直接数字频率合成技术(DDS)
DDS基本原理及技术指南
DDS基本原理及技术指南DDS全称为Direct Digital Synthesis(直接数字合成),是一种数字信号处理技术,广泛应用于频率合成、载波信号生成和频率调制等领域。
本文将介绍DDS的基本原理以及一些技术指南。
一、DDS原理DDS技术利用数字信号处理器(DSP)和数字锁相环(PLL)的协同工作实现信号的合成。
其基本原理如下:1.参考信号生成:DDS系统首先需要一个参考信号作为频率和相位参考。
这个参考信号可以是一个精确的时钟信号或者一个外部输入信号。
参考信号经过A/D转换器(模数转换器)转换为数字信号。
2.累加器:DDS系统会将参考信号的数字表示输入到一个累加器中。
累加器根据输入的数字信号进行累加操作,并且通过加法操作可以改变每一步的累加值。
3.相位累加器:累加器的输出值作为相位累加器的输入。
相位累加器也是一个累加器,但是其输出值作为频率合成器的输入。
相位累加器的输出值会被用来计算输出信号的相位。
4.乘法器/其它运算器:DDS系统还可能包含一个乘法器或其它运算器。
乘法器可以用来改变输出信号的幅度,以及实现频率调制等功能。
5.数字控制端口:DDS系统通常还包括一个数字控制端口,用来接受用户输入的频率、相位和幅度等参数。
这可以通过软件或者硬件的方式进行设置。
二、DDS技术指南以下是一些关于使用DDS技术的指南:1.选择合适的DDS芯片:根据需要合成的信号频率范围、分辨率和精度等要求,选择合适的DDS芯片。
一些常用的DDS芯片有AD9850、AD9851等。
2.谐波抑制:DDS系统在生成频率时会产生一定的谐波。
为了保持输出信号的纯净性,需要采取一些方法来抑制谐波。
常见的方法有使用低通滤波器、改变采样率等。
3.防止相位突变:相位突变会引起频谱中出现额外的频谱成分,影响输出信号的质量。
为了避免相位突变,可以通过调整累加器的初始相位或者采用相位预置技术。
4.频率和相位调制:DDS技术可以很方便地实现频率和相位调制。
论文资料 直接数字频率合成(DDS)基本原理
基于FPGA的直接数字频率合成实现方案直接数字频率合成(DDS)是一种数字合成技术,它通过将数字信号转换为模拟信号来合成所需的波形。
DDS的基本原理是从相位的概念出发,通过相位累加器、波形存储器、数模转换器和低通滤波器等结构,将数字信号转换为模拟信号。
在DDS系统中,相位累加器是核心组成部分之一。
它通过将频率控制字(K)与相位增量(△<1))相加,生成一个相位序列。
该相位序列用于选择波形存储器中的幅度序列,从而生成所需的模拟信号。
波形存储器中存储了不同相位的幅度序列,通过相位累加器的输出选择所需的幅度序列。
然后,数模转换器将选定的幅度序列转换为模拟信号,最后通过低通滤波器去除高频噪声,得到纯净的模拟信号。
DDS系统的频率分辨率和频率范围取决于相位增量(A
Φ)和幅度序列的长度。
通过改变频率控制字(K),可以控制所得离散序列的频率,经保持、滤波之后可唯一地恢复出此频率的模拟信号。
基于FPGA技术实现DDS的方案是,通过VXI接口电路将生成的数据存入固定数据RAM中,然后用FPGA设计的相位累加器来计算并选择RAM中的数据存放地址,最后将数据给定的频率控制字输出,经DAC转换即实现了任意波形输出。
dds 总线 原理
dds 总线原理
DDS(直接数字频率合成器)是一种基于数字信号处理技术的频
率合成器,它可以通过数字控制实现精确的频率和相位调制。
DDS
总线原理指的是DDS芯片与其他器件之间的通信总线原理。
首先,DDS芯片通常会使用SPI(串行外设接口)或者并行接口
来与微处理器或其他外围设备进行通信。
SPI是一种串行总线协议,通过四根线(时钟线、数据线、主从选择线和地线)来实现通信。
而并行接口则是通过多根数据线同时传输数据。
在DDS芯片与其他器件之间的通信中,总线原理起着关键作用。
总线原理包括数据传输的时序、数据格式、通信协议等方面。
通常
情况下,DDS芯片会通过总线接收来自外部设备的频率、相位或其
他控制信息,然后根据这些信息生成相应的数字信号输出。
同时,DDS芯片也会通过总线将自身的状态、输出频率等信息反馈给外部
设备。
另外,DDS总线原理还涉及到通信的稳定性、抗干扰能力、通
信速率等方面。
在设计中,需要考虑总线的带宽、传输速率、数据
格式的协商、时序的稳定性等问题,以确保DDS芯片与外部设备之
间的可靠通信。
总的来说,DDS总线原理是指DDS芯片与其他器件之间的通信原理,涉及到通信协议、数据传输的时序、稳定性等多个方面。
通过合理设计和实现总线原理,可以实现DDS芯片与外部设备之间的稳定、可靠的通信,从而更好地实现频率合成功能。
DDS(DirectDigitalSynthesizer)直接数字式频率合成器
