导体直流电阻不确定度评定报告修订稿
导体直流电阻测量不确定度评定研究
《装备维修技术》2020年第18期—15—导体直流电阻测量不确定度评定研究任国骏 张宏林(秦皇岛市质量技术监督检验所,河北 秦皇岛 066004)1 导体直流电阻测量不确定度因素分析1. 1 试验环境温度GB /T 3048. 4—2007中规定 :型式试验时试样应在温度(15~25 ) ℃和湿度不大于 85%的试验环境中放置足够长时间,在试样放置和试验过程中,环境温度变化应不超过±1 ℃。
温度计距离地面不少于1m,距离墙面不少于10cm,距离试样不超过1m,且二者大致在同一高度,避免受热辐射和空气对流影响。
另本文讨论的内容属于型式试验范畴,对标准中涉及的例行试验内容不作分析。
2007版标准作出了修改和完善,比较重要的一点是将“测量时的环境温度”修改为“测量时的导体温度”。
由于技术有限,只能用环境温度代替导体温度 ,但测试过程中环境温度一直处于波动中 ,测试温度的取值也是本文讨论的一个重要方面。
1. 2 测试设备直流电阻测试一般采用电桥法,主要分单臂电桥及双臂电桥。
双臂电桥测试范围: (2 ×10-5~99. 9) Ω ,单臂电桥:(1~100) Ω。
对于电线电缆导体电阻型式试验而言,应采用双臂电桥。
目前最经典的小电阻测量电桥仍为36型电桥,本文重点讨论其测量系统中各个因素带来的不确定度的评定。
36型电桥测试系统一般包含:电桥系统、测温系统、夹具装置,这也是影响不确定度的主要因素。
2导体电阻测量不确定度数学模型的建立电线电缆导体直流电阻测试按照GB /T 3048. 4—2007,其对试验设备、试样制备、试验程序和试验结果及计算都有详细的阐述。
数学模型可以参考电阻计算公式,如下:120201000)20(1L t R R i i ∙-+=α (1)式中, R 20为20 ℃时每公里的导体电阻(Ω /km) ; R 为在温度为t i ℃、长度为L i 时导体电阻(Ω ) ;α20为20 ℃时导体电阻温度常数(1 /℃)。
电线电缆导体直流电阻测量不确定度分析
电线电缆导体直流电阻测量不确定度分析摘要:根据GB/T 3048.4-2007标准,对导体直流电阻进行了测量,通过对影响测量不确定度的分量进行分析,评定导体直流电阻测量不确定度。
关键词:电线电缆导体;直流电阻测量;不确定度导体直流电阻是电线电缆导体中极重要的检测项目,电线电缆导体导体直流电阻越小越好,要想更好的了解和掌握电线电缆的质量状况,就需要对线电缆导体的直流电阻进行准确测量。
日常检测工作获得的直流电阻数值,为被测量的近似值。
为了评价其准确性与可靠度,就需对其不确定度进行评定,根据测量不确定度的影响因素,通过各个分量的评定,合成标准不确定度。
1.试验过程1.1试验设备和试样本试验采用QJ36S导体电阻测试仪,钢直尺、JM222温度计、GJWS-B2温湿度表等仪器设备。
1.2试验方法和条件测试方法:按照GB/T 3048.4-2007要求,利用QJ36S导体电阻测试仪进行试验。
试验条件:温度20.2℃,湿度60%。
2.电线电缆导体直流电阻测量不确定度分析2.1数学模型的建立按照GB 3048.4-2007《电线电缆电性能试验方法第4部分:导体直流电阻试验》,来进行导体直流电阻测量,其中每km长度电阻在20℃时的测量公式如下: 2.2不确定度来源测量不确定度是“表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。
在电线电缆导体直流电阻测量结果中,通常需要给出相应的不确定度导体直流电阻测量不确定度包括A类和B类评定,对重复性的测量值(RX)进行统计学分析,并对其标准不确定度进行计算的方法称A类评定;电线电缆导体直流电阻测量时,由于设备、环境、人员素质等无法进行重复测量时,此时不能由A类评定获取不确定度,这样就可以选择非统计方法进行评定,即所谓的B类评定方法。
在对电线电缆导体直流电阻测量过程中所产生的不确定度来源包括了下述几个方面:(1)测量结果(RX)引入的标准不确定度分量;(2)长度(L)引入的标准不确定度分量;(3)温度(t)引入的标准不确定度分量。
电线电缆产品质量检验中导体直流电阻测量不确定度评定.pdf_...
