实验之 遥感图像的几何校正

合集下载

实验遥感影像的几何校正

实验遥感影像的几何校正

实验遥感影像的几何校正简介遥感技术是通过获取遥感影像和数据对地面资源进行探测、监测和评估的一种空间信息技术。

遥感影像是一种带有几何畸变的二维投影图像,其中可能出现伸缩、扭曲、歪斜等问题。

因此,为了更精确地进行信息提取和分析,需要进行几何校正以使影像像素遵循真实地物在地球表面的几何位置分布规律。

实验遥感影像的几何校正是遥感技术学习中重要的一环,本文将介绍实验遥感影像的几何校正的基本概念和方法。

几何校正的基本概念几何校正主要包括校正模型的建立和校正参数的计算。

在进行几何校正之前,需要先确定地面控制点(GCP)和栅格坐标,然后以GCP为基础建立校正模型,计算校正参数,最终将原始影像像素校正为符合真实地物在地球表面位置分布规律的栅格影像。

几何校正的具体流程如下:1.确定GCP:GCP是几何校正的基础,一般应该选取光线影响较小的地物进行标注,例如道路交叉口、建筑物边角等。

标注时需要保证正方向一致,以实现最佳标注效果。

2.建立校正模型:GCP标注完成后,需要以这些GCP为基础建立几何校正模型。

在建立校正模型时,可以使用任意至少3个GCP的组合,其中至少包含一个控制点。

常用的校正模型有仿射变换模型、投影变换模型和多项式变换模型等。

3.计算校正参数:建立校正模型后,需要基于该模型计算校正参数,一般来说,校正参数是指实际地物坐标和栅格影像像素坐标之间的转换参数。

根据不同的校正模型,计算校正参数的方法也不同。

4.生成新影像:计算出校正参数后,需要进行像素级别的校正,使原始影像符合真实地物在地球表面位置分布规律,从而生成新的栅格影像。

几何校正的常用方法实验遥感影像的几何校正方法包括:仿射变换模型在实验中,仿射变换模型适用于影像伸缩和旋转校正,可以通过3个或4个GCP实现,其变换公式为:Xa = a1X + a2Y + a3Ya = a4X + a5Y + a6其中,Xa和Ya为校正后的像素坐标,X和Y为未校正的像素坐标,a1、a2、a3、a4、a5、a6是校正参数。

Envi遥感图像几何校正

Envi遥感图像几何校正

遥感数字图像处理——几何精校正1.实验原理、目的和内容1.1.实验原理遥感图像纠正是通过计算机对图像每个像素逐个地解析纠正处理完成的,所以能够较清晰地改正线性和非线性变形误差。

几何精纠正的基本原理是回避成像的空间几何过程,直接利用地面的控制点数据对遥感图像的几何畸变本身进行数学模拟,并且认为遥感图像的总体畸变可以看做是挤压、扭曲、缩放、偏移以及更高次的基本变形的综合作用的结果。

因此,校正前后的图像相应点的坐标关系可以用一个适当的数学模型来表示。

1.2.实验目的采用图像-地图纠正法,对TM遥感图像进行几何精纠正,即把不同传感器具有几何精度的图像和地图中的相同地物元素精确地彼此匹配、叠加在一起,以满足集成的需要。

1.3.实验内容对南京市TM图像AA进行几何精纠正。

2.实验过程2.1.地图投影信息的获取进行精校正之前,应该获取标准图像的投影信息,利用ArcGIS或MapInfo软件即可查看投影类型为:GK Zone 20(Pulkovo 1942)2.2.显示需要校正的图像利用Envi导入图像,RGB合成,选择4,3,2波段即可2.3.选择控制点本实验中采用图像-地图纠正,在图像窗口中选择地面控制点(GCP),然后在地图窗口中找到同名地物点,记录点位的坐标信息(见图1)。

首先,进行图像-地图纠正,Map——Registration——Select GCPs:Image to Map。

再在Image to Map Registration窗口中,根据参照的矢量地图选择Gk Zone 20(Pulkova 1942),确定后,弹出Ground Control Points Selection窗口。

在添加地面控制点:在图像窗口中移动光标,确定GCP的位置,然后在矢量地图窗口中确定同名地物点,并将其坐标拷贝到本窗口中的地图坐标文本框中。

确认合适后,单击Add Point产生一个同名地物点。

(见图2)依次进行下去,直到数量复合要求,一般需要6个以上,并且分布均衡(图3)选取控制点完毕后进行纠正,由于选取控制点数量较少,因此使用一阶多项式的方法,重采样方法为最临近采样。

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。

在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。

本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。

一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。

几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。

1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。

这些预处理步骤有助于提高图像的质量和准确性。

2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。

这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。

控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。

3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。

常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。

选择合适的变换模型可以提高校正的准确性和效率。

4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。

这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。

根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。

二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。

分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。

1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。

这些预处理步骤可以提高分类的准确性和可靠性。

遥感图像几何精校正实验报告

遥感图像几何精校正实验报告

遥感图像几何精校正实验名称:遥感图像的几何精校正。

实验目的:1.了解和熟悉envi软件的几何校正的原理2.熟悉和掌握envi软件的几何校正的功能和使用方法;3.对自己的图像先找到投影,再另存一幅图像,去掉投影,在其它软件中旋转一角度,用原先的图像作为参考对旋转后的图像进行几何校正,使得其比较精确。