DDS(DirectDigitalSynthesizer)直接数字式频率合成器1. 什么叫DDS直接数字式频率器DDS(Direct Digital Synthesizer),实际上是⼀种分频器:通过编程频率控制字来分频系统(SYSM CLOCK)以产⽣所需要的频率。
DDS 有两个突出的特点,⼀⽅⾯,DDS⼯作在数字域,⼀旦更新频率控制字,输出的频率就相应改变,其跳频速率⾼;另⼀⽅⾯,由于频率控制字的宽度宽(48bit 或者更⾼),频率分辨率⾼。
2. DDS⼯作原理图1 是DDS 的内部结构图,它主要分成3 部分:相位累加器,相位幅度转换,()。
图 1,DDS的结构(1)相位累加器⼀个正弦波,虽然它的幅度不是线性的,但是它的相位却是线性增加的。
DDS 正是利⽤了这⼀特点来产⽣正弦信号。
如图 2,根据DDS 的频率控制字的位数N,把360° 平均分成了2的N次等份。
图2,相位累加器原理假设系统时钟为Fc,输出频率为Fout。
每次转动⼀个⾓度360°/2N,则可以产⽣⼀个频率为Fc/2N的正弦波的相位递增量。
那么只要选择恰当的频率控制字M,使得 Fout / Fc= M / 2N,就可以得到所需要的输出频率Fout,Fout = Fc*M / 2N。
(2)相位幅度转换通过相位累加器,我们已经得到了合成Fout 频率所对应的相位信息,然后相位幅度转换器把0°~360°的相位转换成相应相位的幅度值。
⽐如当DDS 选择为2V p-p 的输出时,45°对应的幅度值为0.707V,这个数值以⼆进制的形式被送⼊DAC。
这个相位到幅度的转换是通过查表完成的。
(3)DAC输出代表幅度的⼆进制数字信号被送⼊DAC 中,并转换成为模拟信号输出。
注意DAC 的位数并不影响输出频率的分辨率。
输出频率的分辨率是由频率控制字的位数决定的。
直接数字式频率合成技术(DDS)是⼀种先进的全数字频率合成技术,它具有多种数字式调制能⼒(如相位调制、频率调制、幅度调制以及I/Q正交调制等),在通信、导航、雷达、电⼦战等领域获得了⼴泛的应⽤。
dds测试标准
DDS测试标准
一、概述
DDS(Direct Digital Synthesizer)是一种基于数字信号处理技术的频率合成器。
为了确保DDS的输出信号质量满足要求,需要对DDS进行一系列的测试。
本测试标准主要包含两个方面:输出信号质量测试和相位和频率调制测试。
二、输出信号质量测试
1.频率稳定度测试
在规定时间内,记录DDS的输出频率变化,以评估其频率稳定度。
一般来说,频率稳定度应优于±1×10-6。
2.相位噪声测试
在规定带宽内,测量DDS输出信号的相位噪声,以评估其性能。
一般来说,相位噪声应优于-80 dBc/Hz。
3.杂散抑制测试
在规定带宽内,测量DDS输出信号的杂散抑制能力,以评估其性能。
一般来说,杂散抑制能力应优于-70 dBc。
4.谐波失真测试
测量DDS输出信号的谐波失真,以评估其性能。
一般来说,谐波失真应优于-70 dBc。
三、相位和频率调制测试
1.频率调制测试
在规定的调制频率和调制指数下,测量DDS输出信号的频率调制性能,以评估其性能。
一般来说,频率调制性能应优于±0.1 dB。
2.相位调制测试
在规定的调制频率和调制指数下,测量DDS输出信号的相位调制性能,以评估其性能。
一般来说,相位调制性能应优于±0.1 dB。
以上是DDS测试标准的概述,具体测试方法需根据具体的设备参数和测试条件进行调整。
在进行测试时,应遵循相关的测试规程和安全规范,以保证测试结果的准确性和可靠性。
直接数字频率合成技术DDS
幅
位
度
码
码
数模变换器 DAC
时 钟
低通滤波器 LPF 输出
图3-11 相位/幅度变换装置
假设DAC的输入幅度码是四位,则它的输出幅度与输 入幅度码之间的关系是按线性变化的,如表3-1所示。
二进制幅度码 0000 0001 0010 0011 0100 0101 0110 0111
表 3-1
十进制幅度 二进制幅度码
0.1875
0 +1.1875
续表 3 - 4
8 1000 17π/16 -0.1951 0011 0.1875 1 9 1001 19π/16 - 0.5556 1001 0.5625 1 10 1010 21π/16 - 0.8316 1101 0.8125 1 11 1011 23π/16 -0.9808 1111 0.9375 1 12 1100 25π/16 -0.9808 1111 0.9375 1 13 1101 27π/16 -0.8316 1101 0.8125 1 14 1110 29π/16 -0.5556 1001 0.5625 1 15 1111 31π/16 -0.1951 0011 0.8175 1
