位移电涡流传感器测量电路设计-)
电涡流传感器(位移)
![电涡流传感器(位移)](https://img.taocdn.com/s3/m/0c841ed333d4b14e8524680b.png)
Your company slogan
1 电涡流式传感器原理
电涡流探头结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路 板 5—夹持螺母 6—电源指示灯 7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
Your company slogan
2 电涡流传感器测量电路
电桥测量电路 在进行测量时,由于传感器线圈的阻抗发生变化,使电桥 失去平衡,将电桥不平衡造成的输出信号进行放大并检波, 就可得到与被测量成正比的输出。 谐振法 谐振法主要有调幅式电路和调频式电路两种基本形式。调 幅式由于采用了石英晶体振荡器,因此稳定性较高,而调 频式结构简单,便于遥测和数字显示。
Your company slogan
Your company slogan
1 电涡流式传感器原理
高频反射电涡流传感器等效电路
R
M
R
1
U
·
1
I
·
1
I
L
1
·
2
L
2
Z1=R+jωL1 RI1+jωL1I1-jωMI2=U1 -jωMI1+R1I2+jωL2I2=0
Your company slogan
1 电涡流式传感器原理
传感器线圈的等效阻抗
Your company slogan
1 电涡流式传感器原理
电涡流传感器分类 涡流传感器在金属体上产生的电涡流, 涡流传感器在金属体上产生的电涡流,其渗透深度从传感器线圈自身 原因来讲主要与励磁电流的频率有关, 原因来讲主要与励磁电流的频率有关,所以涡流传感器主要可分高频 反射的低频投射两类。 反射的低频投射两类。
电涡 传感 (
实验二 电涡流传感器位移实验
![实验二 电涡流传感器位移实验](https://img.taocdn.com/s3/m/2c613a6927284b73f2425059.png)
实验二(1)电涡流传感器位移实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
三、需用器件与单元:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。
四、实验步骤:1、根据图8-1安装电涡流传感器。
图8-1电涡流传感器安装示意图图8-1电涡流传感器安装示意图图8-2电涡流传感器位移实验接线图2、观察传感器结构,这是一个平绕线圈。
3、将电涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件。
4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
5、将实验模板输出端Vo与数显单元输入端V i相接。
数显表量程切换开关选择电压20V档。
6、用连结导线从主控台接入15V直流电源接到模板上标有+15V的插孔中。
7、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出几乎不变为止。
将结果列入表8-1。
表8-1电涡流传感器位移X与输出电压数据X(mm)V(v)8、根据表8-1数据,画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3mm及5mm时的灵敏度和线性度(可以用端基法或其它拟合直线)。
五、思考题:1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm的量程应如何设计传感器?2、用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器。
实验二(2)被测体材质对电涡流传感器特性影响一、实验目的:了解不同的被测体材料对电涡流传感器性能的影响。
二、基本原理:涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。
三、需用器件与单元:除与实验二(1)相同外,另加铜和铝的被测体圆盘。
四、实验步骤:1、传感器安装与实验二(1)相同。
电涡流传感器的仿真与设计
![电涡流传感器的仿真与设计](https://img.taocdn.com/s3/m/83d895337dd184254b35eefdc8d376eeafaa175c.png)
电涡流传感器的仿真与设计电涡流传感器是一种基于电磁感应原理的传感器,具有非接触、高精度、高灵敏度等优点,因此在工业、科研、医疗等领域得到广泛应用。
本文将介绍电涡流传感器的仿真与设计,包括其原理、应用和未来发展。
电涡流传感器的工作原理是利用电磁感应原理,当一个导体置于变化的磁场中时,导体内部会产生感应电流,这种电流被称为电涡流。
电涡流的大小和方向取决于磁场的变化,因此,通过测量磁场的变化,可以推导出被测物体的位置、速度、尺寸等参数。
在进行电涡流传感器的设计和应用之前,通常需要进行仿真和验证。
本文将介绍如何使用仿真工具进行电涡流传感器的设计和验证。
需要搭建一个包含激励源、传感器和数据采集器的电路。
激励源用于产生磁场,传感器用于感测磁场的变化,数据采集器用于采集传感器的输出信号。
激励电源的配置应根据传感器的工作频率、功率和电压等参数进行选择。
通常,激励电源的频率与传感器的谐振频率一致,以获得最佳的测量效果。
将传感器与数据采集器连接,使得传感器能够感测到磁场的变化并将输出信号传输给数据采集器。
数据采集器应选择具有较高灵敏度和分辨率的型号,以保证测量结果的准确性。
运行仿真程序并分析仿真结果,以验证设计的可行性和有效性。
可以通过调整激励电源的参数、传感器的位置和方向等来优化仿真结果,并分析各种情况下传感器的响应特性和测量误差。
在完成仿真后,可以开始进行电涡流传感器的硬件和软件设计。
电路设计应考虑传感器的供电、信号的放大和滤波、抗干扰措施等因素。
可以根据仿真结果来选择合适的元件和电路拓扑结构,以满足传感器在不同情况下的性能要求。
根据应用场景的不同,选择合适的传感器类型和材料。
例如,对于高温环境,应选择能够在高温下正常工作的传感器;对于需要测量非金属材料的场景,可以选择使用高频激励源来减小对非金属材料的感测误差。
根据电路设计和传感器选择的结果,编写数据采集器的程序。
程序中应包括信号的读取、处理、存储和传输等功能,以便将传感器的输出信号转换为有用的测量结果。
利用电涡流位移传感器寻迹设计
![利用电涡流位移传感器寻迹设计](https://img.taocdn.com/s3/m/358096b9a8114431b80dd82a.png)
病害,切削突出的部位,对其进行涂刷沥青,再填补上沥青 的 混 合 碎 石原 料,而 对于 基 层 水 稳 定 性 能 不好 的 沥 青路 面,需要利用基层部位的下沉优先处理沥青的基层。
3 结语 对于城 乡沥 青公路 病 害出现的原因正确认识,有助于
促进城乡沥青公路的维护与修补,需要提升城乡沥青公路 的设计质量,从源头上解决和根除公路病害。其次,做好沥 青公路的养护管理,结合城乡沥青公路的使用周期和投资 收益,紧抓路面的专项处治和日常的修补,才能够有针对性 和有依据安排路面的养护,还需要加大对路面技术的创新 和科技投入,为城乡沥青公路的维护提供科技支撑。
对于沥青路面的基层完好,而有坑槽的沥青路面需要 进行面层和基层的共同维护,但需要避开在低温寒冷的季 节或者阴雨较多的季节进行维护,对于缺少合适材料对坑 槽的维护时,需要缩小坑槽面积的扩大可能,及时采取临时 性的措施对坑槽进行处理,利用天气适中的时间,对沥青 公路的坑槽部位进行修补,既要从季节考虑,又要从日常的 天气考虑,针对坑槽的不同情况,因地适宜地进行维修。 2.4 沥青路面车辙的维修方法
222. [4] 裴志华.高速公路交通安全设施现状及养护发展方向
[J].河南建材,2019(2):274-275.
