知识讲解_对数及对数运算_基础

合集下载

对数及对数函数要点及解题技巧讲解

对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )

A. 2
B.2 或12

B

C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,

∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B

图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.

性质 (4)当 a>1 时,在(0,+∞)是增函数;

B
当 0<a<1 时,在(0,+∞)上是减函数.
B

(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2

对数与对数运算法则

对数与对数运算法则

对数与对数运算法则对数是数学中一个重要的概念,在很多领域中都有广泛的应用,比如数学、物理、工程等。

它能够简化大数值的运算和计算复杂问题,也有助于解决各种类型的方程和不等式。

本文将探讨对数的含义,以及对数运算的法则。

1.对数的含义:对数最基本的定义是,对于一个正数a,如果b是一个正数且满足a 的b次方等于另一个正数x,那么b就是以a为底x的对数,记为log_a(x)。

其中a被称为对数的底数,x被称为真数,b被称为对数。

用数学语言描述对数,可以写作a^b=x,等价于log_a(x)=b。

2.对数运算的法则:对数运算有一系列的基本法则,可以简化对数的运算和推导。

2.1对数的互换性:如果a>0且a≠1,且m、n是正数,那么log_a(m×n)=log_a(m)+log_a(n)。

这条法则允许我们将乘法变成加法。

2.2对数的逆运算性:如果a>0且a≠1,那么对于正数m和任意正数b,有:a^(log_a(m))=m。

换句话说,当对数与指数运算发生时,可以互相抵消。

2.3对数的对换性:如果a>0且a≠1,且m、n是正数,那么log_a(m/n)=log_a(m)-log_a(n)。

这条法则允许我们将除法变成减法。

2.4对数的幂次性:如果a>0且a≠1,那么对任意正数m和正数b,有:log_a(m^b)=b×log_a(m)。

换句话说,可以通过幂次运算将对数与指数运算进行交换。

2.5对数的换底公式:对于任意正数a、b和c,有:log_a(b)=log_c(b)/log_c(a)。

这条法则允许我们将对数底数的换成任意值,并以其他常见的底数来计算。

3.对数运算的应用:3.1科学计数法:对数可以简化大数值的表示。

通过对数运算,我们可以将一个很大或很小的数字表示为以10为底的对数形式。

例如,1,000,000可以写成log_10(1,000,000)=63.2方程的求解:对数可以帮助解决一些涉及指数和幂函数的方程。

知识讲解_对数及对数运算_基础

知识讲解_对数及对数运算_基础

(2)
log a
M

logc M logc a
(c 0, c 1) ,

logaM=b,
则 有 ab=M,
则有
logc ab logc M (c 0, c 1)
即 b logc
a

log c
M

即b

logc M logc a
,即 log a
M

logc M logc a
(c
(1)0 和负数没有对数,即 N 0 ; (2)1 的对数为 0,即 loga 1 0 ; (3)底的对数等于 1,即 loga a 1.
3.两种特殊的对数
通常将以 10 为底的对数叫做常用对数, log10 N作作作 为底的对数叫做自然对数, loge N简记作 ln N .
4.对数式与指数式的关系
质.
(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式.
(3)解决这类问题要注意隐含条件“ loga a 1”的灵活运用.
举一反三:
【变式
1】求值:(1)
(log 4
3

log8
3)(log3
2

log 9
27
32
;(3)
91 2
log3
2

log 3 2
2 )

5 6

log 2
3
3 2
log 3
2

5 4

(2) log8
loga
M N
loga M
loga
N
(3) 正数的幂的对数等于幂的底数的对数乘以幂指数;

高中数学对数的知识点总结

高中数学对数的知识点总结

高中数学对数的知识点总结一、对数的定义1. 对数的概念对数是指数的逆运算。

设a为正实数且a≠1,a的正实数b的对数写作logₐb,读作“以a为底b的对数”。

其中a称为底数,b称为真数。

即logₐb=c,是等价的关系式a^c=b。

例如,log₂8=3,即等式2^3=8成立。

2. 对数的性质(1)底数为1时,b=1,a=1,log₁1=0;即logₐa=0。

(2)底数为正数时,即a>0,且a≠1时⒈对于任意正数b,1≠b,底数相等时,对数相等,即a>0,a≠1时,logₐb=logₐc,当且仅当b=c。

即对于任意正数b,0<a≠1,等式a^x=b的解是唯一的。

⒉对于任意正数a,b,c,当a>0,a≠1时,loga(b*c)=loga(b)+loga(c)。

⒊对于任意正数a,b,c,当a>0,a≠1时,loga(b/c)=loga(b)-loga(c)。

⒋对于任意正数a,b,当a>0,a≠1时,loga(b^c)=c*loga(b),其中c是常数。

3. 对数的求值对数的求值即是用对数的性质,把对数的计算用其它运算替代。

4. 对数的应用对数是一个非常重要和常见的概念,在数学中有着广泛的应用。

在科学、工程、经济和社会等领域中,对数都有着重要的作用。

例如在地震、声音、强度、音乐、语言学和政治领域等,都用到对数。

二、对数的基本概念1. 对数方程的解法对数方程的解法是通过对数的性质来解对数方程。

分为以下几种类型:(1)把一个对数方程转化为同底数的对数方程,通过对数的定义和性质,解方程找到x的值。

(2)两个底数不同的对数方程,通过换底公式进行计算,转换成相同底数的对数方程。

2. 对数不等式的解法对数不等式的解法是把对数引入不等式组成的方程中,然后进一步思考分析,解不等式。

对数不等式常见的类型有以下几种:(1)把对数不等式分解为多个对数方程,然后再求解。

3. 对数方程组的解法对数方程组的解法是将多个对数方程组合成一个方程,然后根据对数的性质和方程组的解法,求解出方程组的解集。

对数知识点总结讲解

对数知识点总结讲解

对数知识点总结讲解一、对数的定义1. 对数的含义对数是一种数学工具,用来描述一个数与另一个数的幂之间的关系。

例如,如果一个数a 的x次方等于另一个数b,那么x就是以a为底,b为真数的对数,记作loga(b)。

2. 对数的性质对数具有以下几个基本性质:(1)对数的底数不能是0或1;(2)对数的真数不能是负数;(3)以a为底,b为真数的对数等于以10为底,b/a的对数的值乘以以10为底,a的对数的值。