v3 =
1 1 = = 50 2 2 ( t) 2× ( 0. 1 ) Δu 2 u ( t)
[
]
4. 4
u rel 4 的计算 测量时, 环境温度在 ± 0. 2℃ 范围内按均匀分 布
变化, k =ヘ 3, 当 t = 23. 0℃ 时, 0. 2 3 u rel 4 = ヘ = 0. 5 × 10 - 2 23. 0 估计 v4 = ( t) Δu = 10% , 其自由度 v 4 为 u ( t)
- 0. 228 × 10 - 5 0. 0520 × 2 ( 10 - 5 )
2 2 2 2 2 0. 0973 × ( 10 - 5 ) 0. 3745 × ( 10 - 5 ) 0. 2381 × ( 10 - 5 ) 0. 0973 × ( 10 - 5 ) 0. 2683 × ( 10 - 5 )
原子吸收分光光度法 B 类评价 不确定度来源 标准溶液浓度 容量瓶 分刻度管 标准不确定度评定 有标准溶液给出 按 6. 2. 1 进行 按 6. 2. 1 进行
u Arel ヘ
2
+ u Blrel 2 + u B2rel 2 + u B3 rel 2 ( 45 )
式中, C 标 为 标 准 溶 液 的 浓 度; y A样 样 品 测 定 仪 y A 标 为 标 准 仪 器 响 应 信 号。 y A 标 可 多 器响应信号值; 次进样测试后获得, C 标 / y A 标 即为响应因子。 3. 5. 2 3. 5. 3
5
5. 1
相对合成标准不确定度评定
相对标准不确定度一览表
= 6. 4 %6 4. 2 u rel 2 的计算 温度 计 分 度 值 0. 1℃ , 最 大 允 许 误 差 ± 0. 2℃ , 在半宽 ± 0. 2℃ 范 围 内 服 从 均 匀 分 布, k =ヘ 3, 当t= 23. 0℃ 时, 0. 2 a k 3 = = ヘ = 0. 5 × 10 - 2 t 23. 0 ( t) Δu = 30% , 其自由度 v 2 为 u ( t)
直流双臂电桥测量导体电阻的不确定度评定
1.测量方法在测试室温度恒定时对BV2.5mm 2的聚氯乙烯绝缘电线的导体电阻进行检测。
电桥测试档置于×0.1档,该档示值误差为±0.5%R t 。
R t 读数为7.332×10-3Ω,仪器分度值为5×10-6Ω。
温度计示值误差为±0.1℃,温度计读数22.0℃。
2.数学模型t R Lt R 10005.2345.25420⨯+= t —试验时的摄氏温度(℃)L —被测导体测试段的长度(m)R t —仪器测得的导体电阻读数3.不确定度传播律:()L u R u t t u R u rel t rel rel 22220)(5.234)()(++⎥⎦⎤⎢⎣⎡+= 4.标准不确定度的评定4.1 )(t u 的评定温度计示值误差为±0.1℃,校准证书未给出置信概率,故取k=205.01.0)(==kt u ℃ 4.2 )(t rel R u 的评定因仪器说明书未说明置信概率,故取k=23105.2%5.0)(-⨯==kR u t rel 4.3 )(L u rel 的评定导体测试段长度的误差不会超过1mm ,估计为均匀分布,3=k4108.53/001.0)(-⨯==L u rel5.相对合成标准不确定度)(20R u rel ()2423220108.5)105.2(225.23405.0)(--⨯+⨯+⎪⎭⎫ ⎝⎛+=R u rel =0.25%6..相对扩展不确定度)(20R U rel取包含因子k=2)(20R U rel =2×0.25%=0.5%7.测量不确定度报告R 20=7.27Ω/km )(20R U rel =0.5% k=2 名句赏析不限主题不限抒情四季山水天气人物人生生活节日动物植物食物山有木兮木有枝,心悦君兮君不知。
____佚名《越人歌》人生若只如初见,何事秋风悲画扇。
____纳兰性德《木兰词·拟古决绝词柬友》 十年生死两茫茫,不思量,自难忘。
导体直流电阻测量不确定度分析
测试电流 2A ; 双臂电桥测量范围 10- 6 ~ 1028 , 最大允许误差 010000028。
2 测试结果的不确定度评定
211 建立数学模型
R20=
1+
Rx A20( t -
20) #10L00
= 2719 @ 10- 6 8
合成标准不确定度计算为:
uc ( R 20) = uc 2( R 20) = 0100538 214 扩展不确定度
在接 近 矩 形 分 布 条 件 下, 置 信 概 率 近 似 为 95% , k 95= 1165
扩展不确定度计算并修约为:
U95 ( R 20 ) = kp
参考文献: [ 1] G B/ T 3048- 94, 电线电缆电性能试验方法 [ 2] JJG 1059- 1999, 测量不确定度评定与表示 [ 3] 施文康, 余晓芬 1 检测 技术 1 北 京: 机械 工业出 版社,
2 00 0 [ 4] 印永福 1 电线电缆手册 1 北京: 机械工业出版社, 2001