(上接54页) 据电磁感应定律,当传感器励磁线圈中通以正弦交变电流 时,线圈周围将产生交变磁场,在被测导体上面因为互感 关系产生电动势,从而产生电涡流。使得位于该磁场中的 金属导体产生新的感应电流,新的感应电流又产生新的交 变磁场,新的交变磁场又会反抗原交变磁场(见图2)。
2 电路设计
电涡流传感器特性与位移测量实验
![电涡流传感器特性与位移测量实验](https://img.taocdn.com/s3/m/5f3360cf65ce0508763213c7.png)
(操作性实验)班级:学号:学生姓名:实验题目:电涡流传感器特性与位移测量实验一、实验目的1、掌握电涡流传感器的特性和工作原理。
2、掌握电涡流传感器静态特性的标定方法。
二、实验仪器及器件电涡流线圈、金属涡流片、电涡流变换器、测微仪、示波器、电压表。
三、实验内容及原理3.1实验原理电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。
当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。
将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。
3.2实验内容1、利用所需部件,连接一个利用电涡流位移传感器测量位移的测试系统。
2、掌握实验原理,列出实验步骤。
3、根据实验步骤进行测量。
4、记录测量数据,最少测5组数据。
5、根据数据描出实验曲线。
6、计算实验数据,得出电涡流位移传感器静态特性。
三、实验步骤1.安装好电涡流线圈和金属涡流片,注意两者必须保持平行。
安装好测微头,将电涡流线圈接入涡流变换器输入端。
涡流变换器输出端接电压表20V档。
2.开启仪器电源,用测微仪将电涡流线圈与涡流片分开一定距离,此时输出端有一电压值输出。
用示波器接涡流变换器输入端观察电涡流传感器的高频波形,信号频率约为1MHz。
3.用测微仪带动振动平台使平面线圈完全贴紧金属涡流片,此时涡流变换器输出电压为零。
涡流变换器中的振荡电路停振。
4.旋动测微仪使平面线圈离开金属涡流片,从电压表开始有读数起每位移0.25mm 记录一个读数,并用示波器观察变换器的高频振荡波形。
将V、X数据填入下表四、实验测试数据表格记录表1五、实验数据分析及处理1、非线性度:图一线性方程为y = -1.9757x - 1.5198表2非线性度%88.426.6277.0max 1==∆=FS y e 2、灵敏度-1.975S =∆3、重复性图二%63.026.604.0max ==∆=FS R y e4、迟滞%76.126.611.0e max ==∆=FS t y1正-2正 0 0.01 0.04 0.01 0.02 0.01 0.02 0.02 0.01 -0.01 1正-3正 -0.04 0 0.03 0.01 0.01 0 0.010.010 0 2正-3正-0.04-0.01-0.01-0.01-0.01-0.01 -0.01-0.010.011正-1反 0.09 0.06 0.06 0.08 0.1 0.07 0.07 0.07 0.07 0 2正-2反 0 0.04 0.01 0.07 0.07 0.06 0.05 0.04 0.05 0 3正-3反0.110.050.030.060.090.350.050.040.03六、实验结论与感悟 1、实验结论1实验结论 非线性度%88.426.63055.0max 1==∆=FS y e 灵敏度-1.9757S =∆ 重复性%63.026.604.0max ==∆=FS R y e迟滞%76.126.611.0e max ==∆=FS t y2实验心得在本次实验中,我了解了电涡流传感器的特性及工作原理,掌握了振荡频率与输出电压的关系,掌握了电涡流式传感器的静态标定方法。
电涡流传感器电路设计
![电涡流传感器电路设计](https://img.taocdn.com/s3/m/35ef1b15cc17552707220825.png)
电涡流传感器电路设计作者:汪晓凌杜嘉文来源:《硅谷》2013年第01期摘要:在无损测量当中,电涡流传感器测量因为能够实现工件在线非接触测量,测量精度高、无污染、制作价格低廉等优点,一直被作为一种重要的检测设备,在涡流技术高速发展的今天,电涡流的优势越来越明显应用也越来越广泛。
电涡流传感器是电涡流测量淬火层厚度的核心部分,传感器的测量精度直接影响整个测厚设备的精度,传统的电涡流传感器包括测量探头、整流滤波电路的设计、放大器的设计等,电涡流传感器的精确测量也离不开位移测厚标定器,这里主要研究电涡流测厚核心电路的设计。
关键词:无损测量;电涡流;测厚;电路0 引言电涡流无损检测具有很悠久的历史,从Michael Faradays总结出电磁感应定律,即变化的磁场能产生电场以来,电磁感应相关技术取得了巨大的发展。
后来Foster提出的通过分析系统的阻抗变化来分析涡流检测仪的干扰因素,为涡流检测提供了很好的理论依据,大大推动了电涡流无损检测技术的发展。
通过对阻抗分析法的有效运用,电涡流测量技术已经渗透到我们工业测量的方方面面,包括了航空航天、核工业、机械、冶金、石油、化工、机械、汽车等部门,电涡流无损技术的快速发展,相关研究和运用也越来越广泛,其中传感器的电路设计和测量精度的控制都是研究的焦点。
1 涡流检测原理图涡流检测是无损检测的一个分支,是运用电磁感应原理,将一半径为r的线圈通过正弦波电流后,线圈周围就会产生一交变磁场H1;若在距线圈x处有一电导率为a,磁导率为u厚度为d的金属板,线圈周围的交变磁场会在金属表面产生感应电流,也称作涡流。
金属表面也产生一个与原磁场方向相反的相同的相同频率的磁场H2,反射到探头线圈,导致载流线圈的阻抗和电感的变化,改变了线圈的电流大小及相位,原理图如图1所示。
