21有理数课件-北师大版七年级数学上册

合集下载

《有理数》示范课教学PPT课件【数学七年级上册北师大】

《有理数》示范课教学PPT课件【数学七年级上册北师大】
解: (2) -0.03g表示乒乓球的质量低于标准质量0.03g.
做一做 (3) 某大米包装袋上标注着“净含量:10kg ±150g”, 这里的“10kg±150g”表示什么?
解: (3)每袋大米的标准质量应为10kg,但实际每袋 大米可能有150g的误差,即每袋大米的净含量最多 是10kg+150g,最少是10kg150g.
指标 居民消费价格
全国 城市 农村
今年居民消费价格比上年上涨3.3%.
3.3
3.2
3.6
食品
家庭设备用品 及维修服务
7.2
7.1
7.5
今年居民家庭设备用品及维修服务
? 0.0 消费-0价.1格与上年0.1相当.
医疗保健
和个人用品
3.2
3.今2 年居民3交.2通和通信消费价格比上年下跌0.6%.
交通和通信
整数组成整数集合,所有的分数组成分数集合.请把下列各数填
入相应的集合中:
3, 7, 2 , 5.6, 0, 8 1 , 15, 1 .
349ຫໍສະໝຸດ 正数集合:{ 负数集合:{ 整数集合:{
3, 5.6, 15, 1 ,…}
7,
2

8
1
9 ,
…}
34
3,-7, 0, 15,…}
分数集合:{ - 2 , 5.6,-8 1 , 1 ,…}
整数 有理数
分数
零:0 负整数:如-1,-2,-3…
正分数正分数12 ,:13 ,如5.2,

负正分分数数:如
1 5

3.5,-
5 6
,…
1 2
整数与分数统称为有理数.
交流
有理数还可以怎样进行分类呢?

北师大版(2024)七年级上册2.1.1 认识有理数 课件(共26张PPT)

北师大版(2024)七年级上册2.1.1 认识有理数  课件(共26张PPT)
解:(1)沿顺时针方向转了12圈记作-12圈; (2)-0.03g表示乒乓球的质量低于标准质量0.03g; (3)每袋大米的标准质量应为10kg,但实际每袋大米可能有50g的误 差,即每袋大米的净含量最多是10kg+50g,最少是10kg-50g
跟踪训练
中国是最早采用正负数表示相反意义的量,并进行 负数运算的国家.若零上 10 ℃ 记作 +10 ℃ ,则零下 10 ℃ 可记作( C )
第二章 有理数及其运算
1 认识有理数 第1课时 认识有理数
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.能理解正、负数的概念,会判断一个数是正数还是负数.
(重点) 2.会用正、负数表示具有相反意义的量.(重点)
3.有理数的分类及其分类的标准.(难点)
情境引入
上帝创造了整数,所有其余的数都是人造的 ——法国数学家克罗内克
思考:你认为0应该放在什么地方? 0既不是正数,也不是负数
负数与对应的正数在数量上相等, 表示的意义相反。
跟踪训练
读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
6
4
12
正数
1 6
,+73,4.8, 172
负数
-11,-2.7, 3
4
例题讲解
例1(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺 时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,如果一个乒乓球的质量高于标准质量 0.02g记作+0.02g,那么-0.03g表示什么? (3)某大米包装袋上标注着“净含量:10kg±50g”,这里的“10kg±50g” 表示什么?

(2024秋新版本)北师大版七年级数学上册 《有理数的混合运算》PPT课件

(2024秋新版本)北师大版七年级数学上册 《有理数的混合运算》PPT课件

A.﹣16
B.16 C.20
2. 计算:(-13-12)÷54 = -23 .
D.24
课堂检测
基础巩固题
1.计算12-7×(-4)+8÷(-2)2的结果是( D )
A.-24
B.-20
C.6
D.42
2.下列各式中,计算结果等于0的是( C )
A.(-4)2-(-42) B.-42-42 C.-42+(-4)2 D.-42-(-4)2 3.设a=-2×42,b=-(2×4)2,c=-(2-4)2,则a,b,c的大小关系为( B )
=-54+12+15
=-8+(-3)×18-(-4.5)
=-27;
=-8-54+4.5 =-57.5.
课堂检测
基础巩固题
5.找错,并把正确的答案写在横线上.
(1)-24 -
22 3
+
9 4
=
-16 -
4 9
+
4 9
=
-16;
解:-24 -
22 3
+
9 4
=
-16 -
4 3
+
4 9
=
-
152 9