3. 对数的公式表示对数的公式表示为:loga(b) = x,其中a为对数的底数,b为对数的真数,x为对数的值。

对数的值x可以是正数、负数、零。

二、对数的性质1. 对数的运算规则(1)乘法法则:loga(bc) = loga(b) + loga(c)(2)除法法则:loga(b/c) = loga(b) - loga(c)(3)幂法则:loga(b^c) = c*loga(b)(4)换底公式:loga(b) = logc(b)/logc(a)2. 对数的性质(1)loga(1) = 0;(2)loga(a) = 1;(3)a^loga(b) = b;(4)loga(a^x) = x。

三、对数的常用公式1. 对数的常用公式1(1)loga(b) = 1/logb(a)(2)loga(b) = ln(b)/ln(a)(3)loga(b) = logc(b)/logc(a)2. 对数的常用公式2(1)loga(b) + loga(c) = loga(bc)(2)loga(b) - loga(c) = loga(b/c)(3)loga(b^c) = c*loga(b)3. 对数的常用公式3(1)换底公式:loga(b) = logc(b)/logc(a)(2)对数的乘方化简:a^loga(b) = b(3)对数的乘方化简:loga(a^x) = x四、对数的应用1. 对数在数学中的应用(1)对数在指数函数的求导中的应用;(2)对数在对数函数的积分中的应用;(3)对数在数学建模中的应用。

对数及其运算基础知识及例题

对数及其运算基础知识及例题

对数及其运算基础知识及例题1、定义:对数是指用一个数b(b>0且不等于1)作为底数,将一个正数a表示成幂b的指数的形式,即a=b^x(x为实数),则x称为以b为底a的对数,记作logb a。

2、性质:①logb 1=0(b>0且不等于1)②logb b=1(b>0且不等于1)③logb (mn)=logb m+logb n(m>0,n>0,b>0且不等于1)④logb (m/n)=logb m-logb n(m>0,n>0,b>0且不等于1)⑤logb m^k=klogb m(m>0,b>0且不等于1,k为任意实数)3、对数的运算性质:①logb (mn)=logb m+logb n②logb (m/n)=logb m-logb n③logb m^k=klogb m④logb (a^k)=klogb a⑤logb a=logc a/logc b(b>0,且不等于1,c>0,且不等于1)4、换底公式:XXX b(b>0,且不等于1,c>0,且不等于1)5、对数的其他运算性质:①logb a=logb c,则a=c②logb a=logc a/logc b=logd a/logd b6、常用对数和自然对数:常用对数:以10为底数的对数,记作XXX。

自然对数:以自然常数e(e≈2.)为底数的对数,记作ln。

典型例题】类型一、对数的概念例1.求下列各式中x的取值范围:1)log2(x-5)≥0;(2)log(x-1)-log(x+2)0.改写为:1)x≥5;2)x>1且x<2;3)x>1且x1且x>1.类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化:1)log2 16=4;(2)log1/27=-3;(3)log3 1/2= -1/log2 3;(4)53=125;(5)2^-1=1/2;(6)(1/3)^x=9.改写为:1)2^4=16;2)1/27=3^-3;3)3^-1/2=2/log2 3;4)5^3=125;5)2^-1=1/2;6)x=log(1/3)9/log(1/3)2.类型三、利用对数恒等式化简求值1+log5 77=log5 500.类型四、积、商、幂的对数例4.用loga x,loga y,loga z表示下列各式:1)loga (xy/z)=loga x+loga y-loga z;2)loga (xy)=loga x+loga y;3)loga (x^2/y^3z)=2loga x-3loga y-loga z;4)loga (x^2y^3/z)=2loga x+3loga y-loga z。

对数的概念及运算法则-PPT

对数的概念及运算法则-PPT

你发现了什 么?
对数恒等式: loga an n 作为公式用
18
探 求下列各式的值:


动 (1) 2log2 3 3
感 悟
(2) 7log7 0.6 0.6

学 (3) 0.4log0.4 89 89
你发现了什 么?
对数恒等式: aloga N N
19
练习 3.求下列各式的值
(1) log5 25 2 (2) log25 25 1 (3) lg10 1 (4) lg 0.01 2 (5) lg1000 3 (6) lg 0.001 3
log a
M N
log a M
log a N
(2)
logaMn nlogaM(n R) (3)
例题讲解 例1 求下列各式的值:
(1) log2 6 1
(2) lg 5 lg 2 lg(5 2) lg10 1
(3)
log5
3
log5
1 3
(4) log3 5 log3 15
26
102 100
log10 100 2
1
42 2
log 4
2
1 2
102 0.01
log10 0.01 2
练习: a x N loga N x
把下列指数式改写成对数式
(1)54 625 log5 625 4
(2) 26 1 64
(3) 3a 27
log2
1 64
6
log3 27 a
对数的概念及运算法则
知识探究(一):对数的概念
思考1:若24=M,则M=?16 思考2:若若22x-=2=16N,,则则xN==??414
若2x= 1 4