实验原理:几何校正,主要方法是采用多项式法,机理是通过若干控制点,建立不同图像间的多项式控件变换和像元插值运算,实现遥感图像与实际地理图件间的配准,达到消减以及消除遥感图像的几何畸变。

多项式几何校正激励实现的两大步:1. 图像坐标的空间变换:有几何畸变的遥感图像与没有几何畸变的遥感图像,其对应的像元的坐标是不一样的,如下图1右边为无几何畸变的图像像元分布图,像元是均匀且不等距的分布。

为了在有几何畸变的图像上获取无几何畸变的像元坐标,需要进行两图像坐标系统的空间装换。

图1:图像几何校正示意图在数学方法上,对于不同二维笛卡儿坐标系统间的空间转换,通常采用的是二元n次多项式,表达式如下:其中x, y为变换前图像坐标, u, v为变换后图像坐标, aij , bij为多项式系数, n = 1, 2,3, ⋯。

二元n次多项式将不同坐标系统下的对应点坐标联系起来, ( x, y )和( u, v )分别应不同坐标系统中的像元坐标。

这是一种多项式数字模拟坐标变换的方法,一旦有了该多项式,就可以从一个坐标系统推算出另一个坐标系统中的对应点坐标。

如何获取和建立二元n次多项式,即二元n次多项式系数中a和b的求解,是几何校正成败的关键。

数学上有一套完善的计算方法,核心是通过已知若干存在于不同图像上的同名点坐标,建立求解n次多项式系数的方程组,采用最小二乘法,得出二元n次多项式系数。

不同的二元n次多项式,反映了几何畸变的遥感图像与无几何畸变的遥感图像间的像元坐标的对应关系, 其中哪种多项式是最佳的空间变换模拟式,能达到图像间坐标的完全配准,是需要考虑和分析的。

遥感几何校正实验报告

遥感几何校正实验报告

遥感几何校正实验报告遥感几何校正实验报告一、引言遥感技术在地球科学和环境研究中起着至关重要的作用。

遥感图像的几何校正是确保图像的准确性和可用性的关键步骤之一。

本实验旨在通过对遥感图像进行几何校正,探索校正过程中的方法和技术。

二、实验目的1. 了解遥感图像的几何校正原理和意义;2. 掌握几何校正的基本步骤和技术;3. 分析几何校正对遥感图像质量的影响。

三、实验材料与方法1. 实验材料:- 遥感图像数据集;- 几何校正软件。

2. 实验方法:- 导入遥感图像数据集;- 对图像进行几何校正;- 分析校正前后图像的差异。

四、实验过程与结果1. 数据导入:在几何校正软件中导入遥感图像数据集,确保图像能够正确显示。

2. 几何校正:根据几何校正软件的操作指南,按照以下步骤进行几何校正:a) 选择合适的控制点:根据图像中的特征选择控制点,以确保校正的准确性;b) 校正图像:通过对控制点进行配准,对图像进行几何校正;c) 评估校正结果:查看校正后的图像,与原始图像进行对比,评估校正的效果。

3. 结果分析:a) 观察校正后的图像:比较校正前后图像的差异,注意观察图像的形状、位置和尺度是否发生变化;b) 分析校正效果:根据观察结果,评估几何校正的效果。