(2)-(-2)3 ÷49×(-32)2
=-3-2÷3 =-3-23 =-131
探究新知
素养考点 有理数的混合运算
例 计算:(1)18-6÷(-2)×(-13); 解:原式 =18-(-3)×(-13) =18-1
=17;
探究新知
(2)(-3)2×[-23+(-59)] .
解法一:原式=9×(-191) 解法二:原式=9×(-23)+ 9×(-59)

北师大版七年级数学上册有理数课件

北师大版七年级数学上册有理数课件
②已知m是整数且-4<m<3,则m为___1_,__2___。
③有理数中,最大的负整数是__-1___,最小的正整 数是__1___。最大的非正数是__0___。
④与原点的距离为三个单位的点有__2___个,他们 分别表示的有理数是__+_3__和__-3___。
一、养成先确定符号的好习惯
有理数运算与小学算术运算的重要区分是 多了一个符号问题。因为每一个有理数都是由 两部分构成:一是符号,二是绝对值。因此确 定符号是有理数运算不可缺少的一部分,所以 我们对有理数运算要养成先定符号,再求绝对 值的好习惯。
2. 化简(1)-|-2/3|=__-2_/;3 (2)|-3.3|-|+4.3|=___-;1 3. (3)1-|-1/2|=__1_/2; (4)-1-|1-1/2|=__-_1_._5_。
4. 填空题。
1) 若|a|=3,则a=_±__3_; |a+1|=0,则a=___-_1。 2) 若|a-5|+|b+3|=0,则a=___5,b=__-_3。
正数的任何次幂都是正数; 负数的奇次幂是负数,偶次幂是正数。
二、特别注意运算顺序
在有理数的混合运算中,除了符号 问题,还要特别注意运算顺序问题。 (先算乘方,再算乘除,最后算加减, 如果有括号先算括号里面的。)
三、巧用运算律
解答有理数的计算题时,巧用 运算律,常常能够避繁就简,变难 为易,提高解题的速度和准确性。
(2)把便于约分的因数结合相乘; (3)把乘积为整数或末尾产生零的因 数结合相乘。
3、巧用分配律
(1)正用分配律:a(b+c)= a b+ac;
(2)反用分配律:a b + ac = a(b+c);

2.1 认识有理数(第2课时 相反数与绝对值)(课件)-七年级数学上册(北师大版2024)

2.1 认识有理数(第2课时 相反数与绝对值)(课件)-七年级数学上册(北师大版2024)

±2 025 .
±2 025的绝对值都是2 025.
练一练
5
7.写出下列各数的绝对值:-8,3.9,- ,-10.5,0,-(-2).
2
解: | -8 | =8,
求-2的相反数的绝对值,
| 3.9 | =3.9,
即求2的绝对值.
5
|- |
2
5
= ,
2
| -10.5 | =10.5,
| 0 | =0,
的绝对值”.
| 3 | = 3, |
3
2
|=
3
2
课本例题
例2
求下列各数的相反数和绝对值:
4
-2, ,0,-3.8,30.
9
4
4
解:-2, ,0,-3.8,30的相反数分别是:2,- ,0,3.8,-30;
9
9
4 4
|-2|=2,| |= ,
9 9
|0|=0, |-3.8|=3.8, |30|=30.
两个负数比较大小,绝对值大的反而小.

C. -


的绝对值是(
A
)
B. 10


D. -10
9. 在有理数中,绝对值等于它本身的数是( D
A. 0
B. 正数
C. 负数
D. 非负数
)
10. 【新考法·分类讨论法】如果| x |=2,那么 x =( C
A. 2
B. -2
C. 2或-2
D. 2或-


)
11. 写出下列各数的相反数及绝对值:
18. 【新考法·猜想归纳法】(1)化简:
;-(+2)= -2
+(-2)= -2

(2024秋新版本)北师大版七年级数学上册 《认识有理数》PPT课件

(2024秋新版本)北师大版七年级数学上册 《认识有理数》PPT课件

(2)该厂实际共生产多少辆自行车?平均每天生产多少辆自
行车?