式中, R 20为 20 e 时每公里长度电阻值, 8 ; Rx 为测量长度、测量温度下的电阻值, 8; L 为试样的 测量长度, m; t 为测量时的环境温度, e ; A20为导体 材料 20 e 时的电阻温度系数, 1/ e 。 212 导体直流电阻 R 20不确定度评定
分量 L 、t 、Rx 互不相关, 分别对影响量作不确 定度分析
来源进行了分析, 并对各个分量作了评定、合成, 得出导 体直流电阻的合成不确定度。
关键词: 导体; 直流电阻; 不确定度
中图分类号: T B97
导体直流电阻测量的不确定度
导体直流电阻测量的不确定度
1、目地
合理评估导体直流电阻测量结果的不确定度
2适用范围本公司导体直流电阻测量不确定度的评定
3、仪器设备及相关技术指标
仪器设备:TH2512B氐电阻测试仪
示值偏差:土0.1%+3 样品:2.5mn2铜芯线
4、测量不确定度来源分析
导体直流低电阻测量不确定度的来源主要有
①测量误差
②设备的示值偏差
5、标准不确定度的评定
由于环境温度,供电电压波动,人员读书等因素的影响,会造成测量结果的分散性,事先用低电阻测试仪对铜芯线样品进行次重复测量,测得数据如下:
用贝塞尔公式计算单次测量偏差
壯丄13+121+7.14丰7.14+7」6+7.15+7.13+?」4+7」3+7.15 二]148MQ
10
1 2 夕丁
s (x) = J (7.13-7348) X3+(7」4-X3+(7J5-7J48) ^(7.16-7.148) +(7.21-7.148)
10-1
=0. 00057
标准不确定度:
U(x)0. 00057
二0. 00018
6、设备的示值偏差标准不确定度分量的评定
低电阻测试仪最大的值偏差土0.1% 包含因子取方X7.148MQ = 0.004MQ
7、直流电阻测量合成标准不确定度
J 0.0001S2+ 0.004" =0 0126MQ
8直流电阻的测量扩展不确定度(K=2)
U 二0,0126X2 二0.025MQ。
电力电缆导体直流电阻测量不确定度评定
电力电缆导体直流电阻测量不确定度评定电力电缆导体直流电阻测量不确定度评定一、概述1.1 目的评定标称截面面积mm 2的电力电缆的单芯铜导体在温度20±0.5℃,空气湿度≤75%时,导体直流电阻测量的不确定度。
1.2 检测依据的标准GB 3048.4-2007《电线电缆电性能试验方法第4部分:导体直流电阻试验》。
1.3 检测使用的仪器设备(1) 双臂电桥,型号:QJ36,准确度等级:0.02级;(2) 标准电阻,型号:BZ3,准确度等级:0.01级; (3) 水银温度计,最大允许误差±0.2℃; (4) 专用四端夹具。
1.4 检测程序从被试电线电缆上切取长度不小于 m 的试样,去除试样导体外表面的绝缘、护套或其它覆盖物,露出导体。
在试样接入测量系统前,清洁其连接部位的导体表面,去除附着物和油垢,连接处表面的氧化层应尽可能除尽后。
将铜导体试样固定在专用四端夹具上,双臂电桥的四个测试端与导体两端可靠连接后闭合直流电源开关,仪器完成预热后开始测试。
调节电桥平衡,读取电桥读数,记录至少四位有效数字,当试样的电阻小于0.1Ω时,应用相反方向电流在测量一次,读取读数。
关闭试验电源后测量夹具电压极之间铜导线的实际长度并记录,记录环境温度,将测量结果折算到20℃。
1.5 不确定度评定结果的应用符合上述条件或十分接近上述条件的同类测量结果,一般可以参照本例的评定方法。
二、数学模型测量结果由以下公式计算得到:lR R R t R s x 1)20(00393.011120??-+=(1)式中:R 20x ——铜导体20℃时每公里电阻测量值,Ω/km ;t ——环境温度测量值,℃; R ——电桥测量读数,Ω; R 1——电桥内部电阻,Ω; R s ——标准电阻,Ω;l ——电压极导体间的长度,m 。
由于测试时温度可以控制在(20±0.5)℃范围内,1)20(00393.011≈-+t ,则式(1)可简化为:1111201--=?≈l R R R lR R R R s s x (2) 三、灵敏系数考察式(2)可知,被测量铜导体20℃时每公里电阻测量值R 20x 为相互独立的输入量R 、R 1、R s 、l 的线性函数。
直流电阻箱、直流电桥校准装置不确定度分析报告
直流电阻箱、直流电桥校准装置测量不确定度分析技术报告1、测量方法(依据JJG125-1986《直流电阻》、JJG166-1993《直流电阻器》、JJG484-1987《直流测温电桥》)用恒流源数字表法对0.01级直流电阻箱和0.02级直流电桥依据检定规程进行检定。
2、数学模型在恒流源上,直流电阻值的实际值可表达为:R X=(u x/u N)·R N式中:ux—数字多用表测量被检电阻上的电压值u N—数字多用表内附标准电阻上的电压值R N——内附标准电阻值3、方差和传播系数下面以直流电阻箱的×10000盘的第10点示值误差校准的测量不确定度为例进行分析,被检直流电阻箱的准确度等级为0.01%,设R N=104Ω,R X=105Ω,I=0.1mA,则:u X=10V,u N=1V。