若图像形状、位置和尺度变化较小,说明校正效果较好;c) 讨论校正结果:讨论校正结果对后续遥感分析的影响,如地物提取、变化检测等。

五、讨论与总结几何校正是遥感图像处理的重要步骤,能够提高图像的准确性和可用性。

本实验通过对遥感图像进行几何校正,探索了校正过程中的方法和技术。

校正后的图像形状、位置和尺度变化较小,说明校正效果较好。

几何校正结果对后续遥感分析有重要影响,能够提高地物提取和变化检测的精度。

然而,几何校正过程中仍存在一些挑战和限制。

例如,控制点的选择和配准的准确性对校正结果至关重要。

此外,校正过程中可能出现图像畸变和信息丢失的情况,需要在校正结果的评估中进行综合考虑。

2遥感图像的几何校正

2遥感图像的几何校正

一、实验目的:1、几何校正的概念:将图像数据投影到平面上,使其符合地图投影系统的过程。

而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。

由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。

2、通过第一次实验了解ERDAS软件一些基础操作的基础上,结合指导书,学会遥感图像校正的一些基本操作,进一步熟悉并逐渐ERDAS的操作。

二、实验内容(图像校正):1、显示图像文件(Display Image File)(1)在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),选中Session >> Title Viewers;(2)在Viewer1中打开需要校正的Lantsat图像:spot5pan.img,在Viewer2中打开作为地理参考的校正过的SPOT图像:fusion1.img;2、启动集合校正模块(Geometric Correction Tool)(1)在Viewer1菜单条中选中Raster>>Geometric Correction,打开Set Geometric Model对话框,选择多项式几何校正模型:Polynomial>>OK;(2)打开Geo Correction Tools对话框和Polynomial Model Properties对话框,在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数,定义多项式次方(Polynomial Order)为2,定义投影参数(PROJECTION)后并保存,最后Apply>>Close;(3)打开GCP Tool Referense Setup 对话框,选择视窗采点模式,即ExistingViewe>>OK, 打开Viewer Selection Instructions指示器,在显示作为地理参考图像fusion1.img的Viewer2中点击左键;(4)打开reference Map Information 提示框点击OK,此时整个屏幕将自动变化为下图所示的状态,表明控制点工具被启动,进入控制点采点状态;3、启动控制点工具(Start GCP Tools)4、采集地面控制点(Ground Control Point)(1)在GCP工具对话框中,点击Select GCP图标,进入GCP选择状态并在GCP数据表中,将输入GCP的颜色设置为比较明显的黄色然后在Viewer1中移动关联方框位置,寻找明显的地物特征点,作为输入GCP,在GCP工具对话框中,点击Create GCP图标,并在Viewer3中点击左键定点,GCP数据表将记录一个输入GCP,包括其编号、标识码、X坐标和Y坐标;(2)不断重复(1)的步骤并将参考GCP的颜色设置为比较明显的红色,采集25个控制点GCP,每采集一个InputGCP,系统就自动产生一个Ref. GCP,通过移动Ref. GCP可以优化校正模型;5、采集地面检查点(Ground Check Point)以上采集的GCP的类型均为控制点,用于控制计算,建立转换模型及多项式方程。

遥感图像的几何校正实验报告

遥感图像的几何校正实验报告

实验报告实验名称:遥感图像的几何校正课程名称:《遥感导论》教师:院系:矿业工程学院班级:姓名:遥感图像的几何校正实验报告一、实验目的通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。

二、实验环境操作系统:windows 8.1软件:ENVI 4.3三、实验内容ERDAS 软件中图像预处理模块下的图像几何校正几何校正的必要性:由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。

产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。

几何校正的原理:遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。

在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数:25243210'25243210'y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=,得到变换后的图像坐标(x ′,y ′)与参考图像坐标的关系,从而对图像进行几何校正。

实验步骤:运行ENVI 软件第一步:显示图像文件从ENVI 主菜单中,选择File —— Open Image File 当Enter Data Filename文件选择对话框出现后,选择进入当前目录下的"几何校正"子目录,从列表中选择bldr_tm.img和bldr_sp.img文件。

遥感实验报告几何校正

遥感实验报告几何校正

遥感实验报告几何校正1. 引言遥感技术在地球科学领域中起着至关重要的作用,可以提供大量的空间信息。

然而,由于地球曲率、地表高程、投影效果等原因,遥感图像中存在一定的几何失真。

为了解决这些问题,需要对遥感图像进行几何校正,以确保图像的精确度和准确性。

本实验旨在通过软件工具进行遥感图像的几何校正,以便更好地分析和解读遥感图像所提供的信息。

2. 实验目标本实验的主要目标是对给定的遥感图像进行几何校正,达到以下几个具体目标:1. 去除图像中的地理畸变,使图像上的物体形状和比例与现实世界相符合;2. 将图像从传感器坐标系转换到地理坐标系,使图像可以与其他地理数据进行叠加分析;3. 评估图像几何校正的效果,验证几何校正的有效性。

3. 实验步骤3.1 数据准备在实验开始前,我们需要准备一幅遥感图像和其对应的地理坐标信息。

安装并配置合适的遥感图像处理软件,以便进行后续的操作。

3.2 图像去畸变首先,需要对图像进行去畸变处理,以消除地理畸变对图像造成的影响。

根据实际情况选择适合的去畸变算法,对图像进行处理,并保存处理后的图像。

3.3 坐标系转换将处理后的图像从传感器坐标系转换到地理坐标系。

选择合适的坐标转换方法和参数,进行坐标系转换,并保存转换后的图像。

3.4 评估几何校正效果通过对比几何校正前后的图像,评估几何校正的效果。

可以采用多种指标进行评估,如虚拟控制点对比、图像配准精度等。

4. 实验结果经过上述实验步骤,我们成功实现了对遥感图像的几何校正。

通过图像去畸变和坐标系转换,我们得到了一幅与现实世界相符合的几何校正后的遥感图像。

评估几何校正效果时,通过与虚拟控制点对比和图像配准精度的测量,我们发现几何校正的效果符合预期,并且达到了较好的精度要求。

5. 结论与展望本实验通过对遥感图像进行几何校正,成功消除了图像中的地理畸变,实现了图像的空间精确定位。

几何校正的结果具有较高的精度和准确性,可以为后续的遥感图像分析和解读提供可靠的基础。

遥感数据图像处理实验三、遥感图像的几何校正与裁剪.

遥感数据图像处理实验三、遥感图像的几何校正与裁剪.