② 将模2π的累加相位变换成相应的正弦函数值的幅度, 这里幅度可先用代码表示,这可以用一只读存储器ROM来 存储一个正弦函数表的幅值代码;
③ 用幅度代码变换成模拟电压,这可由数模变换器 DAC来完成;
④ 相位累加器输出的累加相位在两次采样的间隔时间 内是保持的,最终从DAC输出的电压是经保持的阶梯波。
2. 相位与幅度的变换
累加器输出的相位码,需先经过一个相位码/幅度码变换 装置之后,再经数/模变换生成阶梯波,最后通过低通滤波 器才能得到所需的模拟电压。
DDS相关内容及其杂散特性
DDS相关内容,DDS原理及其杂散特性一、DDS(Direct Digital frequency Synthesis)即直接数字频率合成器,是一种新型的频率合成技术,具有较高的频率分辨率,快速的频率切换,稳定性好,可灵活产生多种信号的优点。
因此,在现代电子系统及设备的频率源设计中,尤其在通信领域,直接数字频率合成器的应用越来越广泛。
在数字化的调制解调模块中。
DDS取代了VCO(模拟的压控振荡器),被大量应用。
这种合成技术是一种利用数字技术来控制信号的相位增量的技术,它采用插值取样的方式,将要合成的正弦波波形用若干个采样点的取值来代替,然后依次等时间间隔输出这些取值,每个采样点的值由预先存储的数字值经D/A转换后得到。
DDS信号发生器把信号的发生器的频率稳定度,准确度提到与基准频率相同的水平,并且可以在很宽的频率范围内进行精细的调节。
也就是说它对的误差很小,与基准频率之间的误差很小。
可以工作在调制状态,可以产生任意波形。
DDS的工作原理:DDS技术是根据奈奎斯特取样定律,从连续信号的相位出发,将正弦信号取样,编码,量化,形成一个正弦函数表,存在EPROM中,合成时,通过改变相位累加器的频率字来改变相位增量,也就是我们所称的步长。
相位增量的不同导致一个周期内取样点的不同,在时钟频率即采样频率不变的情况下,通过相位的改变来改变频率。
(其中奈奎斯特采样定理:解释了采样率和所测信号频率之间的关系。
阐述了采样率fs必须大于被测信号最高频率分量的2倍)。
二、DDS杂散特性:基于波形存储的DDS(直接数字频率合成器)技术具有频率转换时间短、频率分辨率高、输出相位连续、稳定度高、可编程、全数字化、易集成等突出优点,因而得到广泛的应用。
但是,由于DDS数字化实现的固有特点,决定了其输出信号频谱杂散较大。
如何抑制DDS输出频谱中的杂散就成为了研究的热点。
从以下几个方面说明DDS的误差杂散来源:1.关于输出频率稳定性:DDS一般采用石英晶体振荡器作为它的参考激励源,DDS输出频率的稳定性和参考时钟的频率稳定性是一致的。
dds工作原理
dds工作原理
DDS(Direct Digital Synthesis,直接数字合成)是一种数字信
号处理技术,用于生成高精度和稳定的频率信号。
其工作原理如下:
1. 数字信号生成器(Digital Signal Generator)产生一个或多个
参考波形,例如正弦波、方波或锯齿波。
2. 参考波形经过一个数字相位累加器(Digital Phase Accumulator),用于控制信号的频率。
相位累加器接收一个
控制字(Control Word),该字定义了相位累加的步长。
较大
的步长将导致更高的频率。
3. 累加器的输出接入一个查找表(Look-up Table),用于产生离散的输出样本。
查找表包含一个周期的离散样本点,这些样本点代表了参考波形的电压值。
4. 查找表的输出连接到一个数字到模拟转换器(Digital-to-Analog Converter,DAC),将数字样本转换为模拟电压信号。
5. 模拟电压信号经过低通滤波器(Low-pass Filter),用于去
除高频噪音成分,保留期望的基频信号。
6. 输出的模拟信号可用于驱动各种应用,如通信系统、音频设备、医疗器械等。
DDS的优点包括频率稳定性高、可编程性强、频率分辨率高
等。
相比于传统的模拟信号合成方法,DDS技术更加灵活和精确。
它的主要应用领域包括频率合成、频谱分析、信号调制等。
ad9910原理
ad9910原理AD9910原理1. 简介AD9910是一款高性能的直接数字频率合成器(DDS),由ADI (Analog Devices Inc.)公司生产。
它能够快速生成高精度的频率和相位可调的信号,广泛应用于无线通信、雷达、医疗设备等领域。
2. DDS基本原理直接数字频率合成器(DDS)采用数字信号处理技术,通过数字控制相位累加器(Phase Accumulator)和频率控制字(Frequency Tuning Word)实现频率和相位调制。
•数字控制相位累加器:相位累加器是DDS的核心组件,它根据频率控制字决定每个时钟周期的相位增量,并将累加的相位值送入相位表(Phase Lookup Table)。
