的既能垂直起降和悬停,又能飞得更高、更快、更远的新型航空器一一螺旋桨式“直升飞机”。这就是美国人开发V-22“鱼鹰”的动因。 1981年底,美国军方提出了“多军种先进垂直起降飞机”(JVX)计划,为空、海军研制一种具有较高运输效率、三军通用的“直升飞机”。为了竞争JVX项目,美国贝尔直升机公司与波音直升机公司联手推出以XV-15为蓝本、但尺寸放大了的V-22方案。1985年1月,这种飞行器被正式命名为V-22“鱼鹰”。从该机以英文字母“V”而不是“H”打头,就可看出:它是垂直起降飞机而不是直升机。V-22分为空军型、海军型和海军陆战队型,编号分别为CV-22、HV一22、MV-22,今后还有可能发展陆军型以及海军反潜型SV一22。 1988年5月23日,V-22的1号原型机出厂。1989年3月19日,该机试飞成功。1989年9月14日,完成了首次由直升机状态向定翼机状态过渡的飞行实验。1990年12月,V-22的原型机开始在航空母舰上进行海上试飞。按照原先的计划,V-22的生产型应于1991年底交付美国海军陆战队,1993年开始配备美国空军,1995年进入美国海军服役。但由于经费、技术等方面的原因,到1997年时,这种先进垂直,短距起降飞行器仍处于工程制造阶段。此时的“鱼鹰”已比原型机有了较大变化,材料、工艺、结构、系统方面的改动很多,而后来的小批量生产型又在设计上做了进一步的调整和改进。直至本世纪初,复杂、昂贵的v一22型直升飞机才逐步装备美国军队。 V-22的设计特点 在V-22的机翼翼尖部位,安装有2台可倾转的T406一AD-400型涡轮轴发动机和2副直径11.61米的螺旋桨(旋翼),单台起飞功率6235轴马力。2台发动机工作时,螺桨旋翼是对转的,产生的扭矩相互抵消。若发动机处于水平位置,整架飞机与普通的螺旋桨飞机没有 什么两样。而当发动机转向上方时, 旋桨便相当于一对旋翼,飞机可以垂直起降和悬停。V一22的发动机、传动系统和螺旋桨(旋翼)在定翼机平飞状态、直升机工作状态 以及过渡飞行状态之间的偏转变换角度可达97。30’。 V-22能在大气温度33℃、高度900多米处进行无地效悬停。不过,由于它的螺旋桨直径小于同等重量直升机的旋翼、排气速度较大、桨盘载荷略高于一般直升机,因此垂直起飞和悬停时的效率亦稍逊于直升机。但它的常规飞行性能却是直升机无法匹敌的。该机在直升机状态的最大垂直起飞重量为23980千克,最大前飞速度396千米,小时;在固定翼飞机状态的最大短距起飞重量为27442千克;实用升

四轴(多轴)飞行器概述

四轴(多轴)飞行器概述 一、简介 四轴(多轴)飞行器也叫四旋翼(多旋翼)飞行器它有四个(多个)螺旋桨,四轴(多轴)飞行器也是飞行器中结构最简单的飞行器了。前后左右各一个,其中位于中心的主控板接收来自于遥控发射机的控制信号,在收到操作者的控制后通过数字的控制总线去控制四个电调,电调再把控制命令转化为电机的转速,以达到操作者的控制要求,前后马达是顺时针转动,需要安装反桨,左右马达是逆时针转动,需要安装正桨,机械结构上只需保持重量分布的均匀,四电机保持在一个水平线上,可以说结构非常简单,做四轴的目的也是为了用电子控制把机械结构变得尽可能的简单。 二、控制原理 四轴飞行器的控制原理就是,当没有外力并且重量分布平均时,四个螺旋桨以一样的转速转动,在螺旋桨向上的拉力大于整机的重量时,四轴就会向上升,在拉力与重量相等时,四轴就可以在空中悬停。在四轴的前方受到向下的外力时,前方马达加快转速,以抵消外力的影响从而保持水平,同样其它几个方向受到外力时四轴也是可以通过这种动作保持水平的,当需要控制四轴向前飞时,前方的马达减速,而后方的马达加速,这样,四轴就会向前倾斜,也相应的向前飞行,同样,需要向后、向左、向右飞行也是通过这样的