传播系数:C(u X)= f/ u X= R N/u N=104 (A-1)C(R N)= f/ R N= u X/u N=10/1=10C(u N)= f/ u N= -(u X·R N)/(u N)2= -10×104/12= -105 (A-1)方差:u2(R X)=C2(u X)·u2(u X)+C2(u N)·u2(u N)+C2(R N)·u2(R N)=108u2(u X)+1010u2(u N)+102u2(R N)45、计算分量标准不确定度5.1、由数字多用表的测量内附标准电阻时的测量误差给出的不确定度分量u15.1.1 由数字多用表分辨力给出的不确定度分量u116位半数字多用表分辨力为1µV,属均匀分布,故u11=1/2√3 =0.29µV,自由度:γ11=∞5.1.2由数字多用表的量化误差给出的不确定度分量为u126位半数字多用表量化误差为±1个字,其半宽1µV为均匀分布,故:u12=1/√3 =0.58µV,自由度:γ12=∞5.1.3由电流漂移给出的不确定度分量为u13在数字多用表测量内附标准电阻时,电流漂移的影响小,数量级为2µV,属均匀分布,故:u13=2/√3=1.15µV,自由度:γ13=∞5.1.4 由恒流源的调节细度给出的不确定度分量u33恒流源给出的调节细度1μV,认为其属均匀分布,故u14=1/√3=0.58μV,估计其相对不确定度为10%,自由度:γ14=0.5(10%)-2=50以上四项不相关:合成得:u12=u112+u122+u132+u142=0.292+0.582+1.152+0.582=2.0794(μV)2u1=1.44μV 自由度:γ1=∞5.2. 由数字多用表测量被检电阻时的测量误差给出的不确定度分量u25.2.1 由数字多用表的分辨力给出的不确定度分量u216位半数字多用表分辨力为10μV,属均匀分布,故:u21=10/2√3=2.89μV,自由度:γ21=∞5.2.2 由数字多用表的量化误差给出的不确定度分量为u226位半数字多用表量化误差为±1个字,其半宽10μV为均匀分布,故:u22=10/μV,自由度:γ22=∞5.2.3 由数字多用表的输入阻抗给出的不确定度分量为u236位半数字多用表的输入阻抗10GΩ,其误差最大值为100μV,属于三角分布,故:u23=100/√6=40.82,自由度:γ23=∞5.2.4 由数字多用表的线性度给出的不确定度分量u246位半数字多用表线性误差为50μV,属均匀分布,故:u24=50/√3=28.87,自由度:γ=∞245.2.5 由电流漂移给出的不确定度分量为u25在数字多用表测量被检电阻时,电流漂移的影响较大,最大值为8μV,属均匀分布,故:u25=8/√3=4.62μV,自由度:γ25=∞5.2.6 由恒流源的调节细度给出的不确定度分量u26恒流源给出的调节细度1μV,认为其属均匀分布,故:u26=1/√3=0.58μV,估计其相对不确定度为10%,自由度:γ26=0.5(10%)-2=505.2.7 由恒流源负载调整率给出的不确定度分量u27恒流源技术指标给出负载调整率最大值8µV,认为其属均匀分布,u27=8/√3=4.62µV,估计其相对不确定度为10%,自由度:γ27=0.5(10%)-2=50以上七项不相关,合成得u22= u212 +u222+ u232+u242+u252+u262+u272=2.892+5.772+40.822+28.872+4.622+0.582+4.622=2584.4195(μV)2u2=50.84μV自由度:γ2=u2/(u264/50+u274/50)=50.844/(0.584/50+4.624/50)=7330215.3、恒流源内附标准电阻R N给出的不确定度分量u45.3.1 R N实际值的传递不确定度分量u31恒流源内附标准电阻,利用Ⅰ等标准电阻及恒流源数字表法进行测定,其量值传递的扩展不确定度为u31=10×10-6,检定R N=104Ω时,U=10-5×104=0.1Ω,认为其均匀分布,故:u31=0.1/Ω,自由度:γ31=∞5.3.2 R N稳定性给出的不确定度分量u32由于恒流源内附标准电阻,可利用Ⅰ等标准电阻很方便地随时进行跟踪比对。
电线电缆导体电阻测量结果的不确定度评定
电线电缆导体电阻测量结果的不确定度评定作者:曾立英来源:《中国科技博览》2014年第14期摘要:本文简要介绍了测量不确定度的概念与重要性,并以固定布线用无护套电缆为例分析了导体电阻测量不确定度的来源和评定程序,同时以本实验室实际测试条件,对试验过程中影响测定结果的各不确定分量进行了评定。
关键词:测量不确定度、电缆、导体电阻、不确定评定、标准不确定度、相对标准不确定度【分类号】:TM73㈠、引言导体电阻检测对于评价电线电缆质量,是极其重要的测试项目。
通常情况下,是要求电线电缆中的导体电阻越小越好,因为这样可以减少电力在线路中的损耗,同时可降低导体发热量,延缓绝缘材料老化,降低线路安全隐患。
一些非法的电线电缆厂家为了牟取利益而制造不合格产品销售,这就决定了电线电缆在进入市场前必须经过科学合理的检测,才能保证产品质量。