图1 电涡流测厚原理图2 测厚探头的设计图2 电涡流测量电路整体设计图电涡流测量电路的整体测量电路设计图如图2所示,涡流探头测量物体厚度后引起阻抗的变化,通过电桥电路转化成电流信号输出,也由于信号很微弱,需要经过放大器进行功率放大输出,经过整波电路,把交流信号转化为直流信号,然后把那些高频的还有低频的号过滤掉,得到干扰较小的电流信号,经过放大器尽心比例放大后接入ARM7的A/D转换接口,把模拟信号转化为数字信号,对信号进行控制然后接入数字示波器,观察波形输出,把结果通过PC 机显示出来[1]。
一种精密整流电路在电涡流位移传感器检测中的应用
![一种精密整流电路在电涡流位移传感器检测中的应用](https://img.taocdn.com/s3/m/26209309561252d381eb6e29.png)
图 1 电涡流位移传感器检测电路
2 无二极管精密整流电路的工作原理
大家知道,使用半导体二极管进行整流,通常适 用于处理大大超过二极管正向压降的电压信号,此 时二极管的正向压降对测量的精度影响比较小;而
图 2 无二极管精密整流电路
2.1 工作原理分析 以下对图 2电路的工作原理进行详细具体工作
原理分析: LMC6482AIN是美国模拟器件公司生产的一款
图 6 线性区域数据处理
通过 Matlab工具对实际数据进行分析,不难看 出改进后的实验电路的实验效果得到明显改善,位 移的测量精度得到有效提高。加强了对传感器检测 电路的作用的认识与体会,同时可以获得如何从传 感器测试数据中获取信号转换规律的基本方法。
(下转第 88页)
88
山 西 电 子 技 术 2018年
图 4 改进型电涡流位移传感器检测电路
通过实际测量,得到如下实测数据分析:
图 5 全程实测数据
图 3 无二极管精密整流电路信号实测波形
3 精密整流电路在位移检测中的应用
据此将所设计的图 2所示精密无二极管整流电 路替代图 1中的二极管半波整流电路,能够有效改 善实验测量的精度和线性范围[2]。所设计的无 二 极管整流电涡流位移传感器检测实验电路如图 4 所示。
1 电涡流位移实验检测电路存在的问题
图 1作为高频反射式电涡流位移检测电路,传 感器线圈中通过高频电流而产生交变磁场,当反射 体接近时,由于导体材料的电涡流效应反作用产生 涡流损耗,涡流损耗与导体和线圈的距离相关,因此 实现微位移的检测。
由于二极管的整流作用对传感器输出信号的损 耗存在,因此一方面会直接对位移测量的结果带来 较大的误差;同时当传感器输出信号幅度小于二极 管正向压降时,输出电路将无信号输出,因此减小了 传感器的测量范围。
电涡流位移传感器设计
![电涡流位移传感器设计](https://img.taocdn.com/s3/m/2d887e1fde80d4d8d15a4ff3.png)
HEFEI UNIVERSITY OF TECHNOLOGY《传感器原理及应用》课程考核论文题目电涡流位移传感器设计班级机设八班学号姓名成绩机械与汽车工程学院机械电子工程系二零一二年五月电涡流位移传感器摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。
特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。
传感器技术的应用在许多个发达国家中,已经得到普遍重视。
在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。
电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。
关键词:电涡流式传感器传感器技术电量非电量Abstract:With modern measurement, control box of automation technology development, the sensor technology is more and more attention by people. Especially in recent years, due to the development of science and technology and ecological balance the need, sensor in various fields are also increasingly significant role. The sensor technology application in many developed countries, has been paid attention to. In the project in measured parameters for the most power, the power to urge people to approach to the power, and the research method of the electricity measurement of electric instruments, to study how to correct and fast the power technology. The eddy current sensor has become the electrical measurement technology is very important means of detection, widely used in engineering survey and scientific experiments.Key words:Eddy current sensor, sensor technology ,non-power electrical measurement techniques,一:总体设计方案电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。
基于电涡流传感器的小位移测量系统设计
![基于电涡流传感器的小位移测量系统设计](https://img.taocdn.com/s3/m/fe1fce3be3bd960590c69ec3d5bbfd0a7856d55b.png)