控制就可以使四轴往我们想要控制的方向飞行了,当我们要控制四轴的机头方向向顺时针转动时,四轴同时加快左右马达的转速,并同时降低前后马达的转速,因为左右马达是逆时针转动的,而左右马达的转速是一样,所以左右是保持平衡的,而前后马达是顺时针转动的,但前后马达的转速也是一样的,所以前后左右都是可以保持平衡,飞行高度也是可以保持的,但是逆时针转动的力比顺时针就大,所以机身会向反方向转动,从而达到控制机头的方向。这也是为什么要使用两个反桨,两个正桨的原因。 三、电调 我们平时用的商品电调是通过接收机上的油门通道进行控制的,这个接收机出来的控制信号一般都是20mS 间隔的PPM脉宽控制信号,而四轴为了提高响应的速度,需要控制命令的间隔更短-比如说5mS,所以就需要特殊的电调而不能用普通的商品电调,但是为什么要使用I2C总线跟电调连接呢,这个跟电路设计以及软件编写等有关,I2C总线在硬件连接上可以多个设备直接并连在总线上,它有相应的传输机制保证主机与各个从机之前顺畅沟通,这样连接就比较的方便,所以四个电调的控制线是并接在一起连到主控板上就可以了,这个也跟我们选用的芯片相关,很多单片机都有集成I2C总线的,软件设计起来也得心应手。

旋翼机的发展与应用

龙源期刊网 https://www.360docs.net/doc/8510166702.html, 旋翼机的发展与应用 作者:申斌吴一波林冬生 来源:《科技传播》2013年第23期 摘要旋翼机具有优良的结构性能和使用性能,在国内外应用越来越广泛。本文介绍了目前旋翼机国内外研究及应用现状,概述了旋翼机的工作原理及其主要的特点,并提出了未来旋翼机技术发展的趋势,希望能够为旋翼机方面的研究提供一定的指导作用。 关键词多旋翼;原理;特点;发展 中图分类号V1 文献标识码A 文章编号 1674-6708(2013)104-0145-02 0引言 旋翼机具有结构简单、安全性能良好、操作容易等多方面的优点,具有很好的垂直着陆能力及短距离的起飞能力,在很多领域得到了很好的应用。因此,本文对于旋翼机的发展及应用方面的研究不仅具有一定的理论指导作用,也具有一定的实际应用价值。 1旋翼机国内外研究及应用现状 19世纪30年代,西班牙工程师席尔瓦设计发明了第一个能够实现可控飞行的旋翼机,并且旋翼机试飞成功。随后在1934年,席尔瓦设计制造了第一架能够实现跳跃起飞的旋翼机,型号为C30型,该设计中旋翼机采用直接旋翼操作,能够实现旋翼机的一次性的转向动作、俯仰动作以及侧倾动作的操作,在很大程度上简化了旋翼机的操作控制,因此C30旋翼机成为当时实现量产并且最受欢迎的旋翼机,图1所示为C30型旋翼机。 随后,国外很多航空工作者和专家都对旋翼机进行了深入的研究,都取得了不错的研究成果。根据不完全统计,目前积极在美国已经正式注册登记的旋翼机就已经达到了几万架之多,而针对旋翼机进行研究生产制造的公司就有几十家大型的航空公司。美国格莱恩航空公司生产的“猎鹰”2型号(HAWK—2)旋翼机,能够实现最大飞行速度185km/h,巡航速度130km/h,持续飞行时间长达四小时,飞行里程最大为500km,旋翼机守家在6万-7.5万美元之间,是目前世界上安全性能最好,并且质优价廉的高性能旋翼机。随后2002年,美国格莱恩航空公司生产的“猎鹰”4型号(HAWK—4)旋翼机,执行第19届奥林匹克冬季运动会期间的安保巡逻工作,在巡逻期间,该旋翼机成功完成67 项项目,无需任何方面的维修和保养工作,表现出极其优秀的性能,该旋翼机在美国很多的政府的空中警察队执行侦查和巡逻任务,起到十分很重要的作用。 但是,针对旋翼机的研究在我国国内还处于初级阶段,相关方面的研究还是比较少。1998年,泰克(天津)飞行器制造有限公司参加中国珠海国际航空航天展览会过程中,展出了本次航空航天展的唯一一架泰克150型旋翼机,该旋翼机具有优秀的机动性能,引起了当时参展人