对数计算知识点归纳总结

对数计算知识点归纳总结

对数计算知识点归纳总结一、基本概念1. 对数的定义对数的定义可以从指数函数的逆函数出发。

设a>0且a≠1,a的x次幂函数y=a^x是严格增函数和满射的,对数函数y=log_a x是a^y=x的逆函数。

其中,a称为底数,x称为真数,y称为对数。

如果底数未标明,则默认情况下一般为10,即log=lg。

2. 底数、真数和对数在对数的定义中,底数指的是指数函数的底数,真数指的是指数函数的结果值,对数指的是幂函数的幂指数。

例如,在对数表达式log2⁡8中,2是底数,8是真数,3是对数。

3. 对数的符号与数值对数的数值是实数,在常见对数中,对数的值是无理数。

在实际应用中,对数的值往往是无限循环小数。

4. 对数的常见类型对数按照底数的不同可以分为常用对数(底数为10)和自然对数(底数为e)等不同类型。

常用对数在实际应用中使用率较高,自然对数在微积分等领域具有特殊的作用。

二、性质1. 对数函数的图像对数函数的图像是一条渐进线(一条直线和坐标轴所组成的图像),且对数函数是严格递增的。

对数函数的图像有着特殊的凹陷形状。

2. 对数函数的定义域和值域对数函数的定义域是真数的取值范围,是所有正实数的集合。

对数函数的值域是对数的取值范围,是所有实数的集合。

3. 对数函数的性质(1)对数函数是严格递增函数;(2)对数函数的图像是一条渐进线;(3)对数函数的定义域是正实数的集合;(4)对数函数的值域是实数的集合。

4. 对数与指数的关系对数和指数是互为逆运算的关系,即a^log_a x = x,log_a(a^x)=x。

对数和指数的关系在数学推导和实际问题中有着重要的应用。

三、运算规则1. 对数的运算性质对数具有一系列的运算规则,包括等式变形、对数运算、对数化简等。

对数的运算规则可以帮助简化复杂的计算和推导过程。

2. 对数乘除法规则(1)log a mn = log a m + log a n(对数乘法规则);(2)log a (m/n) = log a m - log a n(对数除法规则)。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。

对数与对数函数的基础知识梳理

对数与对数函数的基础知识梳理

课堂互动讲练
(2)原式=(llgg23+llgg29)·(llgg34+llgg38) =(llgg23+2llgg23)·(2llgg32+3llgg32) =32llgg23·56llgg32=54; (3)分子=lg5(3+3lg2)+3(lg2)2 =3lg5+3lg2(lg5+lg2)=3; 分母=(lg6+2)-lg 130600×110 =lg6+2-lg1060=4; ∴原式=34.
课堂互动讲练
自我挑战
(3)当x∈(1,+∞)时,f(x)>f(1), 要使f(x)>0,须f(1)≥0,∴a-b≥1.12分
规律方法总结
1.比较两个对数的大小的基本 方法是构造相应的对数函数,若底 数不相同时,可运用换底公式化为 同底数的对数,还要注意与0比较或 与1比较.
规律方法总结
2.把原函数做变量代换化归为二次 函数,然后用配方法求指定区间上的最 值是求对数函数的常见题型.在给定条 件下,求字母的取值范围也是常见题型, 尤其是与对数函数结合在一起的高考试 题更是屡见不鲜.
课堂互动讲练
跟踪训练
(2)法一:∵loga2=m,∴am=2. ∵loga3=n,∴an=3. 故a2m+n=(am)2·an=4×3=12. 法二:∵loga2=m,loga3=n, ∴a2m+n=a2loga2+loga3= aloga12=12.
课堂互动讲练
考点二
对数函数的图象
要正确识别函数图象,一是熟 悉各种基本函数的图象,二是把握图 象的性质,根据图象的性质去判断, 如过定点、定义域、值域、单调性、 奇偶性.
函数值分布
1,则 y<0 ; ②当0<a<1时:若x>1,
则 y<0 ;若x=1,则 y=0 ;

对数及其知识点总结

对数及其知识点总结

对数及其知识点总结一、定义和性质1. 定义对数是一个数学函数。

正式定义为:如果a > 0且a≠1,且x>0,则以a为底x的对数记作log_a(x)=y,其中y表示底为a的x的对数。

换句话说,log_a(x)表示a的y次幂等于x,其中a称为底数,x称为真数,y称为对数。

2. 性质(1)对数函数的定义域为正实数。

(2)对数函数的值域为实数。

(3)对数函数在a>1时,在a=1时,及a<1时对数的性质是不同的。

(4)对数函数y=log_a(x)的图象是一条单调递增的曲线,穿过第一象限。

当x=a时,y=1。

(5)对数函数的性质:log_ab=log_ax/log_ab=log_a(x)×log_a(b)。

二、对数的计算1. 对数的运算法则(1)加法法则:log_a(mn)=log_am+log_an。

(2)减法法则:log_a(m/n)=log_am- log_an。

2. 对数的换底公式对数的换底公式是指,当我们计算不同底数的对数时,可以使用换底公式来进行计算。

换底公式是log_ab= log_cb/log_ca。

3. 对数的计算方法对数的计算方法可以通过以下步骤进行:(1)确定底数a和真数x;(2)使用对数的定义,代入相应的值进行计算;(3)根据需要,使用对数的运算法则和换底公式进行计算。

