【免费下载】数值传热学第五章作业

合集下载

传热学-第五章

传热学-第五章

u y
c) 所有物性参数(、cp、、)为常量 4个未知量::速度 u、v;温度 t;压力 p 需要4个方程: 连续性方程(1)、动量方程(2)、能量方程(3)
第五章 对流换热 14
1 质量守恒方程(连续性方程) 流体的连续流动遵循质量守恒规律 从流场中 (x, y) 处取出边长为 dx、dy 的微元体 M 为质量流量 [kg/s] 单位时间内、沿x轴方向、 经x表面流入微元体的质量 单位时间内、沿x轴方向、经 x+dx表面流出微元体的质量
t y w, x
根据牛顿冷却公式:?
qw, x hx (tw-t ) W m2
hx — 壁面x处局部表面传热系数 W(m 2 C)
由傅里叶定律与牛顿冷却公式:
t hx t w t y w, x
M y vdx
第五章 对流换热
16
单位时间内、沿 y 轴方向流入微元体的净质量:
M y M y dy
单位时间内微元体 内流体质量的变化:
( v) dy dxdy y y
M y
( dxdy) dxdy
(单位时间内)
微元体内流体质量守恒:
M x udy
M x M x dx M x dx x
单位时间内、沿x轴方向流入微元体的净质量:
M x M x dx
M x ( u ) dx dxdy x x
第五章 对流换热 15
My
M y y
dy
M x udy
M x Mx dx x
第五章 对流换热 2
2 对流换热的特点 (1) 导热与热对流同时存在的复杂热传递过程 (2) 必须有直接接触(流体与壁面)和宏观运动; 也必须有温差 (3) 由于流体的粘性和受壁面摩擦阻力的影响,紧 贴壁面处会形成速度梯度很大的边界层 3 对流换热的基本计算式

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

aPP aEE aWW
Fe Fw exp( Pw ) aE , aW exp( Pe ) 1 exp( Pw ) 1
(D)
aP aE aW (Fe Fw )
区别就在函数 aE和aW
aE De
Pe aE De exp( Pe ) 1
aE Pe De
该格式计算量比指数小,且指数格式的解差别很小。
§ 5-3
为了在讨论中引入 PE 记
通用表达式
x
i
J*
i+1 i+1/2
x
1 界面i+ 上的值可以用界面两侧节点值表示 2
J * Bi Ai 1 (y)
系数A和B的性质的讨论 (1)当 i i 1 时,扩散量=0, J *完全由对流造成,即

aPP aEE aW W
显然不论那种格式,仅仅是 A(| P |) 表达式的区别。
A( P )
A(|P |)
中心 1 0.5 | P | 迎风 1 混合 [| 0,1 0.5 | P | |] 指数 | P | [exp(| P |) 1]
1.0
迎风
指数 乘方
乘方 | 0, (1 0.1| P |)5 |
中心
混合
P
§ 5-4
原始的假扩散概念
关于假扩散的讨论
一维非稳态对流方程(纯对流,没有扩散)
u t x
显示迎风差分格式
in1 in
t
u
in in 1
x
, o(x, t )
将上式在(i,n)点做Taylar级数展开,保留二阶。
上述若对任何成立,必得
B( P ) A( P ) A( P ) B( P )

传热学第五版部分习题解答(5-7章)

传热学第五版部分习题解答(5-7章)

《传热学》第五版部分习题解答第五章5-13 解:本题应指出是何种流体外掠平板,设是水外掠平板。

由60=m t ℃,查附录3 饱和水的热物理性质表得:610478.0-⨯=v m 2/s ,99.2=r p561082.210478.015.09.0Re ⨯=⨯⨯=⋅=-∞v x u x 41.11015.0)1082.2(0.5Re 0.5321521=⨯⨯⨯⨯==---x xδ mm98.099.241.13131=⨯==--rt p δδ mm5-18 解:55230802=+=+=wf m t t t ℃ 由附录2 ,查得空气的热物性参数为:210865.2-⨯=λW/(m.K) 61046.18-⨯=v m 2/s , 697.0=r p5561051033.41046.188.010Re ⨯<⨯=⨯⨯=⋅=-∞v l u c 所以,此流动换热为层流换热。