现代实验要求不仅对电线电缆中导体电阻的测量要求准确,同时应给出测量不确定度,便于各方了解和比较测量结果的质量。
㈡、测量不确定度的概念与重要性按照新修订的2013年6月实行的标准JJF1059.1-2012《测量不确定度评定与表示技术规范》,测量不确定度简称不确定度,是表征赋予被测量值分散性的非负参数,一般由若干分量组成,其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类进行评定,并用实验标准偏差表征。
而另一些分量则可根据经验或其它信息假设的概率分布,按测量不确定度的B类进行评定,也用标准偏差表征。
测量不确定度包括由系统影响引起的分量,如与修正量和测量标准所赋量值有关的分量及定义的不确定度,此参数可以是诸如称为标准测量不确定度的标准偏差(或其特定倍数)或是说明了包含概率的区间半宽度。
由于经济全球化的需要,以国际通用准则进行测量不确定度评定是世界各国进行国际交流的需要。
为此,中国合格评定国家认可委员会CNAS-CL01:2006《检测和校准实验室能力认可准则》(等同采用国际通用的ZSO/IEC17025:2005)明确要求检测和校准实验室应具有并应用评定测量不确定度的程序和能力。
电线电缆导体直流电阻测量不确定度的评定及分析
机电工程技术2019年第48卷增刊S1DOI:10.3969/j.issn.1009-9492.2019.S1.021电线电缆导体直流电阻测量不确定度的评定及分析欧阳湘璋(广州南洋电缆有限公司, 广东广州 511356)摘要:导体直流电阻是反映电线电缆产品质量的重要指标,只有准确的测量数据才能正确评价出产品的质量。
测量的质量既影响产品的质量,也影响公司企业的经理利益,在报告测量结果时应给出测量的不确定度,便于使用者判断结果的可信程度。
因此,本文按JJF 1059—2012《测量不确定度评定与表示》对导体直流电阻项目测量过程的不确定度影响因素进行分析,确定标准不确定度分量,评定合成标准不确定度和扩展不确定度,给出测量不确定度评定报告,才能做出对测量结果的准确判断。
关键词:导体电阻;测量不确定度;导体直流电桥中图分类号:TM24 文献标识码:A 文章编号:1009-9492(2019)S1-0050-021测量方法和设备电线电缆导体直流电阻测试依据GB/T 3048.4—2007《电线电缆电性能试验方法第4部分:导体直流电阻试验》中规定:型式试验时测量应在环境温度为15~25℃和空气湿度不大于85%的室内进行,在试样放置和试验过程中温度的变化应不超过±1℃。
本文讨论的内容属于型式试验的范畴,对标准中涉及到的例行试验部分内容不作过多分析。
由于目前的测试技术有限,标准中规定“测量时的导体温度”只能用环境温度代替导体温度。
本次测试采用样品为一般用途单芯硬导体无护套电缆(BV 2.5mm2)为试样,在恒温实验室中恒温24h后,使用DZ-3直流电阻电桥进行导体直流电阻测量,采用分度值为0.1℃的玻璃水银温度计测量试验温度。
测试条件为:环境温度 23.5℃,湿度65%;测试电流1A;双臂电桥测量范围最大200mΩ;最大允许误差±0.5%。
2测试结果的不确定度评定2.1建立数学模型()式中:R20—20℃时每公里长度电阻值,Ω/km;R x—测量长度、测量温度下的电阻值,Ω;L—试样的测量长度,m;t—测量时的环境温度,℃;—导体材料20℃时的电阻温度系数,1/℃。
大截面铝导体直流电阻测量不确定度的评定
大截面铝导体直流电阻测量不确定度的评定摘要:本文分析了大截面铝导体电线电缆导体电阻检测结果测量不确定度的主要来源,介绍了导体电阻测量不确定度的评定步骤和方法并给出了评定结果。
关键词:大截面铝导体;电线电缆;导体电阻;不确定度;The Uncertainty Evaluation For The Conductor DC Resistance Of Large Cross-Section Aluminum Conductor Electric CablesAbstract: The components affecting the uncertainty for the conductor DC resistance of large cross-section aluminum conductor electric cables were analyzed in this paper. It discusses the calculating process and the methods of this uncertainty measurement; the result of the evaluation is given also.Key words: large cross-section; electric cable; conductor DC resistance; uncertainty evaluation;1 概述导体电阻是各类电气装备用电线电缆的重要性能指标,反映了其传输电能的能力,也是电线电缆例行试验中不可或缺的检验项目。