课堂检测
能 力 提 升 题
解:(1)以每日生产400辆自行车为标准,多出的数记作正数,
不足的数记作负数,则有
+5,-7, +10,+9,-13,+6,-3;
(2) 405+393+410+409+387+406+397 =2807(辆),
-2
-2
-|-2|=________,-|+2|=________,
|0|=________.
0
思考: 一个数的绝对值与这个数有什么关系?
(1)正数的绝对值是它本身;
(2)负数的绝对值是它的相反数;
(3) 0的绝对值是0.
探究新知
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
a
(1)当是正数时,|a|=____;
A.物体又向右移动了2米 B.物体又向右移动了4米
C.物体又向左移动了2米 D.物体又向左移动了4米
方法点拨:表示具有相反意义的量时,首先找到具有相反意
义的同类量,然后将其中一个量用正数表示,与其意义相反
的量就用负数表示.需注意的是:用正数、负数表示相反意义
的量时,一定要说明数量和单位.
巩固练习
变式训练
-8.44,22,+
巩固练习
变式训练
1
1
在0, 2, -7,−5 ,3.14,−3 ,-3, +0.75中, 负数共有
3
7
( D )
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 3

北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)

北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)

D.-1-(-3)-6-(-8)
4 -2-3+5的读法正确的是( A )
A.负2,负3,正5的和 B.负2,减3,正5的和
C.负2,3,正5的和
D.以上都不对
(来自《典中点》)
知1-练
5 将-3-(+6)-(-5)+(-2)写成省略括号和加号 的和的形式,正确的是( D ) A.-3+6-5-2 B.-3-6+5+2 C.-3-6-5-2 D.-3-6+5-2
1 课堂讲解 有理数的加减运算统一成加法
加法运算律在加减混合运算中的应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 加法的交换律: 两个数相加,交换加数的位置,和不变.
ab ba
加法的结合律: 三个数相加,先把前两个数相加或先把 后两个数相加,和不变.
(a b) c a (b c)
55,-40,10,-16,27,-5
今年的小麦总量与去年相比情况如何?
3、某日小明再一条南北:方向的公路上跑步,他从A地出发,每隔 10min记录下自己的跑步情况(向南为正方向,单位:m):
-1008,1100,-976,1010,-827,946
1小时后他停下来休息,此时他在A地什么方向?据A地多远?小明共 跑了多少米?
4、某中学七(1)班学生的平均身高是160厘米 (1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表.
姓名 身高 身高与平均身高的差值
小明 小彬 小丽 小亮 小颖 小山
159 162 160 154 163 165 -1 +2 0 -6 +3 +5
(2)谁最高?谁最矮? 小山最高,小亮最矮 (3)最高与最矮的学生身高相差多少? 11厘米 (4)求平均身高?

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )

北师大版七年级数学上册《有理数》课件(共29张PPT)

北师大版七年级数学上册《有理数》课件(共29张PPT)
(3)-1,2,-3,4,-5,6,-7,8 ,-9…… 其中第279个数为 _____ ,第320个数的符号 为___,规律是______________;
199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。

最新北师大版七年级数学上册《有理数》名师精品课件

最新北师大版七年级数学上册《有理数》名师精品课件

1
2
3
4
5
+0.031 +0.017 +0.023 -0.021 -0.015
A.1个
B.2个
C.3个 D.5个
知识点2 有理数的概念及分类 思考:我们学过了哪些数?请举出相应的例子. 1,2,3 ……正整数
0 ……零 -1,-2,-3 ……负整数
1 , 1 ,5.2 …… 正分数 23
1 , 5 ,3.5 …… 负分数 56
有 理
整数
0 负整数