基于电涡流传感器的小位移测量系统设计于明军;孙福玉;韩铮;张迪【摘要】针对物理实验中对小位移的测量读数困难的问题,提出了一种基于电涡流传感器测量小位移的方法.根据谐振原理设计了涡流传感器检测和调理电路,利用位移量影响谐振电路Q值的特性,实现了小位移量到电压量的转换,使用单片机采集信号并用软件方法对测量结果校准.实验结果表明,系统可以准确测量小位移,同时可消除使用物理测量工具时产生的读数误差.【期刊名称】《实验技术与管理》【年(卷),期】2015(032)005【总页数】4页(P111-114)【关键词】位移测量;电涡流传感器;数据采集;微控制器【作者】于明军;孙福玉;韩铮;张迪【作者单位】赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400【正文语种】中文【中图分类】TP212.1电涡流传感器是一种非接触式的传感器件,它具有高线性度、高分辨力,可用于位移、振动和转速等静态和动态的相对位移变化测量[1]。
学生实验中对小位移的测量通常使用游标卡尺或千分尺,数据不能直观显示且存在读数误差。
本文利用电涡流传感器设计了一种小位移测量系统,能够自动显示测量结果,使用方便且测量精度高。
利用单片机采集、处理信号,电路简单,成本低廉[2]。
电涡流传感器的测量原理如图1所示,根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈周围空间产生正弦交变磁场H1,它使置于此磁场中的被测金属导体表面产生感应电流,即电涡流i2,电涡流又产生新的交变磁场H2, H2与H1方向相反,并力图削弱H1,从而导致探头线圈的等效电阻相应地发生变化[3-4]。
将被测金属导体上形成的电涡流等效成一个短路环中的电流,这样就可以得到如图2所示的等效电路。
电路中除了自感L1和L2,外,探头线圈和导体之间存在一个互感M,它随线圈与导体间距离的减小而增大。
实验 电涡流传感器位移特性实验
![实验 电涡流传感器位移特性实验](https://img.taocdn.com/s3/m/395cdd134a7302768e9939cc.png)
实验电涡流传感器位移特性实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图17.1.1所示。
根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图17.1.2的等效电路。
图中R1、L1为传感器线图17.1.1 电涡流传感器原理图图17.1.2 电涡流传感器等效电路图圈的电阻和电感。
短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。
因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q 值为:Q =Q 0{[1-(L2ω2M2)/(L1Z22)]/[1+(R 2ω2M2)/( R 1Z22)]}式中:Q 0 — 无涡流影响下线圈的Q值,Q 0=ωL1/R 1; Z22— 金属导体中产生电涡流部分的阻抗,Z22=R 22+ω2L 22。
由式Z 、L 和式Q可以看出,线圈与金属导体系统的阻抗Z 、电感L 和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。
因此Z 、L 、Q均是x的非线性函数。
虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。
《传感器原理及应用》电涡流传感器的位移特性实验
![《传感器原理及应用》电涡流传感器的位移特性实验](https://img.taocdn.com/s3/m/15c2d67442323968011ca300a6c30c225901f028.png)
《传感器原理及应用》电涡流传感器的位移特性实验报告1.实验功能要求了解电涡流传感器测量位移的工作原理和特性;了解不同的被测材料对电涡流传感器性能的影响:了解电涡流传感器在实际应用中其位移与被测体的形状和尺寸有关。
2.实验所用传感器原理基本原理:电涡流式传感器是一种建立在涡流效应源理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体一金属涡流片)组成,根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I₁时,线圈周围空间会产生交变磁场H₁,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流J₂,而I₂所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环。
图中R₁、L₁为传感器线圈的电阻和电感。
短路环钉以认为是一匝短路线圈,其电阻为R₂、电感为L₂。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
电涡流变换器原理图3.实验电路图2 电涡流传感器安装示意图图3 电涡流传感器接线图3.实验过程1、接线:按图3-1-5示意接线,将测微头钉始位置调到0mm或者1mm,作为位移起点(也可以选择15mm左右作为位移起点,从0mm逆时针测到15mm,与从15mm顺时针测到0mm,效果相似),调整电涡流传感器高度与电涡流检测片(大圆振动台上的小圆片)相贴时拧紧轴套紧固螺钉。
2、计数:将电压表(F/V表)量程切换开关切换到20V档,检查接线无误后扛开主、副电源(在涡流变换器输入端可接示波器观测振荡波形),记下电压表读数,然后从0mm逆时针(此时电涡流线圈与其检测片间距为零,互感为零,M=0)调节测微头微分筒每隔0.2mm读一个数,直到输出Vo变化很小为止并记入表1.3、根据表1数据作出V-X实验曲线。