多旋翼飞行器解决方案

多旋翼飞行器解决方案 一、多旋翼飞行器介绍 多旋翼飞行器是由多组动力系统组成的飞行平台,一般常见的有四旋翼、六旋翼、八旋翼……十八旋翼,甚至更多旋翼组成。旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。电动多旋翼飞行器由无刷电机驱动螺旋桨组成单组旋翼动力系统,由惯导系统、飞控系统、导航系统、电子调速器组成控制驱动部分。瑞伯达提供专业无人机飞行器解决方案。飞行器作为飞行载体可携带影像器材、通讯器材、采集器材、特殊器材等升空,可达到传统方式达不到的高度(0-500米)。 二、多旋翼飞行器优点 多旋翼飞行器以其独特的结构和简洁的系统构架与传统飞行器相比 有明显的优势。 1、多旋翼飞行器的最大优点是安全 2、需要的起降条件要求很低。 3、以高能电池作为能量与油动飞行器相比噪音更低 4、简单的机械部件组成(仅电机轴承为机械部件)与传统直升机 (有较复杂的机械部件与传动结构)相比维护相当简单。

5、操纵简单,整机全电子增稳,一个人只需要半天左右学习就基 本可以独立驾驶了。 三、多旋翼飞行器缺点: 1、速度差,旋翼飞机比直升飞机稍慢,与固定翼飞机相比差得太远,因此在需要快速运输而又没有特别要求的场合,都使用普通固定翼飞机; 2、灵活性欠佳。虽然旋翼飞机比直升飞机略快一点,安全性也更 高,但其使用灵活性却比直升飞机差太多。它的机动性远逊于直升飞机,而且比固定翼飞机起降场地要求低很多,跟直升飞机比起来却又有些逊色,但是安全性和操纵简单的优势就突出 四、多旋翼飞行器的用途 多旋翼飞行系统可广泛应用于农业中低空撒种、喷洒农药,治安监控、森林灭火、灾情监视、应急通讯、电力应用、海运应用、气象监测、航拍航测,另外对空中勘探、无声侦查、边境巡逻、核辐射探测、航空探矿、交通巡逻等三十多个行业方面的应用也将进一步得到开发。 多旋翼飞行器在多行业的应用 1、公安系统的应用 多旋翼飞行器具有便携、质轻、飞行稳定、噪音低等特点,携带影像设备与侦测设备可以为秘密侦察提供强有力的手段,尤其是人不易接近的区域,可以提供空中第一手影像资料。同样在群体性事件中也可以发挥巨大的作用,除侦察外甚至可以携带小型催泪瓦斯进行空中投

