天津市初一上学期数学期末试卷带答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市初一上学期数学期末试卷带答案
一、选择题
1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
2.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项
B .225
m n 的系数是2
C .单项式﹣x 3yz 的次数是5
D .3x 2﹣y +5xy 5是二次三项式
3.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23
b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣
3a =2﹣3b
D .若
23
a b
=,则2a =3b 4.如图,C 为射线AB 上一点,AB =30,AC 比BC 的
1
4
多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =
1
2
BQ 时,t =12,其中正确结论的个数是( )
A .0
B .1
C .2
D .3
5.在22
3,2,7
-四个数中,属于无理数的是( ) A .0.23
B 3
C .2-
D .
227
6.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( )
A .
1
3
或﹣1 B .1或﹣1
C .
13或73
D .5或
73
7.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )
A .﹣4
B .﹣5
C .﹣6
D .﹣7
8.以下调查方式比较合理的是( )
A .为了解一沓钞票中有没有假钞,采用抽样调查的方式
B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式
C .为了解某省中学生爱好足球的情况,采用普查的方式
D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 9.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )
A .
B .
C .
D .
10.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .
D .
11.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )
A .棱柱
B .圆锥
C .圆柱
D .棱锥
12.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上
的字是( )
A .设
B .和
C .中
D .山
13.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚
B .赚了9元
C .赚了18元
D .赔了18元
14.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10
C .2.5
D .2
15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD
∠的度数为( )
A .100
B .120
C .135
D .150
二、填空题
16.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.
17.若5
23m x
y +与2n x y 的和仍为单项式,则n m =__________.
18.如图,若12l l //,1x ∠=︒,则2∠=______.
19.计算
221b a a b a b ⎛
⎫÷- ⎪-+⎝⎭
的结果是______ 20.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.
21.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.
22.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)
23.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 24.计算:3+2×(﹣4)=_____.
25.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 26.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是
2400米高的山上的气温是____________________.
27.材料:一般地,n 个相同因数a 相乘
n a a a a
⋅⋅⋅个
:记为n a . 如328=,此时3叫做
以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 28.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .
29.若2a ﹣b=4,则整式4a ﹣2b+3的值是______. 30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.
三、压轴题
31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、
2Q 、3Q 的位置如图2所示.
解决如下问题:
(1)如果4t =,那么线段13Q Q =______;
(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 32.观察下列等式:111122=-⨯,1112323=-⨯,1113434
=-⨯,则以上三个等式两边分别相加得:
1111111131122334223344
++=-+-+-=⨯⨯⨯. ()1观察发现
()1n n 1=+______;()
1111122334n n 1+++⋯+=⨯⨯⨯+______.
()2拓展应用
有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m
,记2个数的和为1a ;第二次再将两个半圆周都分成1
4
圆周(如图2),在新产生的分点标上相邻的已标的两数之和的
12,记4个数的和为2a ;第三次将四个14圆周分成1
8
圆周(如图3),在新产生的分点标上相邻的已标的两数之和的1
3,记8个数的和为3a ;第四次将八个
18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的1
4,记16个数的和为4a ;⋯⋯如此进行了n 次.
n
a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求
123n
1111
a a a a +++⋯⋯+的值.
33.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),
COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,
请补全图形并加以说明.
34.射线OA 、OB 、OC 、OD 、OE 有公共端点O .
(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;
(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.
35.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.
(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;
(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.
36.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点
(1)若AP=2时,PM=____;
(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;
(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直
..向右运动,当点Q的运动时间为多少时,满足QM=2PM.
37.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
38.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在
∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.
(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;
(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
【详解】
∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点P与N之间,
∴这四个数中绝对值最小的数对应的点是点N.
故选B.
2.C
解析:C
【解析】
【分析】
根据同类项的定义,单项式和多项式的定义解答.
【详解】
A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.
B.
2
2
5
m n
的系数是
2
5
,故本选项错误.
C.单项式﹣x3yz的次数是5,故本选项正确.
D.3x2﹣y+5xy5是六次三项式,故本选项错误.
故选C.
【点睛】
本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.
3.C
解析:C 【解析】 【分析】
利用等式的性质对每个式子进行变形即可找出答案. 【详解】
解:A 、根据等式性质2,2a =3b 两边同时除以2得a =3
2
b ,原变形错误,故此选项不符合题意;
B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;
C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3
a =2﹣3b
,原变形正
确,故此选项符合题意;
D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】
本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.
4.C
解析:C 【解析】 【分析】 根据AC 比BC 的
1
4
多5可分别求出AC 与BC 的长度,然后分别求出当P 与Q 重合时,此时t=30s ,当P 到达B 时,此时t=15s ,最后分情况讨论点P 与Q 的位置. 【详解】 解:设BC =x ,
∴AC =14x +5 ∵AC +BC =AB
∴x +
1
4
x +5=30, 解得:x =20, ∴BC =20,AC =10, ∴BC =2AC ,故①成立, ∵AP =2t ,BQ =t , 当0≤t ≤15时, 此时点P 在线段AB 上,
∴BP=AB﹣AP=30﹣2t,∵M是BP的中点
∴MB=1
2
BP=15﹣t
∵QM=MB+BQ,
∴QM=15,
∵N为QM的中点,
∴NQ=1
2
QM=
15
2