923.0101046.18105Re 65=⨯⨯⨯=⋅=-∞u v x c c m46.6)697.0()105(923.010865.2332.0332.03121523121Re =⨯⨯⨯⨯⨯==-r c x h p c c λW/(m 2.K)94.6)697.0()1033.4(8.010865.2332.0332.03121523121Re=⨯⨯⨯⨯⨯==-r lh p l λW/(m 2.K)88.1364.922=⨯==l h h W/(m 2.K)2.555)3080(18.088.13=-⨯⨯⨯=∆=Φt hA W5-23 解: (注意:本题可不做)参考课本p126页(15)到(5-33)式。

2t a by cy =-+;0,w y t t ==;220wd t dy ⎛⎫= ⎪⎝⎭;,t f y t t δ==得到w f w f tt t yt t θθδ-==-,代入速度场和该温度场于能量积分方程()0tf wd t u t t dy a dx y δ⎛⎫∂-= ⎪∂⎝⎭⎰,并且设t δςδ=,略去ς的高阶项,可以得到ς的表达式,进而得到t δ的表达式。

数值传热_数值传热学大作业3gg

数值传热_数值传热学大作业3gg

数值传热学 2009-2010 学年第一学期大作业 3
阶 梯 形 标 量 场 ( 长 宽 均 为 1 ) 的 纯 对 流 传 递 ( θ = 340 ), 控 制 方 程 为 u ∂φ + v ∂φ = 0 ,上游的边界条件都是第一类的,即给定了φ 的分布,下游按开
∂x ∂y 口边界的方式处理。
图 1 示意图
(2)从图中可以得知:数值计算在剧烈变化区域(y=0.5 处),采用 CD、 SUD、QUICK 格式时,产生越界现象。
(3)计算过程中采用 STOIC 格式,计算效果最好。 (4)采用不同的格式时,其表达式在 CBC 线内,则会出现稳定解,否则会 出现解得越界现象,越界现象与对流稳定性不同。 (5)编程过程中,采用 SOR 低松弛迭代方法,所得结果比较理想,计算速 度远远 Gauss—Seidel 方法。在本次作业中,松弛系数取为 0.8。 (6)编程过程中,要将边值点带入循环进行计算,否则会导致计算结果出 错。进而也证明了,对流现象是具有方向性,其扰动只能沿下游传播。
要求:
1、分别利用 FUD,CD,SUD,QUICK,CLAM,EULER,MINMOD,MUSCL,OSHER,SMART, STOIC 来离散对流项,观察它们的计算结果有何不同。 2、用延迟修正进行求解。 3、写出详细的离散过程和求解方法。 4、用 TECPLOT 软件画出整个流场中φ 的分布,并画出 y = 0.5 时,φ 随 x 的 分布。 5、编程采用 C/C++或 FORTRAN 语言。 6、将源程序附于作业之后,程序中要有详细的注释,以反映出思路。 7、源程序电子版和打印版上交时间:截止 2009 年 12 月 28 日。 8、每组交一份作业,给出每位同学的贡献度。(总和为 100%)

【免费下载】数值传热学第五章作业

【免费下载】数值传热学第五章作业

5-2解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: (取常物性)22x x u ∂∂Γ=∂∂φφρ边界条件如下:L L x x φφφφ====,;,00由(5—2)得方程的精确解为: 11)/(00--=--⋅Pe L x Pe L e e φφφφΓ=/uL Pe ρ将分成15等份,有:L ∆=P Pe 15对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)(CD)中心差分节点离散方程: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ10,2 =i 2)一阶迎风节点离散方程: ∆-∆++++=P P i i i 2)1(11φφφ10,2 =i 3)混合格式当时,节点离散方程:,1=∆P 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ10,2 =i 当时,节点离散方程: , 10,5=∆P 1-=i i φφ10,2 =i 4)QUICK 格式,节点离散方程: , ⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆)336(81221211111i i i i i i P P P P P φφφφφφ2=i , ⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆)35(812212112111i i i i i i i P P P P P φφφφφφφ2≠i用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= =0,y(16)==1,程序中Pa 为,x 为题中所提的x/L 。