正分数 分数
负分数
正整数
正有理数

正分数
理 0
数 负有理数负整数
负分数
今天你学会了什么? 谈淡你的收获。
学后作业
1.达标练习册第1、2、3题。 2.课本课后第1、2题。
小朋友们 再见!
只要愿意学习,就一定能够学会。 —— 列宁
课后总结
1
学生:同伴之间相互交流学习心得。
这里出现了比0分低的得分,我们可以用带有“-” 号的数来表示,如-10(读作:负10)表示比0低10的 数;
对于比0分高的得分,可以在前面加上“+”号, 如+10(读作:正10)表示比0高10的数.
试一试:用带有“+”号和“-”号的数表示各队每 道题的得分情况.试完成下表:
加10分表示+10分 扣10分表示-10分
你认为0应该放在什么地方? 0既不是正数,也不是负数
情景1:天气预报某天北京的温度为:-3~3°C, 它的确切含义是什么?这一天北京的温差是多少?
情景2:下图是吐鲁番盆地的示意图,你能用语言表 述它与海平面的高度关系吗?它的含义是什么?
8844.43米


朗 玛

新北师大版七年级数学上册第二章《有理数及其运算》全章各课时课件

新北师大版七年级数学上册第二章《有理数及其运算》全章各课时课件

现在,你能解决前面提出的问题了吗?
零上5º C 零下5º C



5º C
-5º C
2013年12月1日星期日 14:39:03
现在,你能解决前面提出的问题了吗?

吐鲁番海拔 -155米


2013年12月1日星期日 14:39:03
现在,你能解决前面提出的问题了吗?
如果答对题所得的分用正数表示,那么每 个代表队答题得分的情况如下表:
分数
负分数
2013年12月1日星期日 14:39:03
把下列各数填入相应的集合中:
2 1 1 3,7, ,. 6, 0,8 , 15, - - 5 3 4 9

巩 固 练 习
1 正数集合:{ 3,. 6, 15, 5 9 1 2 负数集合:{ - 7, ,8 3 4

…} …} …}
…}
- 0 15 整数集合:{ 3,7,, ,
你能举出生活中一些具 有相反意义的量吗?
2013年12月1日星期日 14:39:03
在正数前面加上“—”号的数叫做负
探 索 新 知
数.如-3,-8,-2.5等.负数都比0小.
带有“—”的数一定是负数吗?
不一定
0既不是正数也不是负数.它是正数和 负数的分界.
2013年12月1日星期日 14:39:03


+8
-3

0 0
2013年12月1日星期日 14:39:03
例 题 讲 解
2013年12月1日星期日 14:39:03
1、(1)在知识竞赛中如果用“+10”表示 加10分,那么扣20分记作什么?
巩 固 练 习

(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件

(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件
5
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12


同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方

2024年秋季新北师大版七年级上册数学教学课件 2.1.1 有理数

2024年秋季新北师大版七年级上册数学教学课件 2.1.1 有理数

数学史导入
在国外,负数概念的建立和使用,经历了一个曲折的过程,印度在公 元7世纪出现了负数概念,并有了负数的运算,不过他们总把负数解 释为负债.欧洲的数学家迟迟不承认负数,认为零是最小的数,而比 零还小的数是不可思议的.欧洲最早承认负数的是17世纪法国数学家 笛卡儿(Rene Descartes, 1596—1650),他承认解方程中出现的负根, 不过他称之为“假根”.直到19世纪,负数在欧洲才获得普遍承认.
1.请同学们阅读教材23-25页并思考: 活动1:生活中你见过带有“-”的数吗? 如图是2023年7月我国居民 消费价格分类别同比涨幅 情况。根据图中数据归纳 正数、负数与0的意义。
像1.0,0.1,2.4,…都是正数,正数前面的“+”可以 省略不写。像-0.5,-0.2,-4.7,…都是负数。 0既不是正数,也不是负数
不要求数量一定相等。
知识点2:正数与负数(重点) 正数:像+3,+15,+6.9%,…都是正数。正数前面的“+”可以 省略不写。 负数:像-2,-8,-1.8%,…都是负数。负数前面的“-”不能 省略。 注:①0既不是正数也不是负数。②并不是所有带有“-”号的数都 是负数。③用正数或负数表示具有相反意义的量时,一般规定表示 前进、增加、上升、向右等的量为正数。
1 认识有理数
第1课时 有理数
1.通过生活中的实例理解负数、有理数的意义,体会负数导入 的必要性和有理数应用的广泛性。
2.通过判断一个数是正数还是负数,应用正、负数表示生活中 具有相反意义的量,体会数学知识与现实世界的联系。
3.在负数概念的形成过程中,培养学生观察、归纳与概括的能 力,提高学生的语言表达能力,培养学生的数感。
每袋大米的标准质量应为10 kg,但实际每袋大米可能有50 g的误 差,即最多超出标准质量50 g,最少少于标准质量50 g