•频率控制字:频率控制字决定了每个时钟周期的相位增量的大小,它与目标输出频率相关。
3. AD9910内部结构AD9910集成了多个模块,包括相位累加器、数字与模拟转换器(DAC)、时钟发生器等。
相位累加器相位累加器以一个内部时钟(由时钟发生器提供)为基准,使用频率控制字确定相位增量大小,并生成一个相位累加序列。
数字与模拟转换器(DAC)相位累加序列经过数字与模拟转换器(DAC)转换为模拟信号,然后通过滤波器进行滤波,得到连续的输出信号。
时钟发生器AD9910内部集成了一个高性能的时钟发生器,可以根据需要生成高稳定性和低噪声的时钟信号,以提供给相位累加器和DAC使用。
4. 工作原理AD9910工作原理如下:1.用户通过SPI接口向AD9910写入频率控制字,确定所需输出频率。
2.AD9910的相位累加器根据频率控制字决定每个时钟周期的相位增量,并自动生成相位累加序列。
3.相位累加序列经过DAC转换为模拟信号,并通过滤波器得到连续的输出信号。
4.输出信号被放大、调制等处理后,用于对应应用领域。
5. 特点与应用AD9910具有以下特点:•高精度:采用32位相位累加器和14位DAC,能够实现很高的频率和相位分辨率。
EDA课程设计直接数字频率合成器(DDS)
,a click to unlimited possibilities
汇报人:
目录
01 添 加 目 录 项 标 题
02 D D S 的 原 理
03 D D S 的 硬 件 实 现
04 D D S 的 应 用
05 D D S 的 软 件 仿 真 与实现
06 D D S 的 优 化 与 改 进
医疗领域:用于 医疗设备的信号 处理和传输
军事领域:用于 雷达、通信、电 子对抗等设备的 信号处理
工业领域:用于 工业自动化设备 的信号处理和控 制
Part Five
DDS的软件仿真与 实现
软件仿真工具介绍
MATL AB:强大的数学计算和图形处理 能力,适合进行信号处理和仿真
Simulink:MATL AB的扩展工具,可以 进行系统级仿真,支持DDS模块
DDS的动态范围扩展
动态范围扩展原理:通过调整DDS的输出电压和频率,实现动态范围的 扩展 动态范围扩展方法:采用数字信号处理技术,如滤波、放大、压缩等
动态范围扩展效果:提高DDS的输出信号质量,降低噪声和失真
动态范围扩展应用:在通信、雷达、电子对抗等领域具有广泛应用
THANKS
汇报人:
DDS的频率分辨率优化
频率分辨率定义:衡 量DDS性能的重要参 数,表示输出信号的 频率精度和稳定度。
优化方法1:采用高 精度的参考时钟源, 提高时钟频率,减小 DDS的相位截断误差。
优化方法2:增加相 位累加器的位数,扩 大频率调制的范围, 提高频率分辨率。
优化方法3:采用数 字滤波技术,对DDS 输出信号进行滤波处 理,减小杂散分量, 提高频率分辨率。
实际应用:通过对DDS的相位噪声 进行降低,可以提高信号的纯度, 减小干扰和失真,从而提高通信、 雷达、电子对抗等系统的性能。
DDS原理及仿真
DDS原理及仿真DDS(Direct Digital Synthesis)直接数字合成是一种通过数字信号处理器(DSP)或者微处理器实现频率合成的方法,它可以生成高精度、稳定和可调节的连续频率信号。
DDS技术是一种广泛应用于无线通信、雷达、测量仪器等领域的频率合成技术。
本文将详细介绍DDS的原理及仿真方法。
DDS是通过以下几个基本组成部分来实现频率合成的:1. 相位累加器(Phase Accumulator):相位累加器是DDS的核心组件之一,它用于产生一个连续变化的相位信号。
相位累加器将一个初始相位值作为输入,并在每个时钟周期内按照设定的相位增量进行累加。
相位累加器的输出用于更新、控制数字控制振荡器(Digital Control Oscillator,DCO)的输出频率。
2. 数字控制振荡器(Digital Control Oscillator):DCO是DDS的另一个核心组件,它根据相位累加器的输出计算并产生一个数字化的频率信号。
DCO的输出被转换成模拟信号后为DDS系统提供频率源。
3. 相位加法器(Phase Adder):相位加法器主要用于将相位累加器输出的相位信号和相位修正信号进行相加,从而实现频率的调制或增强。
4. 数字控制字寄存器(Digital Control Word Register):数字控制字寄存器用于存储并传输DDS的相位增量值。
通过改变相位增量值,可以调节DDS系统的输出频率。
DDS仿真方法:DDS系统的设计和验证通常需要借助仿真工具来进行,以确保系统性能和可靠性。
下面介绍一种常用的DDS仿真方法。
1. 建立模型:首先,根据DDS系统的硬件规格和设计要求,建立一个仿真模型。