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image2.图像几何校正(Geometric Correction3.图像拼接处理(Mosaic Imgaes4.生成三维地形表面(3D Surfacing1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。

1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→裁剪范围(Subset Definition:ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围→输出数据类型(Output Data Type:Unsigned 8 Bit→输出文件类型(Output Layer Type:Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers:2,3,4→OK(关闭Subset对话框,执行图像裁剪方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→输出数据类型(Output Data Type:Unsigned 8 Bit →输出文件类型(Output Layer Type:Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers:2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标→打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数: →输入文件名(Input File:lanier.img→输出文件名(Output File:lanier_sub.img→坐标类型(Coordinate Type:Map→输出数据类型(Output Data Type:Unsigned 8 Bit→输出文件类型(Output Layer Type:Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers:2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置: →AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框→单击OK(退出Subset对话框,执行图像裁剪→单击OK(退出Modeler对话框,完成图像裁剪1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

遥感实验2遥感图像的几何校正

遥感实验2遥感图像的几何校正
遥感实验2遥感图像的几何校正
contents
目录
• 引言 • 遥感图像几何校正的基本原理 • 遥感图像几何校正的步骤 • 实验操作与结果分析 • 问题与解决方案 • 实验总结与展望
01 引言
实验目的
掌握遥感图像几何校 正的基本原理和方法。
了解几何校正对遥感 图像应用的影响。
学会使用遥感软件进 行几何校正操作。
04 实验操作与结果分析
数据准备
数据来源
选择具有代表性的遥感图像,确保数据质量可靠且具有实际 应用价值。
数据预处理
对原始数据进行必要的预处理,如辐射定标、大气校正等, 以提高几何校正精度。
实验操作过程
几何校正方法选择
根据遥感图像的特点和实际需求,选择合适的几 何校正方法,如多项式校正、仿射变换等。
THANKS FOR WATCHING
感谢您的观看
06 实验总结与展望
实验收获与体会
实验收获
通过本次实验,我深入了解了遥感图像 的几何校正方法,掌握了常用的校正算 法。
VS
实验体会
在实验过程中,我遇到了很多困难和挑战 ,但通过不断尝试和探索,最终成功完成 了实验任务。
对实验的改进建议
算法优化
建议对常用的几何校正算法进行优化,提高校正精度和效率。
不同遥感图像的比例尺可 能存在差异,导致图像拼 接时出现不协调。
问题解决方案
使用地理参考数据
通过地理参考数据对遥感图像进行几何校正,使其与实际地形相 匹配。
图像配准技术
利用图像配准技术,将不同来源的遥感图像进行对齐,消除错位现 象。
调整图像比例尺
通过几何变换算法,调整不同图像的比例尺,使其一致,便于拼接。
数据来源多样性

遥感实验几何校正流程 -回复

遥感实验几何校正流程 -回复

遥感实验几何校正流程 -回复
遥感实验的几何校正流程包括以下步骤:首先,确定校正的目标图像和参考图像。

目标图像是需要进行几何校正的遥感图像,而参考图像是一个已经进行校正并具有准确地参考坐标系统的图像。

其次,进行图像预处理。

这包括对目标图像和参考图像进行预处理操作,如去噪、对比度增强等。

预处理的目的是为了提高图像质量和准确性。

接下来,执行图像配准。

图像配准是将目标图像与参考图像对齐的过程。

这可以通过使用不同的配准方法,如基于特征点的配准或基于控制点的配准来完成。

配准的目的是消除图像之间的位置和旋转差异。

在完成图像配准之后,进行几何校正。

几何校正是根据已配准的目标图像和参考图像之间的几何关系,对目标图像进行几何变换的过程。

校正的目的是纠正图像的尺度、旋转、平移等几何变化,以使图像与参考坐标系统对齐。

最后,进行校正后的图像验证。

这包括检查校正后的图像是否与参考图像一致,以及对校正结果进行精度评估。

整个流程的目的是通过几何校正,使得目标图像与参考图像具有一致的几何特征,并能够在相同的坐标系统下进行后续的遥感分析和应用。

遥感实验报告

遥感实验报告

遥感图像的几何校正一、实验目的通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻了解遥感图像几何校正的意义。

在实验过程中,主要理解和体会以下几个问题:(1)遥感图像几何校正的类型,几何校正的原因和目的;(2)遥感图像几何静校正的基本原理;(3)重采样的方法及每种方法的优缺点。

二、实验的基本原理遥感图像几何校正分为两种:①针对引起畸变原因而进行的几何粗校正;②利用控制点进行的几何精校正。

几何精校正实质上是用数学模型来近似描述遥感图像的几何畸变过程,并且认为遥感图像的总体畸变可以看做是挤压、扭曲、缩放、偏移以及更高层次的基本变形的综合作用的结果,利用畸变的遥感图像与标准地图或图像之间的一些对应点(GCP)求得这个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑引起畸变的原因。