新型电涡流传感器测量电路设计分析
![新型电涡流传感器测量电路设计分析](https://img.taocdn.com/s3/m/a99d499f690203d8ce2f0066f5335a8102d266c0.png)
新型电涡流传感器测量电路设计分析摘要:在新型电涡流传感器测量电路设计上,应该分析多点技术内容,例如基于传统接触式测量技术在实际应用中的缺陷,即可建立一种全新的测量电路实验平台,分析其设计技术方法,并对电路设计实验结果进行了阐述。
关键词:新型电涡流传感器;测量电路设计;实验平台;设计方法;实验结果工程检验施工中需要对多种物理量检测数据进行分析,最终归结转化获得机械位移量,如此对监控提高检测仪器性能是很有帮助的。
例如针对新型电涡流传感器的测量电路设计分析需要提高测量灵敏度与准确度,优化测量电路设计动态范围,要结合传感器测量电路的稳定运行性能与运行恶劣环境进行分析。
1.新型电涡流传感器的工作原理分析新型电涡流传感器的基本构成包括了延伸电缆、探头线圈、信号处理模块以及被测体四大部分。
在设备运行过程中,需要分析交变磁场变化,对其有效运行范围进行分析,了解被测体靠近过程中磁场能量的损失变化。
此时被测体中会产生电涡流产生交变磁场,其中磁场反作用可确保线圈电流大小与相位变化,分析线圈阻抗变化情况,并对新型电涡流传感器的涡流场反作用问题进行分析,如图1[1]。
图1新型电涡流传感器的基本构成结构示意图如图1,在线圈阻抗变化过程中,需要分析被测体电导率、线圈几何参数、线圈被测体之间的相互控制距离进行分析,深入了解被测体的电阻率、磁导率以及厚度变化情况。
如此可建立高频放射式测距涡流传感器,并对低频透射测厚涡流传感器内容进行分析,提出相关技术解决方案。
简言之,它所建立的是围绕被测体、输入电流、线圈、磁场能量耦合、电涡流所共同构建的新型电涡流传感器系统技术体系[2]。
1.新型电涡流传感器测量电路的设计流程与设计方法1.设计流程1建立布线图在新型电涡流传感器测量电路设计流程中,需要首先采用印制板并设计电源线与地线,它可为电路正常工作提供不竭电源动力,同时配置导线内容,建立影响电路板电磁兼容的导线部分。
在设计过程中,需要对地线组合所形成的电容部分进行分析,建立地线电路基准,确保多个电路都能提供0V参考电压,分析朱电磁干扰情况,结合底线对PCB到点面积分布均匀性进行分析,建立新型电涡流传感器测量电路机制,避免出现串扰问题。
新型电涡流传感器测量电路设计
![新型电涡流传感器测量电路设计](https://img.taocdn.com/s3/m/6c160b58a200a6c30c22590102020740be1ecd93.png)
新型电涡流传感器测量电路设计电涡流传感器是一种能够将金属中的涡流效应转换为电信号的传感器,广泛应用于工业领域的位移、速度和金属表面缺陷等测量。
而新型电涡流传感器测量电路设计则是针对传感器测量信号处理的核心部分,其设计的好坏直接关系到传感器测量精度和稳定性。
这篇文章将从深度和广度的角度,全面评估新型电涡流传感器测量电路设计的关键要素,并探讨其在工业应用中的重要性。
1. 传感器原理及特点在进行新型电涡流传感器测量电路设计之前,首先需要了解传感器的工作原理和特点。
电涡流传感器利用涡流效应来检测金属表面的缺陷或测量金属零件的尺寸、形状等参数。
其工作原理是当金属表面被感应线圈的交变磁场影响时,会在金属内部产生涡流,并产生一个感应电动势,感应线圈测量出这个电动势,从而实现对金属的测量。
而新型电涡流传感器相比传统传感器具有更高的灵敏度、更快的响应速度和更广的测量范围。
2. 传感器测量电路设计要求在进行新型电涡流传感器测量电路设计时,需要考虑的关键要素包括信号放大、滤波、AD转换、数字信号处理等。
对于传感器的微弱信号,需要进行有效的放大处理,以提高信噪比和测量灵敏度;由于传感器信号可能存在噪声等干扰,需要设计合适的滤波电路来滤除杂散干扰,保证信号质量;另外,为了实现对信号的数字化处理和后续数据处理,还需要进行AD转换和数字信号处理的设计;对于工业现场的使用,还需要考虑电涡流传感器测量电路的稳定性和抗干扰能力。
3. 设计方案及优化在新型电涡流传感器测量电路设计中,可以采用多种电路设计方案来实现对传感器信号的高精度采集和处理。
常见的方案包括差动放大电路、滤波电路、高速AD转换电路等。
对于特定应用场景,可以根据实际需求选取合适的电路方案,并通过仿真、实验等手段对电路进行优化。
在差动放大电路中,可以采用低噪声、低偏置电流的运算放大器来实现微弱信号的放大,提高测量精度;在滤波电路中,可以采用低通滤波器来滤除高频噪声,保证信号的准确性。
电涡流传感器的测量电路
![电涡流传感器的测量电路](https://img.taocdn.com/s3/m/fe537ef1284ac850ad0242e1.png)
振动幅度。该电路的关键是提高振荡器的频率稳定度,通常可以从环境温度
变化、电缆电容变化和负载影响三方面来考虑。另外提高谐振回路元件本身
的稳定性也是提高频率稳定度的一个重要措施。因此,传感器线圈L可采用
热绕工艺绕制在低膨胀系数材料的骨架上,并配以高稳定性的云母电容或具
有适当负温度系数的电容作为谐振电容C。
1
线圈
H1
I1
H2 被测导体
H I2
R1
M
R2
I1
I2
u
L1
L2
~
线圈系统
金属导体
图14.1 电涡流传感器原理图
图14.1 电涡流传感器等效电路图
变化完全取决于被测金属导体的电涡流效应。而电涡流效应既与被测导体
的电阻率ρ、磁导率以及几何形状有关,又与线圈几何参数、励磁电流频率 有关,还与线圈与被测金属导体的距离x有关。故电涡流传感器的线圈受电 涡流影响时的等效阻抗Z可用Z=F(ρ,,r,f,x)表示其函数关系,其中r 为传感器线圈与被测导体的民族尺寸因子。
如果保持上式中其它参数不变,只改变其中的一个参数,则传感器线圈 的等效阻抗Z就成了此参数的单值函数。通过与此相配套的测量电路测出其 等效阻抗Z的变化量就实现了对该参数的测量,这就是电涡流式传感器工作 的基本原理。