这个模型可以使用MATLAB、Simulink等建模软件来搭建,通过连线、添加模块等操作来构建一个完整的DDS系统。
2.添加输入信号:为DDS系统添加一个输入信号,该输入信号包含频率、幅度等参数,代表DDS的控制信号。
DDS技术及应用
4、 AD9851的应用举例 解:当外部参考时钟频率为30MHz的情况 下,如果要满足以下几种技术要求: (1)6倍参考时钟倍乘器工作; (2)相位置于11.25°; (3)选择power2up模式; (4)输出信号频率为10M Hz。
(8)相位可调,可接收来自单片机的5位相位控制字。
2 AD9851引脚功能
AD9851为28引脚表帖元件,其引脚 排列如下所示。
D0~D7,8位数据输入口,可给内部寄存 器装入40位控制数据。 PGND,6倍参考时钟倍乘器地。 PVCC,6倍参考时钟倍乘器电源。 W-CL K,字装入信号,上升沿有效。 FQ-UD,频率更新控制信号,时钟上升沿确 认输入数据有效。
fo=fc*K/2N
当K=1时,DDS为最小频率输出,则DDS的最小频率分 辨率可达:
Δf= fc*1/2N
四、DDS芯片9851功能介绍
1、AD9851主要特性如下:
(1)单电源工作(+2.7~+5.25V);
(2)工作温度范围-45~85℃; (3)低功耗,在180M Hz系统时钟下,功率为555mW。电源设置有
3.1基于FPGA正弦信号发生器
采用计数的方法产生地址信号,波形存 储器根据地址信号将数据读出,然后经过D/A 转换和滤波器将数字量转换为模拟信号;而 且还可以通过改变计数器的参数,改变地址 信号,实现频率连续可调。
基准时钟 (频率f)
计数(地 址发生器)
正弦波数据存 储ROM
D/A转换
滤波器
3.2直接数字频率合成(DDS)技术及应用
DDS的数学模型可归结为;在每一个时钟周期2兀内, 频率控制字K(FrequencyControlWords)与N比特相位累加器 累加一次,并同时对2N取模运算,得到的和(以N位二进制数 表示)作为相位值,以二进制代码的形式去查询正弦函数表 ROM,将相位信息转变成相应的数字量化正弦幅度值, ROM输出的数字正弦波序列再经数模转换器转变为阶梯模 拟信号,最后通过低通滤波器平滑后得到一个纯净的正弦模 拟信号。当DDS中的相位累加器计数大于2N时,累加器自动 溢出最高位,保留后面的N比特数字于累加器中,即相当于 做模余运算。可以看出:该相位累加器平均每2N /K个时钟周 期溢出一次。可见K和时钟频率f共同决定着DDS输出信号f 的频率值,它们之间的关系满足。
DDS是什么意思DDS结构DDS原理是什么
DDS是什么意思DDS结构DDS原理是什么DDS是Direct Digital Synthesis(直接数字合成)的缩写,是一种通过数字技术实现精确频率合成的方法。
它是一种基于数字信号处理的频率合成技术,通过数字计算产生具有可变频率和可控幅度的信号。
DDS结构是由相位累加器、频率控制字寄存器、相位修正器、乘法器和低通滤波器等组成。
其中,相位累加器是DDS结构的核心部分,用于积累上一个时刻的相位和当前时刻的相位增量。
频率控制字寄存器用于存储控制合成频率的参数,相位修正器用于实现相位的调整,乘法器用于将相位修正后的信号与合适的参考信号相乘,低通滤波器用于滤除乘法器输出中的高频成分,得到最终合成的信号。
DDS原理是基于一定的采样率对输入的频率和幅度进行数字化处理,将输入波形分成很多个小的时间片段,对每个时间片段进行采样,然后通过数学运算将这些离散的采样值合成为连续的波形。
具体来说,DDS原理包括以下几个步骤:1.选择合适的采样率:采样率决定了精度和频率范围。
一般来说,采样率应是合成频率的几倍,以确保能够包含足够的频率信息。
2.数字化输入信号:将输入信号经过模数转换器(ADC)转变为数字信号,以便在数字系统中进行处理。
3.相位累加器:相位累加器用于积累上一个时刻的相位和当前时刻的相位增量,根据相位累加器的值可以确定输出波形的相位。
4.频率控制:通过控制频率控制字寄存器中的参数,可以改变合成的频率。
5.相位修正:相位修正器用于对输出波形的相位进行修正,以消除相位误差。
6.乘法器:将相位修正后的信号与合适的参考信号进行乘法运算,得到合成的信号。
7.低通滤波器:为了得到平滑的输出信号,将乘法器输出的信号经过低通滤波器进行滤波,去除高频成分。
通过这些步骤,DDS可以实现高精度的频率合成,且合成频率范围广,精度高,输出稳定性好。
它在通信领域、测试仪器、测量设备等领域有广泛的应用。
dds数字式频率合成
dds数字式频率合成
数字式频率合成(DDS)是一种用数字信号处理技术生成精确频
率输出的方法。
它通常由相位累加器、相位转换器和数字控制振荡
器组成。