三、几何精校正的基本步骤1、确定地面控制点。

在原始畸变图像空间与标准空间寻找控制点对。

地面控制点应该在图像上有明显清晰的定位识别标志,地面控制点上的地物不随时间而变化,地面控制点应均匀分布在整幅图像内,且要有一定的数量保证。

2、地面控制点确定后,要在原始畸变图像与标准图像上分别读出各个控制点在图像上的像元坐标(x,y)以及标准图像上的坐标(X,Y)。

3、选择合适的坐标变换函数(几何校正数学模型),建立图像坐标(x,y)与其参考坐标(X,Y)之间的关系式。

利用地面控制点对数据求出模型的未知参数,然后利用模型对原始图像进行几何精校正。

4、几何精校正的精度分析,利用几何校正数学模型计算校正之后的图像误差,检验每个控制点的均方根误差是否小于0.5。

5、确定每一点的亮度值。

根据输出图像上各像元在输入图像中的位置,对原始图像按一定的规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。

常采用的方法是最邻近法,三次卷积内插法,双线性内插法。

四、基本实验要求学会在ERDAS IMAGINE软件中进行图像的几何校正。

五、实验内容1、本实验主要是利用多项式拟合的方法进行的纠正,通常采用数据预处理途经启动几何校正模块。

遥感图像解译中的几何纠正方法

遥感图像解译中的几何纠正方法

遥感图像解译中的几何纠正方法随着遥感技术的不断发展,遥感图像的获取和应用越来越普遍。

然而,由于拍摄角度、地面形态等因素的影响,遥感图像存在几何形变的问题。

为了解决这个问题,人们提出了许多几何纠正方法。

本文将介绍几种常见的遥感图像几何纠正方法,并探讨它们的优劣势。

一、多项式拟合法多项式拟合法是一种常用的几何纠正方法。

它通过将原始图像中的像素位置与现实世界中的地理位置进行对应,建立像素坐标与地理坐标之间的映射关系。

随后,利用多项式拟合的方法,根据已知的像素位置和地理位置对应关系,推导出一个几何变换模型,从而对图像进行几何纠正。

多项式拟合法的优点是简单易行,适用于各种图像,并且能够有效地减小几何变形。

然而,它也存在一定的局限性,例如对于大范围的图像,多项式拟合法在极端情况下可能会引入较大的误差。

二、控制点法控制点法是一种基于已知控制点坐标的几何纠正方法。

首先,需要在原始图像和现实世界中选取一些已知位置的控制点。

然后,根据这些已知控制点的像素坐标和地理坐标,建立起坐标之间的对应关系。

最后,通过将图像中的像素位置与地理位置对应起来,根据已知控制点的坐标对图像进行几何纠正。

控制点法的优点是准确性高,适用于各种尺度的图像。

然而,它的缺点是需要大量的已知控制点,并且对于图像中没有控制点的区域,无法进行几何纠正。

三、地形校正法地形校正法是一种考虑地面形态的几何纠正方法。

遥感图像的获取往往会受到地面形态的影响,导致图像中的距离和角度存在失真。

地形校正法通过获取地面高程数据,并将其与遥感图像相结合,对图像进行几何纠正。

地形校正法的优点是能够考虑地面形态,提高几何纠正的精度。

然而,它的缺点是需要获取地面高程数据,成本较高且工作量较大。

同时,在平坦地区或缺乏高程数据的地区,地形校正法可能不能有效实施。

综上所述,遥感图像解译中的几何纠正方法有多种选择。

每种方法都有其独特的优劣势,适用于不同的情况。

在实际应用中,可以根据需求和条件选取合适的几何纠正方法,以提高图像的几何精度和应用效果。

遥感图像校正实验报告

遥感图像校正实验报告

遥感图像校正实验报告1. 引言遥感图像是通过卫星、飞机等遥感平台获取的地球表面的图像信息,具有广泛的应用价值。

然而,由于地球表面的复杂性和遥感平台的特点,遥感图像中可能存在各种影响因素,如大气、地形、光照等。

为了准确地利用遥感图像进行地物分类、资源监测等应用,需要对遥感图像进行校正。

本实验旨在探索并应用遥感图像校正方法,提高遥感图像的质量和准确度。

2. 实验目标本实验的主要目标是:- 理解遥感图像校正的原理和流程;- 掌握遥感图像校正的常用方法;- 运用所学的遥感图像校正方法,对实验数据进行校正,并评估校正效果。

3. 实验步骤3.1 数据准备本实验使用的遥感图像数据是卫星传感器获得的多光谱图像,包含了红、绿和蓝三个波段的数据。

数据提供了RAW格式的图像文件,需要进行预处理和格式转换,以便进行后续的遥感图像校正实验。

3.2 大气校正大气是遥感图像中主要的影响因素之一,大气校正是遥感图像校正中的重要步骤。

本实验采用了大气校正模型,通过计算大气透射率和反射率,对图像进行校正。

3.3 辐射校正辐射校正是遥感图像校正的另一个重要步骤,其目的是消除图像中的辐射差异,使得不同波段的图像能够进行有效的比较和分析。

本实验使用了辐射校正模型,通过计算辐射矫正系数,将原始图像转换为辐射校正后的图像。

3.4 几何校正几何校正是遥感图像校正的最后一步,其目标是消除图像中的几何形变,使得图像中的特征能够准确地对应地面的实际位置。

本实验使用了几何校正模型,通过对图像进行平移、旋转和缩放等操作,实现图像的几何校正。

4. 实验结果和讨论经过上述的步骤,我们成功地对实验数据进行了遥感图像校正。

校正后的图像显示出更好的质量和准确度,可以更好地用于地物分类和资源监测等应用。

然而,值得注意的是,遥感图像校正是一个复杂的过程,涉及到多个影响因素和数学模型。

在实际应用中,应根据具体需求和数据特点,选择合适的校正方法和参数,以达到最佳的校正效果。

遥感图像几何校正(较易)