飞行基础知识民用飞机的起飞性能

起飞试验的目的是测定飞机飞行手册所需要的起飞性能参数,和验证所讨论的飞机型态满足于合格审定的性能要求,当要生产一种新飞机时,需要进行一个完整系列的起飞试验,确定起飞速度和距离、滚动加速度和制动加速度,抬前轮速率和最小离地速度等参数。根据美国联邦航空局适航条例规定,凡装载二十人以上的民用飞机应按照联邦航空条例第25部(FAR25)验证其符合性。其中B分部中直接涉及飞机飞行性能的条款13条,是飞机设计时考虑起飞、爬升、航行、进场和着陆必须遵守的安全标准。而飞行手册是飞机一个重要软件组成部分、其中的性能数据就根据FAR25部有关飞行性能条款的规定和飞机飞行动力、发动机推力特性进行计算和编制的。 起飞性能符合性验证工作可理解为三个方面:(1)起飞性能原始参数的验证;(2)飞行手册中起飞性能的计算;(3)对起飞性能计算。 FAR25定义了各种起飞速度,讨论了加速-减速距离、起飞航迹和起飞距离。给出了一些适用于起飞试验的速度和术语的定义是有益的,因为许多速度和术语关系到其它类型的性能和规章的论述,起飞性能原始参数是计算起飞性能所必须的原始特征数据。这些参数一般要通过试飞确定或加以校核。 1.失速速度Vs:飞机最小安全速度,是飞机基本特征速度之一(其它还有VMU、VMCA、VMCG),它是决定飞机其它特征速度之一,这些特征速度为:VEF、V1、VR、VLOF、V2;而且是确定操稳特性试飞速度范围的基准速度。因此,在试飞的早期就要进行失速速度的试飞,仅次于空速校正试飞。飞机手册中给出飞机各种构型和重量下的Vs值,以便直接提醒飞行人员飞行时速度不小于该值。另外Vs还是起飞等各阶段速度的参考值。根据失速演示规定: (a)必须在直线飞行和30°坡度转变中演示失速:给出了失速速度的定义以及确定失速速度时对飞机状态的要求,包括:推力、起落架位置、襟翼位置、重量、重心。试飞时,一般说来前重心为不利位置,这主要是此时需要平尾产生比后重心时更大的上仰力矩,平尾产生的负升力较大,因而此时的失速速度更大,但是为了确定重心对失速速度的影响程度,还是有必要适当进行一些后重心的失速速度。起落架、襟翼的不同组合必须囊括了飞机在所有飞行阶段的飞行状态。如果必要的话,还得通过试飞评估拟在空中使用的其它次气动操纵面对失速速度的影响,如:扰流板等。 (b)规定了试飞方法,即规定了飞机的配平速度范围、进入失速速度的飞机减速率;并规定了在试飞过程中,飞机所表现出的操稳和改出特性必须满足§的要求。 (c)减速率:失速速度是对应于1节/秒的减速率的。 (d)当固有的飞行特性向驾驶员显示清晰可辨的飞机失速现象时,可认为该飞机以失速。可接受的失速现象如下,这些现象既可单独出现,也可以组合出现 (1)不能即可阻止的机头下沉; (2)抖振,其幅度和剧烈程度能强烈而有效的阻止进一步减速;或 (3)俯仰操纵达到后止动点,并且在改出开始前操纵器件在该位置保持一暂短的时间后不能进一步增加俯仰状态。 (对装有失速推杆器的飞机,推杆器工作即认为进入失速) ▲关于1g失速速度:FAA在新的咨询通告AC25-7中,附录5给出了关于1g的失速速度的定义,及其随之产生的专用条件。我们都清楚,现行的§和§规定了失速速度的定义,从理论上来说是可行的,但在实际执行中往往出现偏差,因为该失速的定义基本上是定性的,在试飞中需要飞行员判断失速点,并实施改出。而客观上由于飞机及飞行员本身的原因试飞时各飞行员判断的失速点不会一样的,有的提前改出,有的迟后改出,这一切都要取决于飞行员的技术和判断。特别是当进入失速过程中抖振、低过载、机头自然下俯现象时,对于许多高速的后掠翼运输机失速进入过程中航迹法向过载小于1。所有这些将导致失速试飞结果的

飞行器仪表原理、塔块的作用、自转旋翼飞行器、关于旋翼机垂直起飞的解释、关于旋翼机旋翼的旋转

飞行器仪表原理 转自https://www.360docs.net/doc/8510166702.html,/thread-2391-1-14.html 空速管也叫皮托管,总压管,风向标气流方向传感器或流向角感应器,与精密电位计(或同步机或解析器)连接在一起,提供出一个表示相对于大气数据桁架纵轴的空气流方向的电信号.主要是用来测量飞机速度的,同时还兼具其他多种功能。 空速管测量飞机速度的原理是这样的,当飞机向前飞行时,气流便冲进空速管,在管子末端的感应器会感受到气流的冲击力量,即动压。飞机飞得越快,动压就越大。如果将空气静止时的压力即静压和动压相比就可以知道冲进来的空气有多快,也就是飞机飞得有多快。比较两种压力的工具是一个用上下两片很薄的金属片制成的表面带波纹的空心圆形盒子,称为膜盒。这盒子是密封的,但有一根管子与空速管相连。如果飞机速度快,动压便增大,膜盒内压力增加,膜盒会鼓起来。用一个由小杠杆和齿轮等组成的装臵可以将膜盒的变形测量出来并用指针显示,这就是最简单的飞机空速表。 现代的空速管除了正前方开孔外,还在管的四周开有很多小孔,并用另一根管子通到空速表内来测量静止大气压力,这一压力称静压。空速表内膜盒的变形大小就是由膜盒外的静压与膜盒内动压的差别决定的。