如今金属导体材料直流电阻的测量已有比较成熟的试验方法,多使用双臂电桥进行测量,采用四端式夹具连接被测试样。
除通过各种手段提高检测精度外,为得到更为精确的测量值,根据目前中国实验室国家合格评定国家认可委员会(CNAS)的要求、以及目前国际上对测量不确定度的关注,要求检验机构在出具测量结果的同时出具不确定度报告,以评定测量值的可靠性、可信性、可比性和可接受性。
电线电缆导体直流电阻测量不确定度的评定及分析
电线电缆导体直流电阻测量不确定度的评定及分析摘要:科技在不断的发展,社会在不断的进步,我国的综合国力在不断的加强,导体直流电阻是反映电线电缆产品质量的重要指标,只有准确的测量数据才能正确评价出产品的质量。
测量的质量既影响产品的质量,也影响公司企业的经理利益,在报告测量结果时应给出测量的不确定度,便于使用者判断结果的可信程度。
因此,本文按JJF1059—2012《测量不确定度评定与表示》对导体直流电阻项目测量过程的不确定度影响因素进行分析,确定标准不确定度分量,评定合成标准不确定度和扩展不确定度,给出测量不确定度评定报告,才能做出对测量结果的准确判断。
关键词:导体电阻;测量不确定度;导体直流电桥引言导体直流电阻作为电线电缆产品的重要电气性能检测项目,是产品型式试验、例行试验、抽样试验均要求的检测项目,根据GB/T3048.4-2007的规定,导体直流电阻常采用双臂直流电桥配合专用四端测量夹具进行测量,其测量值容易受到诸多因素的影响,因此其测量不确定度是必须要考虑的。
本文通过对导体直流电阻测量的数学模型的分析,结合不确定度的A类和B类评定方法,对电缆类产品导体直流电阻测量不确定度进行了综合评定及分析。
1直流电阻测量不确定度分析1.1试样制作和测量方法描述依据《电线电缆电性能试验方法第4部分:导体直流电阻试验》(GB/T3048.4-2007)和《作业指导书》将试样绝缘留1m作为测试部分的导体,每边留5cm接测试线,电桥电压线靠近绝缘部分;试样放置和试验过程中,温度在要求范围内(19.8℃),变化≤0.2℃,空气湿度为52%RH,满足作业指导书要求,用QJ44型双臂电桥测试1m×4mm2×1m的试样电线导体电阻。
如果电桥对臂阻值的乘积相等,则检流计指零,此时测量盘的度数也就是被测电阻值。
而后,用温度修正系数修正到标准温度20℃,并换算到每千米的电阻值。
1.2环境温度及其测量试样在温度为20℃和空气湿度不大于85%的试验环境中放置了24h以上,在试样放置和试验过程中,试验室环境温度变化不超过±1℃。
某试验室铜导体直流电阻试验及其测量结果不确定度的评定
某试验室铜导体直流电阻试验及其测量结果不确定度的评定摘要:[制样] 应在长度至少为1m的导体试样上对导体进行测量,并测定导体试样的长度。
[结果]测量值换算成导体20°C、长1km时的电阻R20 (单位Ω/km) 。
[目的] 依据GB / T3048. 4《电线电缆电性能试验方法第4部分:导体直流电阻试验》测量铜导体直流电阻。
[方法]通过检测数据建立数学模型,分析各因素不确定度分量,计算合成不确定度和扩展不确定度。
一、测量方法依据GB / T3048. 4 - 2007《电线电缆电性能试验方法第4部分:导体直流电阻试验》。
用QJ44型双臂电桥测试4mm2×1m的单芯铜线导体电阻,当电桥对臂阻值乘积相等时检流计指零,此时测量盘读数乘以其倍率即为被测电阻值,用温度修正系数修正到标准温度20℃时并换算到每千米的电阻值。
二、试样制备:将试样导线轻柔拉直,注意不可用力过度导致试样导线发生扭曲、伸长,从导线上截取L’=1.2m的试样,去除左、右各0.1m线皮,露出铜导体,用于接测量线夹,去除覆盖线皮时应小心进行,防止损伤铜导体;接线试验前,预先对导体及其连接部位清洁,去除附着物、污秽机油垢,在不损伤导体的情况下尽可能除尽连接处表面的氧化层,并复测带皮试样导线长度L=1.0m。
试样接线如图1。
三、环境控制:试验前,将制备好的试样导线放置在环境温度为20℃±0.5℃,湿度为50%RH±2%RH验室中放置24小时,试验人员至少在试验前1小时进入试验室,试验期间不允许出入该试验室;试验过程中,环境温度不超过±1.0℃;温度计悬置在试样正上方,距离被测试样导线30cm四、试验设备:双臂电桥精度0.2级;温度计(最小刻度0.1℃)1.本次试验采用双臂电桥进行测量,双臂电桥原理如图2。
试验室用双臂电桥,根据直流电流-电压降直接法原理,采用四端测量技术,并采用专用的四端测量夹具进行接线,四端夹具的外侧一对为电流极,内侧一对为电压极,电压极接触使用锋利的刀刃结构,且互相平行,均垂直于试样导线。
直流电阻箱不确定度评定
直流电阻箱测量结果不确定度评定1、条件和适用范围1.1、测量依据:JJG 982-2003《直流电阻箱检定规程》 1.2、环境条件:温度(20±1)℃,湿度40%~70%。
1.3、测量标准:数字多用表,型号8846A 编号9724011。