遥感图像几何校正(较易)

遥感图像几何校正(较易)遥感图像几何校正是将采集的遥感图像与地球参考系统(如地理坐标系统或投影坐标系统)进行对齐,以保证图像上的地物位置与实际地理位置一致。

下面是一个较易的遥感图像几何校正步骤示例:1. 获取控制点:首先选择一些在图像上可见且在地面上已知坐标的控制点。

这些控制点可以是人工设置的地物特征,如标志物、房屋角点等,也可以是已知坐标的地理要素,如GPS测点、地面地物等。

2. 图像配准:通过图像配准软件,在原始图像上标记出控制点的位置,并将其与其在地面上的真实坐标相匹配。

配准软件会根据这些控制点来计算出图像的几何变换参数,如旋转、平移和缩放等。

13. 几何变换:根据图像的几何变换参数,对整个图像进行几何校正。

几何变换方法可以是线性的或非线性的,其中包括了常用的平移、旋转、缩放和仿射变换等。

4. 像素重采样:在完成几何校正后,由于图像上的像素点分辨率可能与原始图像不同,因此需要对图像进行重采样,以保证图像的细节精度和质量。

重采样方法有最邻近插值、双线性插值和双三次插值等,根据实际情况选择合适的方法。

5. 边缘裁剪:在完成像素重采样后,由于几何校正和重采样的处理可能会导致图像边缘的变形,需要对图像进行边缘裁剪,以去除边缘的不确定区域。

6. 输出校正后的图像:完成校正后的图像即可输出,用于后续的遥感分析和应用。

2需要注意的是,以上是一个较为简单的遥感图像几何校正流程,具体步骤和方法会因不同的图像类型、几何变换需求和软件工具的选择而有所不同。

在实际应用中,还需要考虑更多因素,如地面控制点的选择和精度要求、辅助数据的使用等。

3。

ENVI遥感图像的几何校正

ENVI遥感图像的几何校正

遥感图像的几何校正(配准)1.实验目的与任务:(1)理解几何校正的原理;(2)学习使用 ENVI 软件进行几何校正;2.实验设备与数据:设备:遥感图像解决系统 ENVI数据:TM 数据3几何校正的过程:注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配准或几何校正。

1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2 中打开;2.在主菜单上选择map->Registration->select GCPs:image to image3 .出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。

BASE 图像指参考图像而warp 则指待校正影像。

选择OK!4.现在就能够加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方,就能够选择ADD POINT 添加点了。

(PS:看不清出别忘记放大)如果要放弃该点选择右下脚的delete last point,或者点show point 弹出image to image gcp list 窗口,从中选择你要删除的点,也能够进行其它诸多操作,自己慢慢研究,呵呵。

选好4 个点后就能够预测:把十字叉放在参考影像某个地物,点选predict 则待校正影像就会自动跳转到与参考影像相对应的位置,而后再进行合适的调节并选点。

5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII..固然你没有选完点也能够保存,下次就直接启用就能够:ground control points->file->restore gcps from ASCII...6.接下来就是进行校正了:在ground control points.对话框中选择:options->warp file(as image to map)在出现的imput warp image 中选中你要校正的影像,点ok 进入registration parameters对话框:首先点change proj 按钮,选择坐标系然后更改象素的大小,如果本身就是你所需要大小则不用改了最后选择重采样办法(resampling),普通都是选择双线性的(bilinear),最后的最后选择保存途径就OK 了遥感图像的监督分类1 实验的目的和任务1)理解遥感图像计算机分类的原理和办法;2)掌握监督分类的环节和办法。

遥感图像的几何校正实验

遥感图像的几何校正实验

遥感图像的几何校正实验报告1.实验目的和内容实验目的:学习如何使用ENVY中Image to Image和Image to Map两种方法对遥感图像进行几何校正,了解掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。

实验内容:(1)Image to Image以一副已经经过几何校正的栅格文件作为基准图,通过从二幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置。

(2)Image to Map通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入,从矢量文件中获取或者从栅格文件中获取。

2.图像处理方法和流程A. Image to Image1、加载影像,打开ENVI,file>>open image file,加载待校正影像与已校正影像。

2、启动几何校正模块Map>>Registration>>Select GCPs:Image to Image,打开几何校正模块。

选择显示base.img文件的Display为基准影像(Base Image),显示uncorrected.img文件的Display为待校正影像(Warp Image)点击OK3、采集地面控制点(1)在两个Display中找到相同区域,在Zoom窗口中,将十字光标定位到相同点上,点击Ground Control Points Selection上的Add Point按钮,将当前找到的点加入控制点列表。