空速管测量出来的静压还可以用来作为高度表的计算参数。如果膜盒完全密封,里面的压力始终保持相当于地面空气的压力。这样当飞机飞到空中,高度增加,空速管测得的静压下降,膜盒便会鼓起来,测量膜盒的变形即可测得飞机高度。这种高度表称为气压式高度表。 利用空速管测得的静压还可以制成"升降速度表",即测量飞机高度变化快慢(爬升率)。表内也有一个膜盒,不过膜盒内的压力不是根据空速管测得的动压而是通过专门一根在出口处开有一小孔的管子测得的。这根管子上的小孔大小是特别设计的,用来限制膜盒内气压变化的快慢。如果飞机上升很快,膜盒内的气压受小孔的制约不能很快下降,而膜盒外的气压由于有直通空速管上的静压孔,可以很快达到相当于外面大气的压力,于是膜盒鼓起来。测量膜盒的变形大小即可算出飞机上升的快慢。飞机下降时,情况正相反。膜盒外压力急速增加,而膜盒内的气压只能缓慢升高,于是膜盒下陷,带动指针,显示负爬升率,即下降速率。飞机平飞后,膜盒内外气压逐渐相等,膜盒恢复正常形状,升降速度表指示为零。 空速管是飞机上极为重要的测量工具。它的安装位臵一定要在飞机外面气流较少受到飞机影响的区域,一般在机头正前方,垂尾或翼尖前方。同时为了保险起见,一架飞机通

AILIU型多旋翼系留无人机升空平台技术说明书

AXILIU-Z6/8型多旋翼系留无人机升空平台系统 技术说明书 写: __________________ 对: __________________ 核: __________________ 审: __________________ 签: __________________ 准: __________________ □一七年七月 编 校 审 标 会 批

目次

AXILIU-Z6/8 型多旋翼系留无人机升空平台系统 技术说明书 1 产品用途和功能 1.1产品用途 升空平台AXILIU-Z6/8 ,可实现定点长时间滞空工作,主要用于远距离通讯的-Z6/8。 1.2产品功能 升空平台AXILIU-Z6/8 主要的功能有:手动飞行、自动起飞、自动降落、自动返航、无线遥控、有线遥控、有线优先、RTK差分定位、卫星导航、悬 停稳定、升空高度可调、失控保护功能、低电报警、低电报警电压可调、低电自动降落。 2 产品性能和数据 2.1产品性能 a)实时向地面设备回传飞行姿态、速度、高度、经纬度等信息; b)悬停飞行功能:同时锁定高度和位置; c)具备高度锁定功能、返航点锁定功能; d)内置黑匣子; e)多种失控保护机制设计; 2.2产品数据 2.2.1 性能指标 a) 飞行器重量(包含电池、桨叶、脚架) :10-20kg ; b)飞行器外形尺寸:8轴w 1655mM 1450mM 505mm(不含螺旋桨); 6 轴w 1255mrH 1250mrH 505mm(不含螺旋桨);

c)系留迫降电池:5000-8000mAh; d)系留机载电源模块:3000-4500W; e)系留配置发电机:4000-8000W; f)导航要求:GPS北斗双模; g)续航时间:标准电池下安全续航时间30 分钟,系留模式不小于4 小时 h)最大平飞速度:20m/s; i)飞行器水平误差:w 5m j)飞行器高度误差:w 2m k)最大相对飞行高度:500m; l)最大海拔飞行高度:3000m; m)可靠性与维修性指标 (1)飞行工作时间:》10小时; (2)MTTR(平均修复时间):w 30min。 2.2.2 环境适应性指标 (1)系统工作温度:-10 C?+55C (士2C); (2)存储温度:-20 C?+55C (士2C),其中电池在常温储存; (3)湿度:(95士3)%RH; (4)抗风等级:6级; ( 5) 防水等级:小雨(?2mm/h)。 3产品组成、结构和工作原理 3.1产品组成 该产品主要由六轴或八轴无人飞行器、手持终端、RTK 地面基站、地面电源、机载电源等部件组成。