(4)对于特殊情况,如对数为整数或分数时,需要进行额外的计算。

4. 对数的应用对数在实际生活中有着广泛的应用。

例如,在科学计算、工程技术、金融业务等领域都有着重要的作用。

对数常常用来表示某一数量级的大小,例如声音的强度、地震的强度、化学溶液的浓度等。

三、常用对数及自然对数1. 常用对数常用对数是指以10为底的对数。

在常用对数中,log_10(10)=1,log_10(100)=2,log_10(1000)=3,依此类推。

常用对数可以简化对数的计算,常用对数的应用也十分广泛。

2. 自然对数自然对数是以常数e≈2.71828为底的对数。

对数与对数知识点

对数与对数知识点

对数与对数知识点对数是高中数学中的重要概念,广泛应用于代数、几何和数理统计等学科。

本文将介绍对数的定义、性质和应用,帮助读者全面了解对数及其相关知识点。

一、对数的定义对数是指数运算的逆运算。

设a和b是正实数,并且a≠1,若满足a^x=b,则称x为以a为底,b为真数的对数,记作x=loga(b)。

对数的定义可以解释为“b是以a为底的幂”,也可以理解为“a的x 次幂等于b”。

对数有一个重要的特例,即常用对数,以10为底的对数,记作x=log10(b),通常省略底数10,简记为lg(b)。

常用对数是应用最广泛的对数之一。

二、对数的性质1.对数与指数的互逆性质:若a和b是正实数,并且a≠1,则有loga(a^x)=x 和 a^(loga(b))=b 成立。

2.对数的运算性质:对数具有加法和乘法运算性质,即loga(m*n)=loga(m)+loga(n) 和loga(m/n)=loga(m)-loga(n)。

另外,对数还具有指数运算的性质,即loga(m^x)=x*loga(m)。

3.常用对数的特殊性质:若m和n是两个正实数,并且m>n,则lg(m)>lg(n)。

此外,常用对数lg(b)的值可以在对数表或计算器中查找。

三、对数的应用对数在数学和实际问题中有广泛的应用,以下是几个常见的例子:1.解指数方程:对数可以用于解决指数方程。

通过取对数,将指数方程转化为线性方程,从而得到方程的解。

2.简化计算:对数运算可以简化复杂的乘法和除法运算。

例如,计算log2(16*32)可以转化为log2(16) + log2(32),再利用对数表或计算器求得结果。

3.衡量数据变化:对数可以用于测量数据的变化程度。

例如,对数收益率常用于衡量金融投资的回报率。

4.概率计算:对数可以用于概率计算,特别是在大数相乘或相加时,通过将概率转化为对数,可以避免数值过小或过大的计算问题。

四、总结对数是数学中重要的概念,具有定义明确、性质丰富和广泛应用等特点。

对数的基本性质和运算公式

对数的基本性质和运算公式

对数的基本性质和运算公式对数是数学中非常重要和常用的概念,它在许多领域都有广泛的应用。

对数的基本性质和运算公式包括对数的定义、对数的性质、对数的运算规则以及一些常用的对数公式等。

本文将详细介绍这些基本性质和运算公式。

一、对数的定义:对数是指数运算的逆运算。

设a为一个正实数,b为一个正实数且不等于1,若满足b^x = a,其中x为实数,则称x为以b为底a的对数,记作x = log_b a。

其中,a称为真数,b称为底数,x称为对数。

在对数的定义中,底数和真数的位置可以互换,即x = log_b a等价于 a = b^x。

二、对数的性质:1.对数的定义保证了对数的唯一性,即对于给定的底数和真数,对数是唯一的。

2.对于不同的底数,同一个真数的对数是不同的。

3.当底数为1时,对数不存在,因为1的任何次幂都等于14. 当真数为1时,对数等于0,即log_b 1 = 0。

5.当底数为0时,对数不存在,因为0无法作为一个数的底数。

6.当0<b<1时,对数是负数;当b>1时,对数是正数;当b=1时,对数等于0。

三、对数的运算规则:1.对数的乘法法则:log_b (a * c) = log_b a + log_b c2.对数的除法法则:log_b (a / c) = log_b a - log_b c3.对数的幂法法则:log_b (a^p) = p * log_b a,其中p是任意实数。

这些运算规则可以用来简化对数运算或者将对数转化成乘法和除法的形式。

四、常用的对数公式:1.自然对数和常用对数之间的换底公式:log_b a = log_c a / log_c b,其中b和c是底数。

2.e为底的自然对数:自然对数是以e (自然常数)为底的对数,记作ln(x)。

3.常用对数:常用对数是以10为底的对数,记作log(x)。

4.对数性质的推广:log_b a^n = n * log_b alog_b √(a) = 1/2 * log_b a这些对数公式在计算和解决问题时都有常用的作用。