(2)当选择一定数量的控制点之后(至少3个),利用自动找点功能。

Ground Control Points Selection窗口>>Options>>Automatically Generate Tie Points,选择一个匹配波段点击OK。

(3)Image to Image GCP List窗口>>Options>Order Points by Error,按照RMS值有高到底排序。

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正遥感图像是通过无人机、卫星等远距离设备获取的地球表面的影像数据。

这些图像在应用于地理信息系统(GIS)、自然资源管理、城市规划等领域时,需要进行几何校正与纠正。

本文将介绍什么是遥感图像的几何校正与纠正,以及如何进行这一过程。

一、什么是遥感图像的几何校正与纠正遥感图像的几何校正与纠正是指将采集到的图像数据与真实地理空间进行对应,消除由于图像采集时摄像设备、地球曲率等因素引起的形变、偏移等问题,使图像具备准确的地理位置信息。

这项工作是遥感技术应用的重要环节,对于后续的数据分析和信息提取至关重要。

二、遥感图像的几何校正与纠正方法1. 外方位元素法外方位元素法是利用航片或图像外方位元素(像空间坐标与地面坐标之间的变换参数)进行几何校正与纠正的方法。

在这种方法中,需要准确确定图像的摄影中心、摄影距离以及摄影方位角等相关参数,通过计算来修正图像的几何形变。

外方位元素法准确性较高,适用于相对高精度的项目。

2. 控制点法控制点法是通过在图像上选择一系列已知地理位置的控制点,在地面实地测量其坐标,然后通过像点与地理坐标的对应关系,进行几何校正与纠正的方法。

该方法的关键在于控制点的选择与测量精度,控制点越多、分布更均匀,纠正效果越好。

3. 数字高程模型(DEM)法数字高程模型法是通过使用数字高程模型数据,将遥感图像与地面实际高程进行对照校正的方法。

通过图像与DEM之间的高差计算,对图像进行几何校正与纠正。

这种方法适用于大范围的地形起伏、高程变化较大的区域。

三、遥感图像的几何校正与纠正注意事项1. 数据预处理在进行几何校正与纠正之前,需要对采集到的遥感图像进行预处理。

预处理包括影像增强、去噪、边缘检测等步骤,以提高图像质量和准确性。

2. 参考数据选择在进行校正与纠正时,需要选择适当的参考数据,以确保纠正结果的准确性。

参考数据可以包括航片、已经准确校正的图像、已知地理坐标点等。

3. 校正模型选择校正模型选择是几何校正与纠正的关键步骤之一。

遥感图像影像几何校正方法与精度评价

遥感图像影像几何校正方法与精度评价

遥感图像影像几何校正方法与精度评价遥感技术是一种通过航空器或卫星获取地球表面信息的技术手段。

为了获得准确的地理空间信息,遥感图像需要经过几何校正。

本文将介绍几种常用的遥感图像影像几何校正方法,并探讨它们的精度评价。

一、几何校正方法1. 多点校正法多点校正法是一种常用的几何校正方法。

它通过在图像中选择多个控制点,然后根据这些控制点在现实地面上的坐标,使用几何变换公式进行图像的几何校正。

这种方法简单易行,适用于中等分辨率的图像。

2. 数字高程模型校正法数字高程模型校正法是一种基于数字高程模型的几何校正方法。

首先,通过获取地面的数字高程模型,然后将图像与数字高程模型进行配准,最后进行几何校正。

这种方法的优点是精度较高,适用于高分辨率的图像。

3. 惯导校正法惯导校正法是一种利用航空器或卫星的惯性导航系统进行几何校正的方法。

惯性导航系统可以测量航空器或卫星的姿态和位置信息,根据这些信息对图像进行几何校正。

这种方法的精度较高,适用于航空器或卫星上配备有惯性导航系统的情况。

二、精度评价几何校正的精度评价是衡量几何校正过程中误差大小的方法。

常用的评价指标有均方根误差(RMSE)和控制点定位精度。

1. 均方根误差(RMSE)均方根误差是通过对校正前后的像素位置误差进行统计分析得到的一个指标。

它是校正后图像中所有像素位置误差的平方和的开方。

均方根误差越小,表示几何校正的精度越高。

2. 控制点定位精度控制点定位精度是通过选取一组已知坐标的控制点,然后对校正后图像中的相应像素进行位置测量,计算其与控制点的位置误差。

控制点定位精度越小,表示几何校正的精度越高。

三、案例分析以一幅航拍图像为例,使用多点校正法、数字高程模型校正法和惯导校正法进行几何校正,并对校正后的图像进行精度评价。

多点校正法得到的校正图像的RMSE为0.5个像素,控制点定位精度为2米。

数字高程模型校正法得到的校正图像的RMSE为0.2个像素,控制点定位精度为0.5米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二遥感图像的几何校正
一、目的和要求:
通过实验,理解遥感图像几何校正的基本原理和意义,掌握遥感图像几何校正的基本方法和步骤,熟悉ERDAS软件中图像几何校正的操作流程。