由于本程序假设y(1)=0φL φ∆P =0,y(16)==1,所以)0φL φy y y y y y L =--=--=--010)1()16()1(00φφφφPa=input('请输入Pa=')x=0:1/15:1Pe=15*Pa;y=(exp(Pe*x)-1)/(exp(Pe)-1)plot(x,y,'-*k') %精确解hold ony(1)=0,y(16)=1;for i=2:15y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;endplot(x,y(1:16),'-or') %中心差分hold onfor i=2:15y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa);endplot(x,y(1:16),'-.>g') %一阶迎风hold onfor i=2:15if Pa==1y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;elsey(i)=y(i-1)endendplot(x,y(1:16),'-+y') %混合格式hold onfor i=2:15if i==2y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 elsey(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 endendplot(x, y(1:16),'-<b') %QUICK 格式hold onlegend('精确解','中心差分','一阶迎风','混合格式','QUICK 格式')运行结果如下图所示:当 :1=∆P当:5=∆P当:10=∆P5-3 解:根据课本式(5-19)得:乘方格式:⎪⎪⎩⎪⎪⎨⎧<-≤≤--+≤≤->=∆∆∆∆∆∆∆∆10,010,)1.01(100,)1.01(10,055P P P P P P P P D a e E 当时有:1.0=∆P 951.0)1.01.01()1.01(55=⨯-=-=∆P D a e E 301.0/3)()()()()()(===Γ=Γ=∆ee e e e e e e e P u x u u x D ρδρρδ5297.2830951.0951.0=⨯==e E D a 由系数关系可得:∆=-P D a D a e E w W 53.3130)951.01.0((=⨯+=⨯+=∆w e E W D D a P a根据式(5-51g )得: 205.01.010=⨯=∆∆=tx a P p ρ根据式(4-12)得: (本题方程中无源项)0P W E P a fa fa a ++=当采用隐式时,则得到:1=f 0597.62253.315297.280=++=++=P W E P a fa fa a 即:时,,,,1.0=∆P 5297.28=E a 53.31=W a 20=p a 0597.62=P a 当时,按照以上算法得出:10=∆P ,, , 0=E a 3=W a 20=p a 5=P a。

数值传热学--作业

数值传热学--作业

数值传热学大作业—淬火过程的瞬态热分析专业:材料工程班级:研1303班学号:S2*******指导教师:孙斌煜姓名:李康一、问题描述某零件材料为45钢,按照国标GB/T6912-1999规定的45钢推荐热处理制度为840C 。

淬火.600C 。

回火,淬火介质为水,试计算零件温度随时间的我变化曲线和最后时刻的温度场云图 (1)45钢弹性模量:200GPa 泊松比:0.3质量密度:78503/m kg膨胀系数:15.5e-6m/C 。

比热:448C J kg / 导热系数:70()C m W .*/ (2)水 密度:9963/m kg 比热:4185C J kg / 导热系数:2()C m W .*/水沸腾对流换热系数:1200()C m W .*2/初始45钢温度840,水的初始温度为20C 。

,水槽宽1m,中间位零件最大截面60mm ,下图为淬火过程的零件截面。

图-1二、创建模型1.建立分析项目(1)在Windows系统下执行“开始”—“所有程序”—“ANSYS14.0”—“Mechanical APDL(ANSYS)14.0”命令,启动Mechanical APDL(ANSYS)14.0,进入主界面。

(2)选择热分析过滤菜单GUI:选择菜单Main Menu —Preprocessor,弹出分析项目对话框,选择Thermal 热分析,如图2 所示,完成后单击OK按钮结束。

2.更改分析名称和标题(1)改变工作项目标题GUI:File→Change Title,弹出对话框,输入“Thermal01”如下图,单击OK结束。

(2)更改项目名称GUI:File→Change Title,弹出对话框,输入“Thermal01”下方的复选框,如下图所示,完成单击OK完成。

3.创建材料模型要点:创建模型顺序依次为工件,水(1)添加导热系数GUI:Main Menu →Preprocessor→Material Prop→Material Models→Thermal→Conductivity→Isotropic,弹出对话框,输入导热系数70,如下图完成后单击OK 结束输入(2)添加比热容GUI:Main Menu →Preprocessor→Material Prop→Material Models→Thermal→Specific Heat.弹出比热容输入对话框,在文本框中输入工件比热容448,如下图,成后单击OK结束输入(3)添加密度GUI:Main Menu →Preprocessor→Material Prop→Material Models→Thermal→Density,弹出密度输入对话框,在文本框中输入工件比热容7785,如下图,成后单击OK结束输入(4)创建材料2依照上述步骤添加水的比热容4185,密度996,导热系数25.选择单元GUI:Main Menu →Preprocessor→Element type→add/Edit/Delete→add,弹出下图所示单元对话框,选择Thermal Solide的Quad 8node77单元,按OK键结束设置单元选项GUI:Main Menu →Preprocessor→Element type→add/Edit/Delete→add,弹出Element type对话框,单击对话框中的Option,弹出设置单元对话框,在单元形状K3文本框选择Plane Thickness,如下图,单击OK结束关闭对话框。