∴AB=4NQ,
当15<t≤30时,
此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,
∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2

∴AB=4NQ,
当t>30时,
此时点P在Q的右侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2

∴AB=4NQ,
综上所述,AB=4NQ,故②正确,
当0<t≤15,PB=1
2
BQ时,此时点P在线段AB上,
∴AP=2t,BQ=t
∴PB=AB﹣AP=30﹣2t,
∴30﹣2t=1
2
t,
∴t=12,
当15<t≤30,PB=1
2
BQ时,此时点P在线段AB外,且点P在Q的左侧,
∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30=1
2
t,
t=20,
当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30=1
2
t,
t=20,不符合t>30,
综上所述,当PB=1
2
BQ时,t=12或20,故③错误;
故选:C.
【点睛】
本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.
5.B
解析:B
【解析】
【分析】
根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.
【详解】
0.23是有限小数,是有理数,不符合题意,
3是开方开不尽的数,是无理数,符合题意,
-2是整数,是有理数,不符合题意,
22
7
是分数,是有理数,不符合题意,
故选:B.
【点睛】
本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握
无理数的定义是解题关键.
6.A
解析:A
【解析】
【分析】
先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】
解:(x+3)2=4,
x﹣3=±2,
解得:x=5或1,
把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),
解得:m=1
3

把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),
解得:m=﹣1,
故选:A.
【点睛】
本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.
7.A
解析:A
【解析】
【分析】
由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.
【详解】
3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.
故选:A
【点睛】
利用乘法分配律,将代数式变形.
8.B
解析:B
【解析】
【分析】
抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【详解】
解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;
B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;
C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;
D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;
故选:B.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.C
解析:C
【解析】
【分析】
利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.
【详解】
棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;
当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.
故选:C.
【点睛】
本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.
10.C
解析:C
【解析】
【分析】
先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.
【详解】
移项得,x>2,
在数轴上表示为:
故选:C.
【点睛】
本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.
11.C
解析:C
【解析】
【分析】
根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.
【详解】
解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,
故选:C.
【点睛】
此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.
12.A
解析:A
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“美”与“设”是相对面,
“和”与“中”是相对面,
“建”与“山”是相对面.
故选:A.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
13.D
解析:D
【解析】
试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.
考点:一元一次方程的应用.
14.A
解析:A
【解析】
【分析】
分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.
【详解】
①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,
解得:t=2;
(2)当两车相遇后,两车又相距50千米时,
根据题意,得120t+80t=450+50,
解得t=2.5.
综上,t的值为2或2.5,
故选A.
【点睛】
本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.
15.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB平分∠COD,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C.
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
二、填空题
16.【解析】
【分析】
先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.
【详解】
解:∵AB=4,BC=2AB,
∴B
解析:【解析】
【分析】
先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.
【详解】
解:∵AB=4,BC=2AB,
∴BC=8.
∴AC=AB+BC=12.
∵D是AC的中点,
∴AD =12
AC =6. ∴BD =AD ﹣AB =6﹣4=2.
故答案为:2.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 17.9
【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9
【解析】
根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得
m 3,n 2=-=,所以()239n m =-=,故答案为:9.
18.(180﹣x )°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l1∥l2,∠1=x°,
∴∠2=180°﹣∠1=180°﹣x°=(180﹣x )°.

解析:(180﹣x )°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l 1∥l 2,∠1=x °,
∴∠2=180°﹣∠1=180°﹣x °=(180﹣x )°.
故答案为(180﹣x )°.
【点睛】
本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
19.【解析】
【分析】
先将括号内进行通分计算,再将除法变乘法约分即可.
【详解】
解:原式=
=
=
故答案为:.
【点睛】
本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b
- 【解析】
【分析】
先将括号内进行通分计算,再将除法变乘法约分即可.
【详解】
解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭
b a b a a b a b a b a b =
()()+⋅-+b a b a b a b b
=1a b - 故答案为:
1a b
-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.
20.5
【解析】
【分析】
要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴
解析:5
【解析】
【分析】
要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关
系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.
【详解】
解:设驴子原来驮x 袋,根据题意,得:
2(x ﹣1)﹣1﹣1=x +1
解得:x =5.
故驴子原来所托货物的袋数是5.
故答案为5.
【点睛】
解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
21.36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等