二、实验内容
在ERDAS软件中,采用二元二次多项式校正模型对遥感图像进行几何精校正。

三、原理和方法
1.选取地面控制点
地面控制点应在图像上有明显的、清晰的定位识别标志,如道路交叉点、农田边界等;应不随时间而变化;地面控制点应当均匀分布在整幅图像,且有一定的数量保证,至少应超过多项式系数的个数。

2.建立多项式校正模型
一般次数越高,校正精度越高,但要求控制点的数量也多,而且计算量较大,因此常用的校正模型为二次多项式,具体可根据实际情况确定。

3.灰度值重采样
4.验证校正精度
检查校正后的精度,要求误差控制在0.5个像元以内,当误差较大时,调整校正式或控制点。

四、实验步骤
1.显示图像文件(Display Image Files)
首先,在ERDAS图标面板中点击Viewer图标两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下:
ERDAS图标面板菜单条:Session→Title Viewers
然后,在Viewer1中打开需要校正的Lantsat图像:tmAtlanta,img
在Viewer2中打开作为地理参考的校正过的SPOT图像:panAtlanta,img 2.启动几何校正模块(Geometric Correction Tool)
Viewer1菜单条:Raster→ Geometric Correction
→打开Set Geometric Model对话框(图1-1)
→选择多项式几何校正模型:Polynomial→OK
→同时打开Geo Correction Tools对话框(图1-2)和Polynomial Model Properties对话框(图1-3)。

在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数:
→定义多项式次方(Polynomial Order):
→定义投影参数:(Projection):
→Apply→Close
→打开GCP Tool Referense Setup 对话框(图1-4)
图1-1 Set Geometric Model对话框图1-2 Geo Correction Tools对话框
图1-3 Polynomial Properties对话框图1-4 GCP Tool Referense Setup 对话框3.启动控制点工具(Start GCP Tools)
图1-5 Viewer Selection Instructions
首先,在GCP Tool Referense Setup对话框(图1-4)中选择采点模式:
→选择视窗采点模式:Existing Viewer→OK
→打开Viewer Selection Instructions指示器(图1-5)
→在显示作为地理参考图像的Viewer2中点击左键
→打开Reference Map Information 提示框(图1-6);→OK
→此时,整个屏幕进入控制点采点状态(图1-7)。

图1-6 Reference Map Information 提示框
图1-7 控制点采点
4.采集地面控制点(Ground Control Point)
①在GCP工具对话框中,点击Select GCP图标,进入GCP选择状态;
②在GCP数据表中,将输入GCP的颜色设置为比较明显的黄色。

③在Viewer1中移动关联方框位置,寻找明显的地物特征点,作为输入
GCP。

④在GCP工具对话框中,点击Create GCP图标,并在Viewer3中点击左
键定点,GCP数据表将记录一个输入GCP,包括其编号、标识码、X坐
标和Y坐标。

⑤在GCP对话框中,点击Select GCP图标,重新进入GCP选择状态。

⑥在GCP数据表中,将参考GCP的颜色设置为比较明显的红色,
⑦在Viewer2中,移动关联方框位置,寻找对应的地物特征点,作为参考
GCP。

⑧在GCP工具对话框中,点击Create GCP图标,并在Viewer4中点击左
键定点,系统将自动将参考点的坐标(X、Y)显示在GCP数据表中
⑨在GCP对话框中,点击SelectGCP图标,重新进入GCP选择状态,并
将光标移回到Viewer1中,准备采集另一个输入控制点。

⑩不断重复①~⑨,采集若干控制点GCP,直到满足所选定的几何模型为止。

之后,每采集一个InputGCP,系统就自动产生一个Ref. GCP,通过
移动Ref. GCP可以优化校正模型,在GCP数据表的左上方显示有校正
的误差。

5.采集地面检查点(Ground Check Point)
以上采集的 GCP的类型均为控制点,用于控制计算,建立转换模型及多项式方程,下面所要采集的GCP类型是检查点,采集方法同上。

6.计算转换模型(Compute Transformation)
在控制点采集过程中,一般是设置为自动转换计算模型。

所以随着控制点采集过程的完成,转换模型就自动计算生成。

在Geo-Correction Tools对话框中,点击Display Model Properties 图标,可以查阅模型。

7.图像重采样(Resample the Image)
首先,在Geo-Correction Tools对话框中选择Image Resample 图标。

然后,在Image Resample对话框中,定义重采样参数;
→输出图像文件名(OutputFile):rectify.img
→选择重采样方法(Resample Method):
→定义输出图像范围:
→定义输出像元的大小:
→设置输出统计中忽略零值:
→定义重新计算输出缺省值:
8.保存几何校正模式(Save rectification Model)
在Geo-Correction Tools对话框中点击Exit按钮,退出几何校正过程,按照系统提示,选择保存图像几何校正模式,并定义模式文件,以便下一次直接利用。

9.检验校正结果(Verify rectification Result)
同时在两个视窗中打开两幅图像,一幅是校正以后的图像,一幅是参考图像,通过视窗地理连接功能,及查询光标功能进行目视定性检验。

五、实验结果分析和讨论
谈谈控制点的选择对校正精度的影响以及你的选取心得。

相关文档
最新文档