2
3.电涡流传感器的性能特点
电涡流式传感器不仅具有很高的灵敏度、良好的线性度和极强的抗干扰能 力、而且测量范围大、不易受油污等介质的影响,还具有结构简单、安装方 便,并能实现不接触测量等诸多优点。因此,它不仅在位移、振幅、厚度、 表面温度、流体压力、钢水的液位和转速等物理量的检测中得到了越来越广 泛的应用。而且在金属探伤检测、远距离监控、动力系统的故障诊断等许多 领域都得到了应用。
4-1电涡流传感器原理结构电路
![4-1电涡流传感器原理结构电路](https://img.taocdn.com/s3/m/9467df12be1e650e52ea99bd.png)
高频电流通过励磁 线圈,产生 交变磁场, 在铁质锅底 会产生无数 的电涡流, 使锅底自行 发热,烧开 锅内的食 物。
8
第二节 电涡流传感器结构及特性
交变磁场
电涡流探头外形
电涡流探头内部结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路板 5—夹持螺母 6—电源指示灯
7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
19.06.2020
18
休息一下
19.06.2020
19
涡流线圈的阻抗Z就成为哪个非电量的单值函数? 属于接触式测量还是非接触式测量?
19.06.2020
5
等效阻抗与非电量的测量
检测深度的控制:由于存在集肤效应,电 涡流只能检测导体表面的各种物理参数。改变f, 可控制检测深度。激励源频率一般设定在 100kHz~1MHz。频率越低,检测深度越深。
间距x的测量:如果控制上式中的i1、f、、、r不
19.06.2020
10
CZF-1系列传感器的性能
分析上表请得出结论:
探头的直径与测量范围及分辨力之间 有何关系?
19.06.2020
11
大直径电涡流探雷器
19.06.2020
12
第三节 测量转换电路
一、调幅式(AM)电路
石英振荡器产生稳频、稳幅高频振荡电压(100kHz~1MHz) 用于激励电涡流线圈。金属材料在高频磁场中产生电涡流,引
当电涡流线圈与被测体的距离x 改变时,电涡流 线圈的电感量L 也随之改变,引起LC 振荡器的输出 频率变化,此频率可直接用计算机测量。如果要用模
拟仪表进行显示或记录时,必须使用鉴频器,将f转 换为电压Uo 。
19.06.2020
基于LabVIEW的电涡流位移传感器测量系统设计与研究
![基于LabVIEW的电涡流位移传感器测量系统设计与研究](https://img.taocdn.com/s3/m/9fdbb08483d049649b6658ce.png)
使! k !
2 i 2 i
对 k 和 b 一阶偏导数等于 0, 即 = 2! ( yi - kx i - b) ( - x i ) = 0 ( 4) ( 5)
! 2 i = 2! ( yi - kx i - b) ( - 1 ) = 0 b 从而求出 k 和 b 的表达式为 k= b= n ! xiyi - ! xi ! yi 2 2 n ! xi - ( ! xi ) ! xi ! yi - ! xi ! x iyi
收稿日期: 2008- 09- 16 作者简介: 王欣威 ( 1977 ), 女, 讲师。主要研究方向为 传感器 与测 控技术、 虚拟仪 器、测试 信号 与信息 处理 技术。电 话: 13079256735, E- m a i: l wangx inw ei1977 @ 163 co m。
第 9期
王欣威 等 : 基于 L abV IEW 的电涡流位移传感器测量系统设计与研究
161
标定对于测量系统来说是很关键的一步, 传感器 经静态标定后, 可以获得静标曲线, 求得灵敏度、线 性度等静态特性指标, 并确定线性工作范围, 进而得 到利用电涡 流 传感 器进 行测 量 时的 最佳 工作 点 的范 围 。 标 定时首 先, 移动 测 微头 与传 感 器线 圈 端部 接 触 , 并记 录计算 机 采 集 到 的 电 压 值, 转 动 测 微 头, 每 隔 0 2mm 记录此 时 的电 压 值, 得到 了 一对 数 据, 如 此下去 , 直到把 整个 测量 范围 的标 定 数据 全部 得 到 。再反 方向转动 测微头 , 每隔 0 2mm 记录 此时的 电 压值, 又得到 了一 对数 值, 如此 下去 , 直 到把 整 个 测量范 围反方向 的标 定 数据 全部 得到 。采 用最 小 二 乘和 端 点 连 线 法 两 种 直 线 拟 合 的 方 法 进 行 线 性 化 , 并求 出灵敏度 和 线性 度。如 图 4 所示 为 标定 系 统 的前面 板。
电涡流传感器电路设计
![电涡流传感器电路设计](https://img.taocdn.com/s3/m/b40a5d6bf5335a8102d22037.png)
d 的 金 属 板 , 线 圈 周 围 的 交 变 磁 场 会 在 金 属 表 面 产 生 感 应 电 流 , 也 称 作 涡 流 。 金 属 表 面 也 产 生 一 个 与 原 磁 场 方 向相 反 的 相 同 的 相 同频 率 的 磁 场 H 2 , 反 射 到 探 头 线 圈 , 导 致 载 流 线 圈 的 阻 抗 和 电感 的变 化 , 改 所 示。
0引 育
电涡 流 无 损 检 测 具 有 很 悠 久 的 历 史 , 从M i c h a e 1 F a r a d a y s
那 些高频的还有低 频的号过滤掉 ,得到干扰较小 的电流信号 , 经 过 放 大 器 尽 心 比例 放 大 后 接 入 A R M 7 的A / D 转 换 接 口 , 把 模 拟