北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件

北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件
重要总结:
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐

4

﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)

2.1 认识有理数(第3课时 数轴)(课件)-七年级数学上册(北师大版2024)

2.1 认识有理数(第3课时 数轴)(课件)-七年级数学上册(北师大版2024)

)
A. a < b < c < d
B. b < a < d < c
C. a < b < d < c
D. d < c < b < a
4. [2024株洲期末]如图,在单位长度为1的数轴上,若点 A 、点 B 到原点的距离
相等,则点 C 表示的数是( C
A. -1
B. 0
)
C. 1
D. 2
5. [情境题·生活应用·2024·沧州模拟]规定向东为正,向西为负,将遥控小汽车两
类似地,表示数 a 的点到表示数2的点的距离可表示为 | a -2|
.

(3)应用:①表示数 a 的点到表示数3的点的距离是7,可记为| a -3|=7,
那么 a =
-4或10
⁠.
②当 a 取何值时,| a +4|+| a -3|的值最小,最小值是多少?请说
明理由.
【解】当-4≤ a ≤3时,| a +4|+| a -3|的值最小,最小值为7.
方向
像这样,规定了原点、单位长度、正方向的直线称为数轴。
概念归纳
画数轴注意事项:
1. 直线是水平的;
2. 原点、单位长度和正方向三要素缺一不可;
(1)原点 —— 在直线上任意一点表示数“0”;
(2)正方向用箭头表示,一般取从左到右为正方向;
(3)取单位长度应结合实际需要,但要做到刻度均匀,单
位长度统一。
(3)标数:在实心小圆点上标出数字.
课本例题
例4
(1)下图数轴上A,B,C,D各点分别表示什么数?
...
A
D
C
-2
-1
0
.
B
1
2
3
解:点A表示-2,点B表示2,点C表示0,点D表示-1.

北师大版七年级数学上册 (数轴)有理数及其运算教育课件

北师大版七年级数学上册 (数轴)有理数及其运算教育课件
类比归纳
数轴的概念与画法
数轴的画法:
1.画一条水平直线,定原点(如图),原点表示0.
2.规定从原点向右为正方向,那么相反的方向(从 原点向左)则为负方向.
3.选择适当的长度为单位长度.
“一画、二定、三取、四标”
数轴的概念与画法
1.
0

2.
4.
6.
3.
7.
5.
8.
0
(2)规定直线上从原点向右(或上)为正方向(用箭头表示),从原点向左(或下)为负方向。
(3)选取适当的长度为单位长度,直线上原点向右每隔一个单位长度取一个点,依次表示为1、2、3······;从原点向左,用类似方法依次表示为-1、-2、-3······。
规定
原点、
正方向、
单位长度
的直线叫做数轴。
6个单位


2个单位
2、若点P在数轴上且到原点距离为5个单位,则点P表示的数是__________。
5和-5
3、在数轴上,表示数-2,2.6, , 0, ,-1, 的点中,在原点左边的点有 个。
4
检测
4、一儿童节那天,小天使乐乐要到学校、书店、儿童医院给孩子们送健康与快乐。她的家与学校、书店依次坐落在一条东西走向的大街上,家位于学校西边300米处,书店位于学校东边200米处,乐乐先到学校和书店,接着又向西走了700米来到儿童医院。你能帮乐乐找出家A、学校B、书店C、儿童医院D在数轴上所对应的数吗?
2.(判断)数轴上的两个点可以表示同一个有理数.