对数与对数运算知识点

对数与对数运算知识点

对数与对数运算1.对数:如果a x=N(a>0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x=log a N,其中a 叫做对数的底数,N 叫做真数.2.对数的性质:(1)1的对数等于0 ;(2)底数的对数等于1;(3)零和负数没有对数3.以10为底的对数叫做常用对数,log 10N 记作lg N.4.以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N5.对数的运算性质:如果a>0,且a ≠1,M>0;N>0,那么:(1)log a (MN)=log a M +log a N ;log a (N1N2…Nk )=log a N1+log a N2+…log a N3;(2)log a (M /N)=log a M -log a N ;(3)log a M n =nlog a M6.对数换底公式:log aN=abN bloglog ;7.对数运算中的三个常用结论:N aNa =log ,log aa =1,log a 1=08.两个常用的推论:a ,b >0且均不为1,m,n,为正整数(1)logab ×log b a=1;log ab ×log bc ×log c a=1;(2) b a b a m n nm log log =;ba b anm n m log log =;9.指数和对数的关系:a x =N ⇔log a N=x比较指数式、根式、对数式:几个对数运算公式的证明证明下列公式:(1)对数的运算性质:log a (M /N)=log a M -log a N(2)对数的运算性质:log a M n =nlog a M(3)对数的换底公式:log ab=ab c c log log(4)对数运算中的常用结论:N a Na log(5)a ,b >0且均不为1,log a b×log b a=1 (6)a ,b >0且均不为1,m 为正整数,mmb alog =log a b(7)a ,b >0且均不为1,m,n 为正整数, n mb a log =m n log a b证明:(1)设a x =M ,a y=N ,则N M =y x aa =a x-y .∴x-y=log a NM,∵x=log a M ,y=log a N,∴x-y= log a M - log a N ,∴log a N M = log a M - log a N(2)设a x=M ,则x=log a M,∴nx=nlog a M.∵(a x )n=M n ,∴a xn =M n,∴xn=log a M n ,∴log a M n = nlog a M(3)设log a b =x ,则a x =b .∴log c a x =log c b x ,∴xlog c a =log c b ,∴x=log c b÷log ca ,∴logab =ab c c log log(4)设log a N =x ,则a x=N .∵log a a x=x ,∴xaa alog =a x,∴xaa a log =N(5)∵log a b =ab lg lg ,log b a =ba lg lg ,∴log ab ×log b a=a b lg lg ×ba lg lg =1(6)设mabm log =x ,则(a m)x=b m,∴a mx=b m,∴ mxa alog =log a b m ,∴mxlog a a=mlog ab,∴x=log ab ,∴mmb a log =log a b(7)设n a b mlog =x ,则(am)x=b n ,∴mxa alog =log a b n ,∴mxlog a a=nlogab,∴x=mnlog ab ,∴nmb alog =mn log a b。

知识讲解_对数及对数运算_基础

知识讲解_对数及对数运算_基础

对数及对数运算要点一、对数概念 1.对数的概念如果()01ba N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b.其中a 叫做对数的底数,N 叫做真数. 对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R.2.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作.4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则已知()log log 010a a M N a a M N >≠>,且,、 (1) 正因数的积的对数等于同一底数各个因数的对数的和;()log log log a a a MN M N =+推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++> 、、、 (2) 两个正数的商的对数等于被乘数的对数减去除数的对数;log log log aa a MM N N=- (3) 正数的幂的对数等于幂的底数的对数乘以幂指数;log log a a M M αα=要点三、对数公式 1.对数恒等式:log log a b Na a Na N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有: (1) )(log log R n MM na a n ∈=令 log a M=b , 则有a b=M , (a b )n=M n,即nb n M a =)(, 即n a M b n log =,即:na a M M n log log =.(2) )1,0(log log log ≠>=c c aM M c c a ,令log a M=b , 则有a b =M , 则有 )1,0(log log ≠>=c c M a c bc即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围:(1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 举一反三:【变式1】函数21log (2)x y x -=+的定义域为 .类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.举一反三:【变式1】求下列各式中x 的值: (1)161log 2x =- (2)log 86x = (3)lg1000=x (4)2-2ln e x =【变式2】计算:222log 4;log 8;log 32并比较.类型三、利用对数恒等式化简求值 例3.求值: 71log 57+举一反三:【变式1】求log log log a b c b c Na ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0)类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z举一反三:【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2(3)lg25+lg2·lg50+(lg2)2类型五、换底公式的运用例5.已知18log 9,185ba ==,求36log 45.举一反三:【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;(2)32log 9log 278⋅;(3)31log 529-.类型六、对数运算法则的应用 例6.求值 (1) 91log 81log 251log 32log 53264⋅⋅⋅(2) 7lg142lg lg 7lg183-+-(3))36log 43log 32(log log 42122++(4)()248125255log 125log 25log 5(log 8log 4log 2)++++举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++ ;(2)33(lg 2)3lg 2lg5(lg5)++.【变式2】求值:107lg 2lg )21(7⋅。

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析1、对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N .3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N4、对数的性质: (1)log 10,log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1).5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈⑤log a m M n =n mlog a M . ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且特殊情形:log a b =1log b a,推广log a b ·log b c ·log c d =log a d .类型一、指数式与对数式互化及其应用例1、将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5);(6).例2、求下列各式中x 的值:(1) (2) (3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x =100=102,于是x=2; (4)由例3、若x=log43,则(2x-2-x)2等于( )A.94B.54C.103D.43解由x=log43,得4x=3,即2x=3,2-x=33,所以(2x-2-x)2=⎝⎛⎭⎪⎫2332=43.类型二、利用对数恒等式化简求值例4、求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数例5、求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数例6、已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a例7、(1) (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.例8、已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.例9、设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.例10、已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即 .类型四、换底公式的运用例11、(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x,;方法二:.例12、求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用例13、求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)例14、已知:log23=a,log37=b,求:log4256=?解:∵∴,。

