名校必备江苏高考数学试卷分析与启示

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天兵下北荒,

胡马欲南饮。

横戈从百战,

直为衔恩甚。

握雪海上餐,

拂沙陇头寝。

何当破月氏,

然后方高枕

2008年江苏高考数学试卷分析与启示

江苏省海门中学数学组吴健

随着教育改革的不断深入,高考试卷的理念和呈现方式也在不断变革,2008年高考是新一轮课程改革后的第一年高考,其命题思想和试题呈现方式倍受社会关注,必将对以后几年的高考命题和高考复习起引领作用。纵观2008年江苏高考试题,数学试卷进一步优化了结构,试卷起点较低,循序渐进,在全面考察基础的同时,突出体现对学生的数学基本功、数学应用、创新能力等方面的考查。

1.调整结构,充分落实《考试说明》的精神,重点考查数学的主干知识

从试卷的结构来看,江苏卷继续进行积极的探索,全卷题量调整为“14+6”,即填空题14个,共70分;解答题6小题,共90分。按照2008年考试说明的要求,取消了选择题,有利于考查学生的数学基本功和思维能力,减少考生靠猜答案得分的可能性,当然,这种变化大大增加了学生得分的难度,使基础不好的学生没有任何“取巧”的余地。

今年江苏省的《考试说明》指出,试卷应“贴近教学实际,既注意全面,又突出重点。注重知识内在联系的考查,注重对中学数学中所蕴含的数学思想方法的考查”。纵观2008年江苏高考试卷,较好地

体现了考试说明的要求,整份试卷注重基础,考查知识覆盖面广,对主干知识的考查重点突出。例如函数作为高中代数最基本、最重要的内容,在试卷第(1)、(8)、(11)、(13)、(14)、(15)、(17)、(20)题中,从不同侧面进行了考查;解析几何着重考查直线和圆、二次曲线的性质,如第(12)、(18)题;立体几何着重考查点、线、面的位置关系,如第(16)题。《考试说明》还特别提出了8个知识点要“灵活和综合应用”,今年的试题在总题量减少的情况下,遵循“重点内容,重点考查”的命题原则,覆盖了《考试说明》中的8个C级知识点,且这些试题多为中档题或难题,如等差、等比数列继2005年、2006年、2007年重点考查后,今年继续着重考查,且常考常新,考生看到这样的考题,初看亲切、熟悉,但顺利解决很须动一番脑筋,对概念和思维的考查充满了力度。

2.试题编排合理,体现人性化和选择功能的和谐统一

今年高考题可以说一改往年过分追求题目的新颖与华丽,而走朴实和紧扣课本之路,全卷除了最后一题略显抽象,其它试题学生普遍感觉似曾相识,填空题的第(1)~(9)题,解答题的第(15)、(16)题均为基础题,难度不大,可快速解答,填空题从第10题开始为中档题,对考生的思维要求逐步提高。如填空题的第(11)、(14)两题均为不等式知识的综合应用,虽然考察的是常见的知识点,但命题思路巧妙,需要一定的转化变通能力。

y2的最小值为如:11.设z

,为正实数,满足0

y

x,

x,则

y

3

-z

+

2=

xz

此题中有三个变量z y x ,,,初看似有些吓人,但仔细分析,由

032=+-z y x 可消去参数y ,而xz

y 2又是分子、分母齐次的,可以再减少一个变量,即xz

y 2)926(41)96(414964)3(222x z z x x z z x xz z xz x xz z x ⋅+≥++=++=+==

3)66(41=+(等号条件略),从而求出xz y 2的最小值为3。

又如:14.设函数13)(3+-=x ax x f (R x ∈)若对于任意]1,1[-∈x ,都有0)(≥x f 成立,则实数a 的值为 。

由于此题中含有参数a ,我们直接研究)(x f 单调性较为困难,可

以先缩小a 的范围,由⎪⎩

⎪⎨⎧≤≤⇒≥≥≥-420)0(0)1(0)1(a f f f ,从而0≠x 时,即为3213x x a -≥恒成立,可以求出]1,1[-∈x 时,3213x

x -

的最大值为4,此时21=x ,∴4≥a ,从而a 只能等于4。 掩卷反思,除了试卷编排较人性化,体现了和谐之外,我觉得其用意折射出新课标的一些理念——层次分开,注重知识发生发展过程,着重培养知识的应用和创新能力,不搞人为的复杂题型,体现了把对学生数学思维能力的考查融合在对学生双基的考查之中的特点。

3.强化应用,在数学与现实问题的联系中考查学生解决问题的能力

从今年江苏高考试卷我们可以看到,命题专家在应用题的设计上作了积极的探索,通过应用题重点考查学生对现实问题的数学理解。如第(17)是三个污水处理厂排污管道的设计问题,题目要求用长度和角度作为自变量分别建立函数模型2002022+-+=x x x y (100≤≤x ),10tan 10cos 20+-=θθy (4

0πθ≤≤),然后再利用其中一个模型求y 的最小值,求最小值的方法主要是求导,当然也可用判别式,及≤+|cos sin |x b x a

22b a +等知识解决。这道试题的题材源自于生活中热点问题:环境污染、污水处理,建立数学模型并不困难,试题将函数、三角、导数等知识融合在一起,命题立意新,解题思路开阔,区分度高,是一道难得的好题。

4.注重创新,在探究数学问题的过程中考查学生的数学思维能力

今年的试卷在“知识网络交汇点命题”上有新的突破,不少试题横跨了函数、数列、解几、导数、不等式、推理和证明,充要条件中的几个领域,体现了现代数学不断融合的特点,在今年的高考数学试卷中,在知识网络交汇处设计的试题所占比例超过全卷总分的30%。 整份试卷“以能力为立意”的特点表现明显,全卷在综合考查数学知识的同时,还加大了考查学生能力的力度,特别需要指出的是今年的不少试题强化了探究性,要求考生对问题给出的信息、情境,能选择有效的方法和手段进行分析,灵活地应用所学的数学知识、思想方法进行独立的思考、探索和研究,确定解决问题的思路,创造性地

相关文档
最新文档