2个单位长度

6个单位长度
错,有理数与数轴上的点一一对应.
练一练
用数轴上的点表示有理数
例3 如图,数轴上点A表示的数为+3,把点A先向右平移5个单位,再向左平移10个单位到点B,则点B表示的数为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No 正分数 Image 负分数
正整数
正有理数
No Image
有 理 数
No 0 Image
负有理数
正分数
负整数
No
Im负age分数
课堂检测达标 1.某仓库运出30吨货记为-30吨,则运进20吨货记为+2_0___ 吨.2.如果以每月生产180个零件为准,超过的零件数记为正数 ,不足的零件数记为负数,那么1月生产160个零件记为+2_0_____ 个,2月生产200个零件记-为20______个.
3.下列各数:-2,5, ,0.63,0,7,- 0.05,-6,9, ,
作业布置
课本P26: 3,4题
感谢聆听!
不忘初心|逐梦前行|以人为本|拾阶而上
不忘初心|逐梦前行|以人为本|拾阶而上
针对性练习
一批螺帽产品的内径要求可以有±0.02 mm的误差,现
抽查5个样品,超过规定的毫米值记为正数,不足值记为负
数,检查结果如下表.则结合要求的产品数量B为(
).
1
2
3
4
5
+0.031 +0.017 +0.023 -0.021 -0.015
A.1个
B.2个
Image
一 用正、负数表示具有相反意义的量
答对
答错
不答
加1分
扣1分
得0分
第1题 第2题 第3题 第4题 第5题
第一队
第二队
第三队
第四队
问题:生活中你见过其它用负数表示的量吗?与 同伴进行交流.
0
典例精析
【例1】(1)转动转盘时,若规定顺时针转动为正, 那么逆时针转动5圈应该怎样表示? (2)若把向西规定为负,那么+102米表示什么?0米 表示什么? (3)如果正午12时记作0时,午后3时记作+3时,那 么上午8时记作什么?
正整数、零和负整数统称整数. 正分数和负分数统称分数. 整数和分数统称有理数.
不忘初心|逐梦前行|以人为本|拾阶而上
课堂小结
1.用正负、数表示相反意义的量 一般情况下,把向前、上升、增加、收入等规定为 正,把它们的相反意义规定为负
2.有理数的分类
正整数
有 理 数
整数
No Image
分数
No
Image 0 负整数
不忘初心|逐梦前行|以人为本|拾阶而上
解:(1)逆时针转动5圈应该表示为-5圈. (2)+102米表示向东102米,0米表示不进不退,即原地不动 . (3)上午8时记作-4时.
不忘初心|逐梦前行|以人为本|拾阶而上
【例2】加工一根轴,图纸上注明它的直径是Ф30 No Image
(单位:mm),请问:这种零件直径的标准尺寸是多少?合格 产品的最大直径是多少?最小直径又是多少?
北师大数学七年级上册
2.1 有理数
课标要求
学习目标
1.理解正、负数的概念,会判断一个数是正数还是负数; (重点) 2.会用正负数表示具有相反意义的量;(难点) 3.能按一定的标准对有理数进行分类.(难点)
问题情境1 细心观察图片中的数字,你有什么发现呢? 你知道它所代表的含义吗?
No
No
Image
[归纳总结] 通常在生产图纸上,对每个产品的合格范围有明确的规定,例如:图纸上
标注一个零件的直径是Ф50
,Ф表示直径,若单位是毫米(mm),这个标注表示的意
No
义是零件Im直age 径的标准尺寸是50 mm-0.02)mm,在这个范围内的产品都是合格的.
C.3个
D.5个
二 有理数的概念及分类
思考:我们学过了哪些数?请举出相应的例子. 归纳: 像1,2,3……称为正整数;
No Image
……称为正分数.
那么在以上这些数的前面添上“-”号后,
-1,-2,-3……称为负整数;
No Image
……称为负分数. 不忘初心|逐梦前行|以人为本|拾阶而上
概念归纳
[解析]
题中Ф30 No Image
表示产品直径的标准尺
寸是30 mm,以标准尺寸为基准,+0.03表示合格产品直
径最大不超过标准尺寸0.03 mm.同样,-0.02表示合格产
品直径最小不小于标准尺寸0.02 mm.
不忘初心|逐梦前行|以人为本|拾阶而上
解:30+0.03=30.03(mm), 30-0.02=29.98(mm), 所以这种零件直径的标准尺寸是30 mm,合格产品的最大直 径是30.03 mm,最小直径是29.98 mm.
相关文档
最新文档