对数的基本概念及其运算

对数的基本概念及其运算

4.2.1 对数与对数的运算知识点一、对数的定义如果N a x =0(>a 且)1≠a ,那么数x 叫做______________________,记作___________,其中a 叫做________,N 叫做________.(1)通常将以10为底的对数叫做常用对数,log 10N 可简记为_________. (2)以无理数e )71828.2(⋅⋅⋅为底的对数称为自然对数,log e N 简记为________.知识点二、基本性质(1)真数N 为 (负数和零无对数);(2)1的对数为 ,即 ;(3)底数的对数为_________,即 ;知识点三、对数恒等式 (1) ;(2)xa a log = 0(>a 且)1≠a .知识点四、对数的运算法则(1)()MN a log =______________; (2)N Malog =________________;(3)na M log = (n ∈R);(4)换底公式:Na log = 0(>a ,1≠a ,0>m ,1≠m ,)0>N .知识点五、两个常用的推论(1)1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a ;(2)b mnb a na m log log =(a ,0>b 且均不为)1.01log =a 1log =a a N a Na =log一、对数的概念例1、求下列各式中的x 的值. (1)32log 8-=x (2)91log 27=x(3)1)12(log -=-x(4)1)(lg log 3=x (5)0)lg(ln =x (6)4123log =x【举一反三】1、已知m a =2log ,n a =3log ,则=+n m a 2 .2、计算:=-)5log 9(log 21224 ;=+51log 5log 33)3(3.3、下列各式:(1)0)10lg(lg =;(2)0)lg(ln =e ;(3)若x lg 10=,则10=x ;(5)若21log 25=x ,则5±=x ;其中正确的是 .例2、在)5(log )2(a b a -=-中,实数a 的取值范围是( ) A .25<>a a 或B .52<<aC .5332<<<<a a 或D .43<<a【举一反三】对数式)6(log 2)2(2++---x x x x 中x 的取值范围是 .二、对数的运算性质及其应用 例3、计算下列各式的值 (1))381(log 3(2))lg(lg 2)lg(lg 2100a a +(3)27log 313log 2121log 666+- (4)4log ]18log 2log )3log 1[(66626÷⋅+-(5))347(log )91(1023)32(14log 3lg 33log 46log 1323--++-+-++【举一反三】1、如果c b a x lg 5lg 3lg lg -+=,那么( ) A .c b a x 53-+=B .cabx 53=C .53cab x =D .53c b a x -+=2、已知)2lg(2lg lg b a b a -=+,则ba4log 的值为 .3、计算=⋅+2lg 50lg )5(lg 2 ;=+⋅+25lg 50lg 2lg )2(lg 2 .4、计算下列各题 (1)41log 85log 25log 222+- (2)8.1lg 10lg 3lg 2lg -+(3)12lg )2(lg 5lg 2lg )2(lg 222+-+⋅+(4)142log 2112log 487log 222--+(5))11(log )122(log 21222--++-+x x x x三、 换底公式及其应用例4、求值:)3log 3)(log 2log 2(log 8493++.【举一反三】计算: (1)4log 5log 6log 5677⋅⋅(2)32log 3log 9log 6428⋅例5、已知a =7log 14,b =5log 14,用a ,b 表示28log 35.【举一反三】已知a =9log 18,518=b ,用a ,b 表示45log 36.例6、已知)1(213log 3log >>=+b a a b b a ,求224b a b a ++的值.例7、设),0(,,+∞∈z y x 且z y x 643==,求证: zy x 1211=+.例8、已知λ====n a a a b b b nlog log log 2121,求证:λ=)(log 2121n a a a b b b n.【课后巩固】 一、选择题1.如果log 7[log 3(log 2x )]=0,那么21-x 等于( )A .31B .321C .221D .3312.化简)0(525)(log ≠-a a 化简得结果是( )A .-aB .a 2C .|a |D .a3.已知 ab=M (a>0, b>0, M ≠1), 且log M b=x ,则log M a=( )A .1-xB .1+xC .1xD .x -14.计算=++5lg 2lg 35lg 2lg 33( )A .1B .3C .2D .05.已知23834xy ==,l o g ,则x y +2的值为( ) A .3 B .8 C .4D .log 486.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于( )A .1B .-2C .-103D .-47.已知函数f(x)=2x 2+lg(x +x 2+1),且f(-1)≈1.62,则f(1)≈( )A .2.62B .2.38C .1.62D .0.388.已知)(x f 满足:当4≥x 时,x x f )21()(=;当4<x 时,)1()(+=x f x f .则=+)3log 2(2f ( )A .241 B .121 C .81D .839.设0>a ,若对于任意的a x [∈,]2a ,都有a y [∈,]2a ,且3log log =+y x a a ,则( )A .21≤<aB .2≥aC .32≤≤a2{,}310.设1x 满足522=+x x ,2x 满足5)1(log 222=-+x x ,则=+21x x ( )A .25B .3C .27 D .4二、填空题11.计算log 2.56.25+lg1001+ln e +3log 122+的值是 . 12.若10010≤≤x ,则|3-lg x |-4)x lg(x lg 42+-= . 13.已知)0(9432>=a a ,则=a 32log . 14.计算=+--22529)25.0(lg log )12(lg log 53.15.若函数)2(log )(22a x x x f a ++=是奇函数,则a 的值是 . 三、解答题16.已知z y x 643==, (1)求y x 2的值;(2)求证:xz y 1121-=.17.已知m a =18log ,n a =24log ,求5.1log a 的值.18.(1)设正数a ,b ,c 满足222c b a =+,求证:1)1(log )1(log 22=-++++bca a cb . (2)设024log 21=-⋅-y y y ,1log 5log 5-=⋅x x x ,试问:是否存在一个正整数p ,使得y xP -=1。

对数运算知识点归纳总结

对数运算知识点归纳总结

对数运算知识点归纳总结一、对数的基本概念1.1 对数的定义对数的定义是:设a为正实数,且a≠1,a的正实数b的对数,记作logab,是指满足a的x次方等于b的数x。

即logab = x 当且仅当a^x = b。

在这里,a被称为“底数”,b被称为“真数”,x被称为“对数”,其中a^x = b称为“指数形式”。

1.2 对数的性质(1)对数的底数a必须是正实数且不等于1;(2)真数b必须是正实数;(3)当a>1时,对数是正数;当0<a<1时,对数是负数;(4)当真数b=1时,对数是0;(5)对数是无理数。