∴x=2,A=14
∴数字总和为:9+3+6+6+
解析:36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等 ∴
()934322
x x x A +=++=+- ∴x=2,A=14
∴数字总和为:9+3+6+6+14-2=36,
故答案为36.
【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面
22.>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数
进行比较即可.
【详解】
解:,,

故答案为:
【点睛】
本题考查了多重符号化简和有理数的大小比较,
解析:>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:(9)9--=,(9)9-+=-,
(9)(9)∴-->-+.
故答案为:>
【点睛】
本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
23.(5a+10b ).
【解析】
【分析】
由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.
【详解】
解:小何总花费:,
故答案为:.
【点睛】
此题主要考查了列代数
解析:(5a +10b ).
【解析】
【分析】
由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.
【详解】
解:小何总花费:510a b +,
故答案为:(510)a b .
【点睛】
此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.
24.﹣5
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是
解析:﹣5
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
25.正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】

解析:正方体.
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:正方体的主视图、左视图、俯视图都是大小相同的正方形,
故答案为正方体.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
26.【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是
解析:18.4C -︒
【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,
故答案为:-18.4℃.
【点睛】
本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.
27.2
【解析】
根据定义可得:因为,所以,故答案为:2.
解析:2
【解析】
根据定义可得:因为239=,所以3log 92=,故答案为:2.
28.5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .
考点:几何体的三视图.
解析:5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .
考点:几何体的三视图.
29.11
【解析】
【分析】
对整式变形得,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a﹣b=4,
∴=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已
解析:11
【解析】
【分析】
对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴423a b -+=2(2)324311a b -+=⨯+=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.
30.2
【解析】
【分析】
根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.
【详解】
∵单项式-3x2m+6y3与2x4yn 是同类项,
∴2m+6=4,n=3,
∴m=-1,
∴m+n
解析:2
【解析】
【分析】
根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.
【详解】
∵单项式-3x 2m+6y 3与2x 4y n 是同类项,
∴2m+6=4,n=3,
∴m=-1,
∴m+n=-1+3=2.
故答案为:2.
【点睛】
本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.
三、压轴题
31.(1)4;(2)
12或72;(3)27或2213
或2 【解析】
【分析】
(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.
(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由
(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.
(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =
【详解】
解:(1)∵t+2t+3t=6t,
∴当t=4时,6t=24,
∵24122=⨯,
∴点3Q 与M 点重合,
∴134Q Q =
(2)由已知条件得出:6t=3或6t=21,
解得:1t 2=或7t 2
= (3)情况一:3t+4t=2, 解得:2t 7
= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=
情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)
解得:t=2.
综上所述:t 的值为,2或
27或2213. 【点睛】
本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.
32.(1)
11n n 1-+,n n 1+(2)①()()n 1n 2m 3
++②75364 【解析】
【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;
()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3
==,找规律可得结论;
②由()()n 1n 2m 22713173
++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.
【详解】
()1观察发现:
()111n n 1n n 1
=-++; ()
1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1
=-+-+-+⋯+-+,
11n 1=-
+, n 11n 1
+-=+, n n 1
=+; 故答案为
11n n 1-+,n n 1+. ()2拓展应用
16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3
==, ⋯⋯
()()n n 1n 2a m 3
++∴=, 故答案为()()n 1n 2m.3
++ ()()n n 1n 2a m 61883②++==,且m 为质数,
对6188分解质因数可知61882271317=⨯⨯⨯⨯,
()()n 1n 2m 22713173
++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,
m 7∴=,n 50=,
()()n 7a n 1n 23
∴=++, ()()
n 131a 7n 1n 2=⋅++, 123n
1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++
()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦
31131172n 27252⎛⎫⎛⎫=
-=- ⎪ ⎪+⎝⎭⎝⎭ 75364
=.
【点睛】
本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:
()111n n 1n n 1
=-++. 33.(1)41°;(2)见解析.
【解析】
【分析】
(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12
AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.
【详解】
(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12
AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =
1122
AOB AOD ∠∠- =()12
AOB AOD ∠∠- =12BOD ∠ =
01822
⨯ =41°
(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,
∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠, ∴11O ,22
AOC A B AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =
1122
AOB AOD ∠∠+ =()12
AOB AOD ∠∠+ =12α
如图,当OA 在BOD ∠外部,
∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴11,22
AOC AOB AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=
+ =()12
AOB AOD ∠∠+ =()013602
BOD ∠- =()
013602
α- =011802α-
∴α与β之间的数量关系发生变化.
【点睛】
本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
34.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析.
【解析】。

相关文档
最新文档