信 号 转 化 为 数 字 信 号 , 对 信 号 进 行 控 制 然 后 接 入 数 字 示波 器 , 观 察 波 形 输 出 ,把 结 果 通 过P C 机 显 示 出来 [ 1 ] 。 传 统 的 电 涡 流 传 感 器 的 测 量 电 路 主 要 是 通 过 电桥 法 组 成 的 , 电桥 法 是 将 传 感 器 线 圈 的 阻抗 变 化 转 化 为 电压 或 电流 的 变 化 , 图3 是 电桥 电路 的原 理 图 , 线 圈A N D 线 圈B 为传 感 器 线 圈 , 线 圈A 为 阻抗 可 调 线 圈 , 线 圈B 为 测 量 线 圈 ,传 感 器 原 线 圈 的 阻抗 值 等 于 线 圈A 设 定 的 阻抗 值 , 当线 圈B 接 近 被 测 钢 件 时 , 线 圈B 的 阻 抗 值 发 生 变 化 ,使 电桥 两 边 失 去 平 衡 , 电 桥 的 不 平 衡 会 使 电 阻 两 边 产 生 不 均 衡 信 号 通 过 放 大 器 放 大 后 进 行检 波 输 出就 可 以 得 到 和 被 测 量 成 正 比 的输 出信 号 ,通 过 一 定 的 方 法 进 行 线 性 拟 合 就 可 以得 到 输 出 信 号 和 钢 件 淬 火 层 厚 度 之 间 的 关 系 ,其 中线 圈A 和线圈B 都 可 以 通 过 漆 包 线 和 绝 缘 套 管绕 制 而 成 , 线 圈 的 阻 抗 大 小 由线 圈 的 匝 数 决 定 , 同 时 线 圈 的 匝 数 和 绝 缘 套 管 的 内径 和 外 径 大 小一 起 决 定 了探 头 能 后测 量 的 范 围大 小 。 经 过 实 验 分 析 可 知 ,线 圈 厚度 越 厚 ,涡 流 损 耗 越 小 ,传 感 器 的 的 测 量 精 度 也越 差 : 线 圈 外径 越 大 ,涡 流 损 耗 越 小 ,传 感 器 的测 量 精 度 也 越 差,相反若 只是改变传感器线 圈的 内径对传感器 的测量精度 影 响 不 大 。 电 涡流 效 应 主 要 集 中在 待 测 物 体 表 面 ,所 以表 面 的 平滑 程度对测量 的精度也有很大影 响。 ( 新 型 电涡 流 测量 电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位移电涡流传感器测量电路设计-)
作者: 日期:
成绩评定:_______
传感器技术
课程设计
题目位移电涡流传感器测量电路设计
摘要
电涡流传感器由于具有对介质不敏感、非接触的特点,广泛应用于对金属的位移检测中。
为扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。
利用Matlab计算软件辅助设计了直径为60mm电涡流传感器探头,并结合测量电路进行实验。
实验结果表明最大测量范围接近90mm验证了该系统工作的稳定性,证明设计达到了预期效果。
关键词:电涡流传感器;测量电路;大位移;线性化
一、设计目的--------------------- 1
二、设计任务与要求------------------ 1
2.1设计任务 ----------------------- 1
2.2设计要求 ----------------------- 1
三、设计步骤及原理分析---------------- 1
3.1设计方法 ----------------------- 1
3.2设计步骤 ----------------------- 2
3.3设计原理分析 ------------------- 6
四、课程设计小结与体会--------------- 6
五、参考文献--------------------- 6
一、设计目的
1. 了解电涡流传感器测量位移的工作原理和特性。
2. 了解电涡流传感器的前景及用途
二、设计任务与要求
2.1设计任务
扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。
验证了该系统工作的稳定性,证明设计达到了预期效果。
2.2设计要求
1. 工作在常温、常压、稳态、环境良好;
2. 设计传感器应用电路并画出电路图;
3. 应用范围:测量物体的位移。
三、设计步骤及原理分析
3.1设计方法
电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对
金属位移等的测量中。
尽管用电涡流传感器非接触测量位移已经得到广泛的应用但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。
在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。
文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。
由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。
如图1所示,传感线圈由交流信号激励在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。
影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持
不变,则传感器的等效阻抗Z将变成位移x的一元函数Z(x),经过线性化处理后用Z的变化就能很好地反映出x的变化,实现测量位移x的目的
图1电涡流位移测豈原連
3.2设计步骤
321测量电路的设计
电涡流传感器的测量电路可以归纳为调幅式和调频式2种。
调幅式电路又可
细分成恒定频率的调幅式与频率变化的调幅式2种,文中采用恒定频率调幅式电路,其特点是输出可以被调理为直流电压,优势在于调节为直流电压后,采用指数运算电路对传感器的非线性段进行线性化补偿,可最大限度地扩大传感器测量范围。
测量电路由电涡流传感器、信号源电路、前级放大电路、检波滤波电路、指数补偿电路等5部分构成。
3.2.2传感器参数的确定
传感器的主要元件是一支固定于框架上的扁平线圈与一个电容并联所构成的并联谐振回路。
线圈尺寸和形状关系到传感器的灵敏度和测量范围,采用计算机Matlab计算软件得到传感器线圈的最优结构参数:外径为60mm内径为57mm轴向厚度为3mm匝数为80,线径为0.25mm.