多旋翼飞行器设计与控制课程简介

《多旋翼飞行器设计与控制》课程简介 课程编号:031574 课程名称:多旋翼飞行器设计与控制 学时:32学时 开课学期:春季 上课时间:2016年3月10日- 2016年6月30日,周四晚7:00-9:00 上课地点:北航新主楼B208 一.内容简介 1、专业与学生定位: (1)专业:面向控制科学与工程专业特别是导航、制导与控制专业。 (2)学生:控制科学与工程专业特别是导航、制导与控制专业的研究生,或有一定航空和自动化专业背景的研究生。 2、课程目的: 本门课程讲授多旋翼设计、动态模型建立、状态估计、控制和决策等方面的基础知识。涉及到空气流体力学、电机、电路、材料结构、理论力学、以及导航、制导与控制各个学科的基础知识,具有基础性和系统性两个特色。因此,有利于学生将已学知识融会贯通,着重培养学生解决问题的综合能力。 二.先修课程与专业基础 自动控制原理,航空航天概论、理论力学、线性系统(建议) 三.讲授方式 课堂授课、学生大作业展示 四.教学安排与内容 1.多旋翼绪论

首先介绍飞行器的基本概念、评价、以及多旋翼的历史,以及本课的安排。 2.多旋翼设计 通过这一阶段,学生可以对多旋翼机身主体设计和动力系统选择有一个较为深入的认识。 2.1多旋翼的基本组成。这一部分包括机身主体、动力系统、控制系统和通讯链路等四个部分。主要按作用和指标参数两个方面分别介绍机架、起落架、云台、涵道、电机、电调、螺旋桨、电池、遥控器和接收器、自动驾驶仪、地面站、数传电台、图传电台、通讯协议等方面。 2.2多旋翼的机身主体设计。这一部分包括机体基本构型,以及减震和降噪的考虑等。 2.3多旋翼动力系统性能建模和估算。多旋翼的动力系统由航模电池、电子调速器、直流无刷电机和螺旋桨四个部分组成。这一部分包括对这四个部分建立力和能量方面的数学模型,提出动力系统的飞行性能估算,比如:悬停状态下的续航时间和最大负重等等。 3.多旋翼动态模型 通过这一阶段,学生可以对多旋翼运动模型有一个较为深入的认识。基于这个基础,可以做多旋翼状态估计和控制。 3.1坐标系和姿态表示。主要介绍世界惯性坐标系和机体系,以及姿态的三种表示方法:欧拉角、旋转矩阵和四元数。 3.2多旋翼的动态模型。这一部分包括姿态模型、动力学模型、控制分配模型、电机模型,还包括气动阻力模型。这将为后续的多旋翼位姿估计和控制等课程服务。 4.多旋翼状态估计 通过这一阶段,学生可以对多旋翼信息估计有一个较为深入的认识。 4.1 传感器模型以及校正。这一部分首先建立这些传感器的测量模型,进而进一步提出较正方法,估计需要较正的参数。 4.2 可观性和卡尔曼滤波。 4.3 多旋翼的运动信息估计。这一部分包括姿态估计、位置-速度估计、速度估计和障碍估计的介绍。 5.多旋翼控制 通过这一阶段,学生可以对多旋翼控制有一个较为深入的认识,所介绍的方法大部分是较为常用的方法。

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。

气流V 与翼弦之间的夹角即为该剖面的迎角。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 3. 直升机旋翼的操纵 直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。 直升机体放在地面时,旋翼受其本身重力作用而下垂。发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。随着旋翼转速的增加,升力逐渐增大。当升力超过重力时,直升机即铅垂上升(图;若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。 旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。从原理上讲,调节转速和桨距都可以调节拉力的大小。但是 桨毂旋转面 桨毂旋转轴线 前缘 后缘 b ? α V 图 直升机的旋翼 (a) (b)