1.3 对数与指数的关系对数与指数是两个相关联的概念。

在a^x = b中,a称为底数,x称为指数,b称为真数。

而对数是指数形式的逆运算。

即a^x = b 等价于 logab = x。

对数函数和指数函数之间存在对称性,对数函数的图像是指数函数图像在y=x线上的镜像。

1.4 对数的表示方法对数的表示方法有两种,一种是常用对数,底数为10,常用符号为lg;另一种是自然对数,底数为e(自然对数的底数是一个无理数,e≈2.718281828459),常用符号为ln。

二、对数的运算规则2.1 对数运算的基本性质(1) log(a*b) = loga + logb(2) log(a/b) = loga - logb(3) loga^n = n*loga(4) log_a(a^x) = x2.2 对数运算的常用性质(1) loga1 = 0(2) logaa = 1(3) log1a = 0(4) loga(a^x*b^y) = x*loga + y*logb(5) loga(a/x) = loga(a) - loga(x)(6) loga(a^n) = n*loga(a)2.3 对数运算的推导法则对数运算的推导法则是指通过对数运算的基本性质和常用性质,对数式子进行化简和简化的方法。

这些法则包括换底公式、对数的乘方和除法法则等。

关于对数的知识点总结

关于对数的知识点总结

关于对数的知识点总结一、对数的定义1. 对数的基本概念对数是对数运算的基本概念,它表示一个数以另一个数为底的幂运算结果。

例如,如果a^b=c,那么b就是以a为底c的对数,记作log_{a}c=b。

其中,a称为对数的底,c称为真数,b称为对数。

对数的基本概念可以用数学公式来表示:a^b=c ,即 log_{a}c=b2. 对数的特点对数有一些特点,包括:(1)对数的底数不能为0或1;(2)对数运算是指数运算的逆运算;(3)对数运算中真数必须为正数;(4)对数运算在同一底数下是互为逆运算的。

3. 对数的表示对数的表示有两种常见的方式,一种是常用对数,即以10为底的对数,另一种是自然对数,即以e为底的对数。

常用对数和自然对数具有不同的性质和应用,需要根据具体情况进行选择和应用。

4. 对数的应用对数在数学和科学领域中有广泛的应用,包括:(1)在科学计算和工程领域中,对数常用于解决复杂的数学问题和模型计算;(2)在统计学中,对数常用于处理数据,特别是处理非负数据和处理数据间的比率;(3)在物理学中,对数常用于描述和分析自然现象中的指数变化规律;(4)在金融学中,对数常用于计算利息和投资收益率。

二、对数的性质对数具有一些特殊的性质,包括:1. 对数运算的性质(1)对数运算是指数运算的逆运算;(2)对数运算中,底数必须大于0且不等于1;(3)对数运算中,真数必须为正数。

2. 对数的常见性质(1)对数的乘法性质:log_{a}xy=log_{a}x+log_{a}y;(2)对数的除法性质:log_{a}(x/y)=log_{a}x-log_{a}y;(3)对数的幂的性质:log_{a}x^m=mlog_{a}x;(4)对数的换底公式:log_{a}x=\frac{log_{b}x}{log_{b}a}。