3.2.3信号源电路
信号频率及其稳定性对检测效果的影响非常大,一般来说,若振荡频率变化1%,
输出变化大约在10%以上。
DDS具有相位连续、转换速度快、信号稳定度高等优点。
采用AD9850与单片机产生正弦信号,经滤波、功率放大等处理后送给传感器。
AD9850与单片机组成的信号源电路,在参考时钟为125MHzF,输出频率分辨率可达0.029Hz。
324前级放大电路
电涡流位移传感器是将位移量转化为电信号,由于信号为变化缓慢的非周期信号,而且比较微弱,只有通过放大才能驱动负载。
同时,要求放大电路要有高的输入阻抗,以减小测量电路的负载,提高LC并联谐振回路的品质因数。
采用低噪声、精密集成运算放大器OP37搭建同相输入前级放大电路,同时得到1M以上的高输入阻抗和较低的输出阻抗。
3.2.5检波滤波电路
采用二倍压检波电路与有源二阶低通滤波电路,如图2所示,得到与交流电压信号幅值变化相对应的直流电压信号。
电路还具有电压的调节作用,即调节反馈电阻RW1获取传感器线圈与被测位移为0处所对应的输出电压,为后面的指数非线性补偿等处理做准备。
图2检波与滤波电路
3.2.6指数补偿电路
当位移x在50mn以外变化时,电涡流传感器输出电压仍有变化,只是变化十分缓慢。
为增大测量范围,需要一个补偿环节,其传输特性如图3第三象限中曲线2 所示,它与第一象限中传感器输出特性(曲线1)一起,实现最终第四象限的线性结果。
在第三象限较远处,当输入(横轴方向)逐渐增大变化时,输出(纵轴方向)的变化率不断增大,这种曲线类似指数运算。
故利用2支双极型晶体管与精密、低噪声运放AD704设计一个指数运算电路,可以达到上述要求。
图3非线性化补偿图解
如图4所示,在进行指数补偿之前,通过运算放大器A3的减法运算得到位移x 的对应变化电压V2,运算放大器A4和A5的作用是选择指数补偿的起点电压。
5V 电压基准Vrefl、Vref2及后面Vref3均由低噪声、低漂移、精密电压基准MAX6250 提供;开关二极管D3保证输出电压的单一方向,即V3>0,对指数补偿电路起保护作用。
禺尽
图4非线性补偿起点获取电路
指数补偿电路如图5所示,放大器A6 A7与三极管Q1、Q2组成指数补偿电路放大器A8与A9组成豪兰德(Howland)电流源电路,为指数运算电路提供如图所示的恒定电流:
图5指数补偿电路
由于指数运算电路只对较远处起作用,对较近的距离反而具有衰减的负面效应,为解决此问题,将指数运算电路输出V4与图5中通过A3减法运算得到位移x 的对应变化电压V2相加得到最终的输出电压Vout。
3.2 . 7实验结果
把电涡流位移传感器固定在一方,在另一方放置一块厚度为2cm,面积为(200*200)mm2的钢板作为被测导体,当钢板移动时,用游标卡尺读出位移x,在数字电压表上读出补偿前后电压值Voutl和Vout2,并转化成对应的相对电压Vob1 和Vob2(输出电压值Vout与最大输出电压Vomax的比值),如表1所示。
把这2 组数据画成位移-电压曲线如图6所示。
表1实验数据
位移
xAnm 补偿前补偿后
J
位移
X hiln
补偿前补偿后
a 00 a 0570 05660- 00 a 772CL 565
10 000 1120 09170. 00 a si60. 705 20. 000.2220 13680. 000. S42Q 782 30 000 4^60 1959a oo Q S420. S22 4Q 000.5720 2B2I (Mi 0010. 546Q S32 5Q oa a 71010 4451lia ool0 8471 a S381
輛的“位劈1化/曲经
X /nun
图6位移-电压曲线
3.3设计原理分析
实验结果表明:采用指数运算电路作为电涡流位移传感器的非线性补偿环节能够有效地改善传感器原有的传输特性,线性测量范围由原来不足直径的1/2最大可扩展到直径的1倍以上,基本能够满足大位移测量需要。
四、课程设计小结与体会
在这几天的课程设计中我学到了许多,既有有因无从下手和失败而迷茫和沮
丧,也有获得成功后的沾沾自喜。
而且发现自己的知识储备实在太少。
在课程设计中每天不断的查资料分析电路,要找出试验电路和经典电路之间的共性。
课程设计真的不容易。
对我的提高确实很大。
五、参考文献
[1] 邵东向,郭华.电感式位移传感器线性补偿技术•传感器技术,1999
[2] 邵爱霞,赵辉,刘伟文.定频调幅式电涡流传感器电路及其在防水数显卡尺中的应用.计算机测量与控制,2005
[3] 邰健杨,朱惠忠•大量程电涡流位移传感器线性化电路研究.仪表技术与传感器,1998
5。