多旋翼飞行器原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图 1.1所示。 2.工作原理

四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4 顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋转,规定沿 x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿 z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机 1的转速上升,电机 3 的转速下降(改变量大小应相等),电机 2、电机 4 的转速保持不变。由于旋翼1 的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕 y 轴旋转,同理,当电机 1 的转速下降,电机 3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2和电机 4的转速,保持电机1和电机 3的转速不变,则可使机身绕 x 轴旋转(正向和反向),实现飞行器的滚转运动。(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,

飞行性能考试选择题库

1. 已知压力高度3000英尺处的温度偏差为ISA+10℃,则该高度的实际气温为()。 A: B:19 C:25 D:30 正确答案: 2 2. 国际标准大气ISA规定,海平面温度为()℃,海平面压力()mbar。 A:15,1003 B:59,1003 C:15,1013 D:59,1013 正确答案: C 3. 低速飞行常用飞机的________来衡量飞机气动性能的好坏,高速飞行常用________来衡量飞机气动性能的好坏。 A:升阻比,马赫数 B:最大升阻比,气动效率 C:阻力系数,升阻比 D:阻力系数,最大升阻比 正确答案: B 1. 飞机起飞场道结束时和着陆过跑道头时的高度分别是___ (ft) A:15,35 B:35,15 C:50,35 D:35,50 正确答案: D 2. 飞机一发故障,在V1时决定继续起飞,在跑道头上空35ft处速度不小于___。 A:V2 B:V2+5 C:V2+10 D:V2+15 正确答案: A 3. 在平衡跑道条件下起飞,_____。 A:从起飞加速到V1的距离,等于从V1停下来的距离 B:起飞性能最好

C:C. 加速到V1之前1秒一台发动机失效,使飞机停下来的距离,等于继续起飞到高度35ft,速度达到V2的距离 D:起飞距离与着陆距离相等 正确答案: C 4. 若起飞中只计入净空道,和不计净空道相比____。 A:最大起飞重量增大且相应的V1降低 B:最大起飞重量减小且相应的V1降低 C:最大起飞重量增大且相应的V1增大 D:最大起飞重量减小且相应的V1增大 正确答案: C 5. 适当增大起飞襟翼角度,可导致____。 A:较短的滑跑距离 B:较大的离地速度VLOF C:上升性能改进 D:减小飞机阻力 正确答案: A 6. 最大轮胎速度是指()。 A:地速 B:空速 C:表速 D:VMBE 正确答案: A 7. FAA规定,用假设温度法减推力起飞,减推力的最大值不得超过______,假设温度比实际温度______。 A:25,高 B:30,高 C:25,低 D:30,低 正确答案: A 8. FAR对飞机起飞净航迹与障碍物之间的高度规定是飞机净航迹()。 A:至少高于障碍物35英尺 B:高于障碍物50英尺 C:高于障碍物30英尺 D:根据具体情况而定

自转旋翼机的基本构造和原理精编

自转旋翼机的基本构造 和原理精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

自转旋翼机的基本构造和原理 自转旋翼机的基本构造包括: 机身、旋翼、尾翼、起落装置、动力装置、座舱仪表。如图3-1所示。 图3-1 自转旋翼机的基本构造 一、机身 机身的主要功能是为其它部件提供安装结构。机身的常见材料是金属材料和复合材料。可以是焊接或是螺栓连接,也可以采用搭配组合方式来实现。

二、旋翼 旋翼的主要功能是为自转旋翼机提供必须的升力和控制能力。常见的结构是带桨毂倾斜控制的跷跷板式旋翼。翘翘板式旋翼,也就是两片桨叶刚性地连接在一起,当一片桨叶向上运动时,另一片桨叶向下运动。 图3-2 跷跷板式结构的旋翼头 三、尾翼 尾翼由垂直尾翼和水平尾翼组成。主要功能是为自转旋翼机提供稳定性及偏转控制。