相位累加器用于累加一个固定的增量值,以产生一个不断
增加的相位值,而相位转换器则将这个相位值转换为对应的数字量,最后数字控制振荡器将这个数字量转换为模拟信号输出。
数字式频率合成具有以下优点:
1. 频率稳定性好,DDS技术可以实现非常精确的频率控制,输
出信号的频率稳定性高。
2. 调制灵活,DDS可以通过改变累加器的增量值来实现频率的
调制,因此调制灵活性强。
3. 相位连续性好,DDS可以实现相位的连续变化,因此在相位
控制方面表现优异。
4. 频率范围广,DDS可以实现从几赫兹到几千兆赫兹的频率范围。
然而,DDS也存在一些局限性:
1. 精度受限,DDS输出的精度受到数字量化误差的限制,可能
会引入非线性畸变。
2. 频率分辨率有限,DDS的输出频率受到数字量化的限制,因
此在高频率下可能会出现分辨率不足的问题。
3. 输出功率受限,DDS的输出功率受到数字控制振荡器的限制,可能无法满足一些高功率输出的需求。
综上所述,数字式频率合成技术在频率稳定性和调制灵活性方
面具有优势,但在精度、频率分辨率和输出功率方面存在一定局限性。
在实际应用中,需要综合考虑这些因素来选择合适的频率合成
方法。
dds开背流程
dds开背流程
DDS开背流程。
DDS(Direct Digital Synthesis)是一种数字频率合成技术,它可以通过数字信号直接生成高精度的频率输出。
在无线通信、医疗设备、雷达系统等领域有着广泛的应用。
DDS开背流程是指在设计和制造DDS芯片时,需要进行的一系列工艺步骤,以确保芯片的正常工作和性能稳定。
下面将详细介绍DDS开背流程的具体步骤。
首先,DDS芯片的设计是整个流程的第一步。
设计人员需要根据产品需求和技术规格,确定DDS芯片的功能模块、电路结构和布局。
在设计过程中,需要充分考虑电路的稳定性、抗干扰能力和功耗等因素,以确保芯片的性能和可靠性。
接下来是芯片制造的准备工作。
制造工艺包括芯片的掩模制作、光刻、蚀刻、离子注入、金属化等步骤。
在这个阶段,需要严格按照设计要求和工艺标准进行操作,确保芯片制造的精度和质量。
然后是芯片的封装和测试。
封装是将芯片封装在塑料或陶瓷封装体中,以保护芯片并方便与外部电路连接。
测试是在芯片制造完成后,对芯片进行功能和性能测试,以验证芯片的工作状态和参数是否符合设计要求。
最后是芯片的质量控制和验证。
质量控制是指对芯片制造过程中的各个环节进行监控和管理,以确保芯片的质量稳定和可靠。
验证是指对芯片的性能和参数进行全面的验证和测试,以确保芯片的性能符合产品需求。
总的来说,DDS开背流程是一个复杂而严谨的工艺流程,需要设计、制造、封装、测试和验证等多个环节的协同配合。
只有严格按照流程要求进行操作,才能保证DDS芯片的质量和可靠性。
直接数字频率合成知识点汇总(原理_组成_优缺点_实现)
直接数字频率合成知识点汇总(原理_组成_优缺点_实现)直接数字频率合概述DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。
DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。
DDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术。
直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。
此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。
因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。
直接数字频率合成原理工作过程为:1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。
2、两种方法可以改变输出信号的频率:(1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。
(2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。
步长即为对数字波形查表的相位增量。
由累加器对相位增量进行累加,累加器的值作为查表地址。
3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。
直接数字频率合成系统的构成直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。
其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。
DDS的实质是对相位进行可控等间隔的采样。