准确度:量程100Ω:±(0.01%测量值+0.004%量程) 量程100k Ω:±(0.01%测量值+0.001%量程)1.4、被测对象:直流电阻箱,型号ZX21a 编号:88-42 准确度:0.1级。
1.5、测量方法:直接测量法,用数字多用表直接测量电阻箱的输出电阻,此时电阻箱输出电阻标称值与数字多用表的示值的差值就是该电阻箱的电阻误差值。
2、 数学模型R =X R -N R式中 R -被校电阻的示值误差; X R -数字多用表的电阻示值; N R -被校电阻箱的标称值.3、不确定度传播率灵敏系数 1c =X R R ∂∂=1 2c =NR R∂∂=-14、标准不确定度评定4.1、输入量X R 的不确定度)(X R u 的评定(1)、标准不确定度)(X R u 主要由对直流电阻箱的重复性测量所决定 分别对被校直流电阻箱的测量点,连续测量10次,得到如下测量结果:单次实验标准偏差根据公式)(i x s = 1)-(∑12-=n R R ni i计算,10次重复性测量引入的标准不确定度为: 10/)()(i X x s R u =,则4.2、输入量N R 的不确定度)(N R u 的评定输入量的标准不确定度)(N R u 主要是由数字万用表8846A 的测量误差引入。
数字万用表(型号8846A )的准确度为100Ω:±(0.01%测量值+0.004%量程)、100k Ω:±(0.01%测量值+0.001%量程),均匀分布,取k =3,根据公式k a R u N /)(=,计算出数5、合成标准不确定 5.1不确定度一览表在X R =10Ω时R=50Ω时在XR=100Ω时在XR=10000Ω时在XR=50000Ω时在XR=100000Ω时在X6、合成标准不确定度计算以上各项标准不确定度分量是互不相关的,所以合成标准不确定度为:22)()()(N X R u R u R u +=在X R =10Ω时: )(A M u =0.0029Ω 在X R =50Ω时: )(A M u =0.0052Ω 在X R =100Ω时: )(A M u =0.0081Ω 在X R =10000Ω时: )(A M u =1.161Ω 在X R =50000Ω时: )(A M u =3.48Ω 在X R =100000Ω时: )(A M u =11.01Ω 7、扩展标准不确定度计算 可取包含因子k =2,则在X R =10Ω时: U =k·)(A M u =0.0058Ω 在X R =50Ω时: U =k·)(A M u =0.0104Ω 在X R =100Ω时: U =k·)(A M u =0.0162Ω 在X R =10000Ω时: U =k·)(A M u =2.32Ω 在X R =50000Ω时: U =k·)(A M u =6.9Ω 在X R =100000Ω时: U =k·)(A M u =22.0Ω 其相对扩展不确定度为:在X R =10Ω时: U rel =5.8×10-4 在X R =50Ω时: U rel =2.1×10-4 在X R =100Ω时: U rel =1.7×10-4 在X R =10000Ω时: U rel =2.4×10-4 在X R =50000Ω时: U rel =1.4×10-4 在X R =100000Ω时: U rel =2.2×10-4。
直流数字电阻表示值误差测量结果的不确定度评定
受控狀態﹕受控文件版號:第1 版編寫﹕日期:2009/01/07審核﹕日期:2009/01/09批准﹕日期:2009/01/10 2009-01-10發佈2009-01-10 實施1目的規範直流數字電阻表示值誤差測量結果的不确定度評定方法,使不確定度評定合理、規範。
2適用範圍適用於直流數字電阻表示值誤差測量結果的評定。
3職責3.1檢定/校准人員負責按檢定規程操作,確保測量過程正常進行,消除各種可能影響試驗結果的意外因素,了解影響不確定度的因素,負責不確定度的計算。
3.2技術主管負責檢查原始記錄及不確定度的計算方法。
3.3實驗室主任負責審核檢定/校准結果和不確定度分析結果。
4直流數字電阻表示值誤差測量結果的不确定度評定詳細討論4.1 概述4.1.1 測量依据﹕JJG724-1991《直流數字歐姆表檢定規程》。
4.1.2 測量環境條件﹕環境溫度( 20±5 )℃﹔相對濕度(40~85)%RH。
4.1.3 測量標准﹕多功能校准儀﹐型號DO30-IIB﹐測量直流電阻﹕10Ω ~ 24MΩ﹐最大允許示值誤差± (0.2%×輸出值+20mΩ)。
4.1.4 被測對象﹕數字多用表(僅評定其電阻部分)﹐型號TES2732﹐量程﹕0Ω~20 MΩ4.1.5 測量過程采用標准電阻法測量被測表直流電阻的示值誤差。
將標准電阻器与被測表直流連接﹐由被測表上讀得相應的讀數。
將被測表指示值与標准電阻值相減﹐其差值即為直流數字電阻表的示值誤差。
4.1.6 評定結果的使用在符合上述條件的測量結果﹐一般可直接使用本不确定度的評定結果﹐電阻1KΩ點的測量結果的不确定度可直接使用本不确定度的評定結果。