四、起落装置 起落装置的功用是提供航空器起飞、着陆和地面停放之用。它可以吸收着陆冲击能量,减少冲击载荷,改善滑行性能。 自转旋翼机一般有三个起落架,其中两个主要起落架位于重心附近的机身两侧,起主要的支撑作用,另一个起落架在机头或机尾。若在机尾,则称为后三点式,较适合在粗糙道面上行进;若在机头,则称为前三点式,为大多数自转旋翼机所采用,并且该前轮可通过方向舵脚蹬控制偏转,以便地面滑行时灵活转弯。轮式起落架一般设有减震装置,能吸收大部分着陆能量,可以在硬性路面上进行滑行起飞和降落。能在水上起降的自转旋翼机,采用浮桶式起落架。 五、动力装置 为自转旋翼机提供动力,推动其前进的装置称为动力装置。它由发动机、燃料系统以及导管、附件仪表等组成。在地面,动力装置提供旋翼系统预旋的动力;飞行时,动力装置不为旋翼系统提供动力。 六、座舱仪表 座舱仪表是提供给飞行员观察和判断飞行状态,以做出正确的操纵控制。它们一般包括发动机仪表(如转速

飞机航线运营应进行的飞机性能分析

飞机航线运营应进行的飞机性能分析 某种机型在投入某一航线运营之前,必须对该机型飞机性能进行航线的适应性分析,这对保证飞行安全、提高经济效益是必不可少的一项工作。飞行性能分析需考虑的内容有以下方面: 1、机场和航线的适应性 1.1 机场和航线适应范围 a、机场高度限制:飞机起飞着陆机场的气压高度不得高于飞机飞行手册规定的最大值。 b、跑道坡度:飞机起飞、着陆使用的跑道坡度不得超出飞行手册的限制。 c、飞行高度限制:飞机航路飞行的最大高度不得高于飞机飞行手册及其增补规定的最大飞行高度;最低飞行高度不得低于航路最低安全高度(制定飘降程序的除外)。 d、温度限制:飞机起飞、着陆和飞行中的大气温度不得超出环境包线的限制。 e、纬度限制:飞机使用的机场和航线的纬度不得高于飞机飞行手册规定的最大纬度值。 1.2 机场道面承载能力 查阅机场《使用细则》,获得起飞机场、起飞备降场、航路备降场、目的地机场、目的地备降场跑道、滑行道、停机坪的长、宽、坡度、道面等级号(PCN值)等资料。 检查飞机最大起飞重量对应的飞机等级号(ACN值)是否小于或等于以上各机场的PCN值。若飞机的ACN值大于机场跑道的PCN值,则需按ACN等于PCN确定道面承载能力限制的起降重量。 如果该机型的年度飞行次数不超过机场年度总的飞行次数的5%,飞机的ACN值可以大于跑道道面的PCN值,对于刚性道面ACN值最大可比PCN值大5%,对于柔性道面ACN值最大可比PCN值大10%。 对于机场道面强度的不同表示方法,如跑道载荷承受力(LCN),S/D/DT/DDT等,按相应的计算方法计算道面强度限制。 1.3 机场使用等级及保障能力 a、了解所用各机场的跑道、滑行道、联络道及道肩的宽度,查看飞机特性手册,确定飞机是否适合在这些机场运行。如果个别滑行道或联络道的宽度或PCN值不适合该飞机滑行,则需注明,以免飞机误滑。若跑道两端无联络道或滑行道,则需了解机场的跑道两端有无回转坪,考虑能否使飞机作180度转弯。 b、了解机场的使用等级。检查航空燃油型号、加油车、客梯车(或廊桥)、集装箱装卸车、平台车、拖车等以及配餐、给排水、垃圾处理是否满足要求;了解维修能力、消防、救护能力是否匹配(对于国际航班还应考虑海关、边检和卫生检疫);要注意有无气源车、电源车、空调车等,并了解保障车辆的接口、插头是否与机型匹配。对于寒冷地区的机场,需了解机场的扫雪、除冰能力以及对飞机的除冰、防冰能力。 c、了解机场有无对飞机噪音等级等的特殊要求。 2、机场起飞着陆性能分析 根据起飞机场、起飞备降场、航路备降场、目的地机场、目的地备降场的跑道的可用起飞距离、可用滑跑距离、可用加速-停止距离、可用着陆距离、跑道坡度、机场标高、机场障碍物等数值,按照经批准的飞行手册及其增补的有关内容,计算机场的起飞重量表、着陆重量表。 2.1 起飞性能分析 (1)飞机的起飞重量计算需考虑: a、场地限制

相关文档
最新文档