直接数字频率合成优缺点优点:(1)输出频率相对带宽较宽输出频率带宽为50%fs(理论值)。
但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。
(2)频率转换时间短DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。
dds
直接数字频率合成(Direct Digital Frequency Synthesis,DDS)技术是一种新的全数字的频率合成原理,它直接从相位出发合成所需的波形。
其建立在采样定理的基础上,首先对需要产生的波形进行采样,将采样值数字化后存入存储器作为查找表,然后再通过查表将数据读出,经过D/A转换器转换成模拟量,把存入的波形重新合成出来。
它具有频率切换速度快、频率分辨率高、相位可连续线性变化、生成的正弦/余弦信号正交特性等特点,并且其数字压控振荡器NCO的相位、幅度均得以数字化。
1 DDS基本工作原理DDS主要由相位累加器、波形存储器、数模转换器、低通滤波器构成,如图1所示。
其中,相位累加器由N位加法器与N位累加寄存器级联构成,如图2所示。
每当输入一个采样时钟脉冲,相位累加器的输出就增加一个步长的相位量B△θ,在波形存储器中存储着一张正弦函数查询表,对应不同的相位码输出相位不同的幅度编码。
D/A转换器将数字量形式的波形幅值转换成模拟量形式。
低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。
相位累加器是整个DDS的核心,它的输入是相位增量B△θ,而B△θ与输出频率fout的关系是:B△θ=2N·(fout/fclk)。
相位累加器的输入即是频率字输入,当系统基准时钟fclk为2N时,B△θ就等于fout。
频率字输入经过一组同步寄存器,使得当频率字改变时不会干扰相位累加器的正常工作。
2正弦频率源设计本文设计的软件正弦频率源是基于DDS技术的正弦信号发生器和任意序列信号发生器,其设计框图如图3所示。
其中,正弦ROM查找表完成fsin(Bθ)的查表转换,它的输入是相位调制器的输出,事实上就是ROM的地址值,输出送往D/A,转化成模拟信号。
由于相位调制器的输出数据位宽M也是ROM的地址位宽,因此在实际的DDS结构中N往往很大,而M总为10左右,M太大会导致ROM容量的成倍上升。
3任意序列信号发生器设计要实现数字调制,正弦频率源模块还需要产生序列信号,如伪随机序列,其在扩频通信系统中起着十分关键的作用。
dds信号发生器原理
dds信号发生器原理DDS信号发生器原理DDS信号发生器,即直接数字频率合成技术(Direct Digital Synthesis),是一种用于产生高精度、高稳定度的周期性信号的设备。
它广泛应用于电子测试、通信、测量以及科学研究等领域。
本文将从原理的角度介绍DDS信号发生器的工作原理及其优势。
一、原理概述DDS信号发生器的原理基于数字频率合成技术,它通过数字方式产生信号,相比于传统的模拟方式,在频率和相位的精度、调制能力等方面具有更大的优势。
其基本原理如下:1. 频率控制器:DDS信号发生器内部有一个频率控制器,它用于确定输出信号的频率。
频率控制器通常由一个晶振或参考信号源提供参考频率,然后经过频率分频器、多路选择器等模块,最终生成所需的输出频率。
2. 数字信号发生器:DDS信号发生器内部还有一个数字信号发生器,它用于产生数字信号。
数字信号发生器通常由一个相位累加器和一个查表器组成。
相位累加器负责累加相位,查表器根据累加器的值查找对应的幅值,从而实现信号的产生。
3. 数模转换器:DDS信号发生器的输出通常是一个数字信号,为了将其转换为模拟信号,需要通过一个数模转换器。
数模转换器将数字信号转换为模拟信号,然后经过滤波器等模块进行进一步处理,最终得到所需的模拟输出信号。
二、工作原理DDS信号发生器的工作原理可以分为以下几个步骤:1. 设置频率:用户通过界面或命令设置所需的输出频率,这个频率会被输入到频率控制器中。
2. 相位累加:频率控制器接收到用户设置的频率后,将其转换为相位累加的速度。
相位累加器开始从初始相位开始逐渐累加,累加的速度由频率控制器控制。
3. 查表输出:相位累加器的输出值会作为查表器的输入,查表器根据输入值在查表表格中查找对应的幅值,并输出。
4. 数模转换:查表器的输出是一个数字信号,为了得到模拟输出信号,需要通过数模转换器进行转换。
数模转换器将数字信号转换为模拟信号,并经过滤波器等模块进行进一步处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DDS直接数字频率合成技术
2, 采用分立IC电路系统实现,一般有CPU, RAM, ROM, D/A, CPLD, 模拟滤波器等组成