4.2測量中可能導致不確定度的來源和測量數學模型4.2.1測量中可能導致不確定度的來源根據JJF1059-1999《測量不確定度評定與表示》,測量過程中的隨機效應及系統效應均會導致測量不確定度,因此在測量不確定度評定中應注意全面考慮從測量儀器和標準、測量環境、測量人員、測量方法、測量樣品的代表性及被測量等方面引入的標準不確定度分量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导体直流电阻不确定度
评定报告
WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
导体直流电阻不确定度评定报告
报告编号:UN-2014-01
编制:日期:2014-05-30 审核:日期
批准:日期
导体直流电阻不确定度评定报告
一、概 述
1. 测量方法: GB/T ;
评定方法:JJG1059-2012《测量不确定度评定与表示》; 2. 环境条件:温度℃,相对湿度48%;
3. 测试试验设备:a:Burster 之2316-V0001直流双臂电桥,准确等级
b:数字温湿度计:精度±1℃;
4. 被测对象:上海电缆研究所检测中心能力验证样,编号为23,黄色铝电缆,试样
长度约;
实验室编号为:SP-
5. 测量过程:在室温环境放置24小时后,进行测试。
二、数学模型
直流电阻数学模型为在温度和其他环境条件不变的情况下,影响试样拉伸试验抗张强度的数学模型为:
L
t R R t 1
)20(00403.01120⨯
-⨯+⨯
=
式中:
20R :
样品20℃每千米直流电阻(m Ω/m);
t R :
温度t 时,样品测试电阻(m Ω);
L :测试时样品长度(1m); t :测试时环境温度;
三、测量不确定度原因的确定:
由样品直流电阻数学模型,引起测量不确定度的原因由:t R 、L 、t 在测量时引起。
这里,长度L 由于采用标准电桥(标准长度1米)
由直流电阻数学模型,t R 、t 的测量引起的不确定度分量分别为:
)
20(00403.011
20-⨯+=∂∂=
t Rt R C R 2
20))20(00403.01(0.00403
--⨯+⨯=∂∂=
t R t R C t t 2
20l )20(00403.01(1-L t R l R C t l ⨯-⨯+⨯=∂∂=
上面三式中的t R 都为测试平均值,t 测试时温度; 三、测量不确定分量的计算 类不确定度评定
(1)在温度为℃时,测量直流电阻得到数据如下:n =10,单位m Ω(1×10-3Ω)
依据公式 L
t R R t 1
)20(00403.01120⨯-⨯+⨯
== m Ω
由样品重复性测试引入的平均值标准不确定度为:
()()
()
==
∑11
2
--=n n R R R u n
i ti
ti
t A m Ω
类不确定度评定
设备精确度的相对标准不确定度分量。
(1)数字2316-V0001校准合格,该校准证书的表明其扩展相对标准不准确度为%(K=2),因此,其引入的相对标准不确定度分量为:
()%005.02
%
01.0==
t rel R u 故其数字电桥引入的B 类标准不确定度分量为:
=⨯=158.1%005.0)(t B R u Ω
由数字电桥引入起的标准不确定度为:
=+=)()()(22t B t A t R u R u R u m Ω
(2)数字温湿度计校准报告中其温度测量扩展不确定度为:U=℃(k=2),故由数字温湿
度计所引入的不确定度分量为:
()3.02
6.01===
k a t u B ℃; 温湿度计,由使用说明书,其温湿度计分辨力为℃,其服从均匀分布:故由分辨 力引起的不确定度分量为:
()0577.03
1.02===
k a t u B ℃ 故由温度计引入的标准不确定分量为: ()=+=)()(2212t U t U t u B B B ℃
(3)长度为1米电桥夹具,查校准证书,其U =(k=2),其引入的不确定度: m mm k a u l 00015.015.02
3
.0====
四、合成标准不确定度
(1)合成标准不确定度的来源分别列于下表:
(2)各不确定度分量灵敏系数的确定,实验时,环境温度为℃,由上知电阻平均值为 m Ω,长度为1米,故得到各不确定度分量灵敏系数值为:
L
t R R C R l
)20(00403.01120⨯-⨯+=∂∂=
= L t R t R C t t l
))20(00403.01(4030.00-220⨯-⨯+⨯=∂∂== 220l
)20(00403.011-L
t R l R C t l ⨯-⨯+⨯=∂∂=
=
(3)各不确定度来源相互独立,互不相干,故合成标准不确定为:
()()()()=++=l u c t u c R u
c R u l t t R c 22222
2
m Ω
五、扩展不确定度U
取置信概率约95%时,包含因子k =2,则U =k ×()=R u c 2×=Ω 六、测量结果的不确定度报告值为
在20℃,该黄色铝电线,直流电阻20R =Ω± Ω/Km (置信概率约为95%)。