3. 对数的常用性质(1)对数函数的定义域为正实数集,值域为实数集;(2)对数函数在底数大于1时,为增函数,在底数介于0和1之间时,为减函数;(3)对数函数的图像呈现出一种特殊的曲线形状,可以通过图像来直观地理解对数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数及对数运算编稿:丁会敏 审稿:王静伟【学习目标】1.理解对数的概念,能够进行指数式与对数式的互化;2.了解常用对数与自然对数的意义;3.能够熟练地运用对数的运算性质进行计算;4.了解换底公式及其推论,能够运用换底公式及其推论进行对数的计算、化简与证明. 5.能将一般对数转化成自然对数或常用对数、体会换底公式在解题中的作用. 【要点梳理】要点一、对数概念 1.对数的概念如果()01ba N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b.其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R.2.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作.4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则已知()log log 010a a M N a a M N >≠>,且,、(1) 正因数的积的对数等于同一底数各个因数的对数的和;()log log log a a a MN M N =+推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>L L L 、、、 (2) 两个正数的商的对数等于被乘数的对数减去除数的对数;log log log aa a MM N N=- (3) 正数的幂的对数等于幂的底数的对数乘以幂指数;log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N)=log a M ±log a N , log a (M·N)=log a M·log a N ,log aNM N M a a log log =. 要点三、对数公式 1.对数恒等式:log log a b Na a Na N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有: (1) )(loglog R n M M n aa n∈=令 log a M=b , 则有a b=M , (a b )n=M n,即nb n M a =)(, 即n aM b nlog =,即:n a a M M n log log =.(2) )1,0(log log log ≠>=c c aM M c c a ,令log a M=b , 则有a b =M , 则有 )1,0(log log ≠>=c c M a c bc即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围:(1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 【答案】(1)5x >;(2)1,2x x >≠且;(3)1x >-且0,1x x ≠≠ 【解析】(1)由题意50x ->,5x ∴>,即为所求. (2)由题意20,10,11,x x x +>⎧⎨->-≠⎩且即2,1,2,x x x >-⎧⎨>≠⎩且1,2x x ∴>≠且. (3)由题意2(1)0,10,11,x x x ⎧->⎨+>+≠⎩且解得1x >-且0,1x x ≠≠.【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.举一反三:【变式1】函数21log (2)x y x -=+的定义域为.【答案】1|12x x x ⎧⎫>≠⎨⎬⎩⎭且 类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.【解析】运用对数的定义进行互化.(1)4216=;(2)31273-⎛⎫= ⎪⎝⎭;(3)3x =;(4)5log 1253=;(5)21log 12=-;(6)13log 92=-. 【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x 的值:(1)161log 2x =-(2)log 86x = (3)lg1000=x (4)2-2ln e x =【答案】(1)14;(2;(3)3;(4)-4.【解析】将对数式化为指数式,再利用指数幂的运算性质求出x. (1)1112()212221(16)(4)444x --⋅--=====;(2)111166366628()(8)(2)2x x x ======,所以;(3)10x =1000=103,于是x=3;(4)由22222ln ln 42x x e x e e e x --=-===-,得,即所以.高清课程:对数及对数运算 例1【变式2】计算:222log 4;log 8;log 32并比较.【解析】222log 4log 22;==322log 8log 23;== 522log 32log 25==.类型三、利用对数恒等式化简求值例3.求值:71log 57+ 【答案】35【解析】771log 5log 57777535+=⋅=⨯=. 【总结升华】对数恒等式log a Na N =中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求log log log a b c b c Na ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0) 【答案】N【解析】将幂指数中的乘积关系转化为幂的幂,再进行运算.log log log log log log log log log ()()c a b c a b b c c Nb c Nb cc N N aa b c N ⋅⋅⎡⎤====⎣⎦.类型四、积、商、幂的对数高清课程:对数及对数运算例3例4.z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z 【解析】(1)log log log log a a a a xyx y z z =+-; (2)3535log ()log log 3log 5log a a a a a x y x y x y =+=+;(3)1log log log ()log log log 2a a a a a a yz x y z yz ==--; (4)log a211log ()log 2log log log 23a aa a a x y x y z -=+-.【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们.在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算.举一反三:【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2【答案】(1)22;(2)1;(3)2.【解析】(1) 1log 864log 325log 21025-+.220184082log 35log 26225=-+=⨯-+⋅=(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 类型五、换底公式的运用例5.已知18log 9,185ba ==,求36log 45. 【答案】2a ba+- 【解析】解法一:Q 18log 9,185ba ==,18log 5b ∴=,于是181818183618181818log 45log (95)log 9log 5log 4518log 36log (182)1log 221log 9a b a ba ⨯+++=====⨯+-+. 解法二:Q 18log 9,185ba ==,18log 5b ∴=,于是1818181836218181818log 45log (95)log 9log 5log 45.18log 362log 18log 92log 9a ba ⨯++====-- 解法三:Q 18log 9,185ba ==,lg9lg18,lg5lg18ab ∴==,362lg 45lg(95)lg9lg5lg18lg18log 4518lg362lg18lg92lg18lg182lg 9a b a ba a ⨯+++∴=====---.解法四:18log 9a =Q ,189.a ∴=又185,4559181818b b a a b+=∴=⨯==Q g.令36log 45x =,则364518x a b +==,即218181836()18,()18,339xx a bx a b ++==∴=g 21818log .9x a b ∴=+21818log 18log 92a b a bx a++∴==--. 【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质.(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式. (3)解决这类问题要注意隐含条件“log 1a a =”的灵活运用.举一反三:【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;(2)32log 9log 278⋅;(3)31log 529-.【答案】(1)54;(2)109;(3)325. 【解析】(1))2log 2)(log 3log 3(log 9384++452log 233log 65)22log 2)(log 33log 23log ()9log 2log 2)(log 8log 3log 4log 3log (3233223332222=⋅⋅=++=++=;(2)32log 9log 278⋅9103lg 32lg 52lg 33lg 227lg 32lg 8lg 9lg =⋅=⋅=; (3)法一:31log 529-33331log 2(log 5)1log 25252333325--====法二:31log 529-99112log 252log 25939925-===. 类型六、对数运算法则的应用 例6.求值 (1) 91log 81log 251log 32log 53264⋅⋅⋅ (2) 7lg142lglg 7lg183-+- (3))36log 43log 32(log log 42122++(4)()248125255log 125log 25log 5(log 8log 4log 2)++++ 【答案】(1)-10;(2)0;(3)3;(4)13 【解析】(1)原式=103log 2log 5log 2log 253322526-=---(2) 原式=2lg(27)2(lg 7lg 3)lg 7lg(32)⨯--+-⨯ =lg 2lg72lg72lg3lg72lg3lg 20+-++--= (3)原式=38log )6log 43log 5(log )6log 43log5(log 2222222221==+-=++-(4)原式135log 2log 3313)2log 3)(5log 315log 5log 3(255222=⋅=++= 举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++g ;(2)33(lg 2)3lg 2lg5(lg5)++g . 【答案】(1)3;(2)1.【解析】(1)原式=()22lg52lg 2lg5(2lg 2lg5)lg 2++++=22lg10(lg 5lg 2)++=2+1=3;(2)原式=()()22lg 2lg 5lg 2lg 2lg 5(lg 5)⎡⎤+-+⎣⎦g +3lg 2lg5g =()22lg 22lg 2lg5(lg5)++g=()2lg 2lg51+=. 【变式2】求值:107lg 2lg )21(7⋅ 【答案】2【解析】107lg 2lg )21(7⋅77log 2log 10lg7117()2-=⋅7777111log 2log 10log 10log 101111(7)()()(2)2 2.222-=⋅⋅=⋅⋅= 另解:设 107lg 2lg )21(7⋅=m (m>0).∴m lg )21lg(7lg 107lg 2lg =+, ∴m lg 21lg 107lg 7lg 2lg =⋅+⋅,∴m lg )2lg )(17(lg 7lg 2lg =--+⋅,∴ lg2=lgm , ∴ 2=m ,即2)21(7107lg 2lg =⋅.。

相关文档
最新文档