3, CPLD,FPGA实现
•用QuartusII采用原理图输入来完成顶层设计。 •相位累加器调用lmp_add_sub加减法器或用HDL实现 •波形存储器(ROM)通过调用lpm_rom元件实现,其LPM_FILE 的值*.mif是一个存放波形幅值的文件。注意,利用波形幅值的奇、 偶对称特性,最多可以节省3/4的资源。 •频率控制字与频率之间的转换可以调用乘除法模块实现 •波形存储器设计主要考虑的问题是其容量的大小,这是非常可观 的。
统输出一个正弦波。
▪输出正弦波周期
T0
Tc 2N M
▪输出正弦波频率
fout
M
fc 2N
DDS直接数字频率合成技术
▪M与输出fout和fC之间的关系
M ( fout 2N ) fc
0 M 2N 1
▪DDS的最小分辨率 通常用频率增量来表示频率合成器的分辨率
fout
M
fc 2N
M=1
f m in
DDS直接数字频率合成技术
直接数字频率合成技术 (DDS)
DDS直接数字频率合成技术
DDS或DDFS 是 Direct Digital Frequency Synthesis 的简称
1971年,由J.Tierney 和C.M.Tader 等人ቤተ መጻሕፍቲ ባይዱ “A Digital Frequency Synthesizer”一文中首次提出了DDS的概念。
12
超宽的相对宽带
超高的捷变速率(可实现跳频)
超细的分辨率
相位的连续性
输出波形灵活
可编程全数字化
杂散来源主要有:相位累加器相位舍位误差 造成的杂散;幅度量化误差(由存储器有限
字长引起)造成的杂散和DAC非理想特性造
但存在杂散大的缺点 成的杂散。
频率上限目前还只能达到数百兆
(主要是受DAC速度的限制)
DDS直接数字频率合成技术
时钟频率为fc, 若累加器按步进M累加直至溢出,称M 为频率控制字。
高P位作为地址
ROM
······
波形数据 累加
频率控制字M
DDS直接数字频率合成技术
▪相位累加器
DDS系统的核心是相位累加器,它 由一个加法器和一个相位寄存器组成; 每来一个时钟,相位寄存器以步长增 加,相位寄存器的输出与频率控制字 (M)相加,然后输入到正弦查询表地址 上。
▪正弦查询表
正弦查询表包含一个周期正弦波的数字幅度信息,每个 地址对应正弦波中 0~360o 范围的一个相位点。查询表把输入 的地址相位信息映射成正弦波幅度的数字量信号,驱动DAC, 输出模拟量。
公式:x=sin(a*pi/180)*1024+128
DDS直接数字频率合成技术
➢DDS参数计算
相位寄存器每经过2N/M 个 fC 时钟后回到初始状态,相 应地正弦查询表经过一个循环回到初始位置,整个DDS系
数字系统设计实践——DDS
实验项目2:DDS信号源设计
利用FPGA+DAC,设计一个DDS信号发生器。 要求:分辨率优于1Hz
ROM表长度8位、位宽10位 输出频率优于100kHz(每周期大于50个点) 显示信号频率/频率控制字(可切换) 直接输入频率控制字或输出频率 问题:相位累加器、频率控制字?位 时钟频率 ? Hz( DAC为THS5651,10位) 如何显示输出频率? 如何根据输出频率计算频率控制字? 说明:实验箱已升级
➢实现DDS的几种技术方案 1, 采用高性能DDS单片电路的解决方案 Qualcomm公司的Q2368的时钟频率为130MHz,分辨率为 0.03Hz,杂散控制为-76dBc,变频时间为0.1μs; Sciteg公司的ADS-431:1.6GHz,分辨率1Hz,杂散-45dB Micro Linear公司的ML2035:输出频率为直流到25kHz AD公司的AD98xx系列
fc 2N
这个增量也就是最低的合成频率
DDS直接数字频率合成技术
▪DDS的最大合成频率
最高的合成频率受奈奎斯特抽样定理的限制
f0max
fc 2
在实际运用中,为了保证信号的输出质量,输出频率 不要高于时钟频率的33%,以避免混叠或谐波落入有用输出 频带内。
DDS直接数字频率合成技术
➢DDS的特点
▪改变输出信号的频率:
(1) 改变查表寻址的时钟频率, 改变输出波形的频率. (2) 改变寻址的步长,改变输出信号的频率—DDS。 步长即为对数字波形查表的相位增量.由累加器对相位增量进行累加,累加器的 值作为查表地址.
DDS直接数字频率合成技术
设相位累加器的位宽为N, Sin表的大小为2p,累加器的 高P位用于寻址Sin表.
特点: ▪ 通常将此视为第三代频率合成技术
▪ 它从”相位”的概念出发进行频率合成 ▪ 这种方法不仅可以产生不同频率的正弦波,而且可以控 制波形的初始相位
▪ 还可以用DDS方法产生任意波形(AWG)
DDS直接数字频率合成技术
➢DDS原理
▪工作过程:
将存于数表中的数字波形,经D/A转换器和滤波,形成模拟量波形.