数值传热学第5章作业答案

数值传热学第5章作业答案

第5章作业答案5-2对于5种三点格式来说,一维对流扩散方程都是可以写成下列通用离散形式:P P E E W Wa a a φφφ=+ 其中: [](){}()[]{}()w e W E P w w w W e e e E F F a a a P P A D a P P A D a -++=+=-+=∆∆∆∆0,0,5种三点格式的()∆P A格式()∆P A迎风差分 1混合格式 []|5.01,0|∆-P 指数格式 ()()1exp -∆∆P P对网格Peclet 数为5,10的情形,应该得出如下图的结果,FUD 与混合格式没有振荡,而CD 和QUICK 均有,而且CD 比QUICK 更为严重。

5-3不同网格∆P 数下各系数计算结果如下∆P E aW a 0P a P a 0.1 28.53 31.53 2 62.05910 0 3255-5 四个节点之值如下一阶迎风 混合格式 乘方格式 二阶迎风(边界一阶) 二阶迎风(边界二阶)1φ 94.26 73.96 79.01 58.57 91.122φ 147.61 91.10 115.13 76.65 144.19 3φ 82.14 72.40 74.19 69.33 81.34 4φ 126.99 85.31 102.70 87.38 124.505-7不计扩散项,采用QUICK 离散i 控制容积的非稳态与对流项得:12117338n nn n n ni i i i i i x utφφφφφφ+--+--++∆=-∆ ((0)u >采用离散扰动分析法,对i+1得到扰动为78n i u t ρε∆,对i-1 得到扰动为38ni u t xε∆-∆,符号不变原则要求:0832≥∆Γ∆+∆∆-ninin i x t x t u εερερ,由此得:38≤=Γ∆∆P xu ρ5-9根据三阶迎风格式的定义:⎪⎩⎪⎨⎧<∆--+->∆+-+=∂∂-++--+0,62360,6632112211u x u xx i i i i i i i i φφφφφφφφφ仿照QUICK 格式,令三阶迎风格式的控制容积右界面上的值的形式为:⎪⎩⎪⎨⎧<+--+>+--+=0,220,22u a u a EEE P E P WP E E P e φφφφφφφφφφφ同理可以写出w φ的计算式。

数值传热学习题答案(汇总版)

数值传热学习题答案(汇总版)

2-4-9
= rP rS
式(2-4-9)也可以写成 a PTP = a E TE + aW TW + b 的形式。而且两种结果是一致的。
2—6:
n n TE −TW dT P , n = 解:将 , dx 2x n n TE −2TPn + TW d 2T P , n = , dx2 x 2
dk = f (x ) 代入原方程,得: dx

2-4-4
rk rk a E = , aW = , a P = a E + aW , b x w x e
= SrP r ,
式(2-4-4)可以写成 a PTP = a E TE + aW TW + b 的形式。 2. 再用 Taylor 展开法导出 k
2 2 uE + uP u = , 2 2 e
2 2 uW + uP u = 2 2 w
t u ut N − uP y = (y ) , n n
t
t ut u p − uS y = (y ) 。 s s
t
(y ) n = (y ) s = y
n n n n TE −TW TE −2TPn + TW k + f (x ) +S=0 整理得: 2x x 2
4kT P= 2k + xf ( x)T E+2k − xf ( x)T W +2x 2 S
− 2k 时, a E 会成为负值, x 2k 当 f(x)> 时, aW 会成为负值。 x
rk dr = rk r r dr dr dr
w
e
1 d

大学课件_计算传热学_第五章非稳态问题的求解方法

大学课件_计算传热学_第五章非稳态问题的求解方法

第5章 非稳态问题的求解方法1.1 通用输运方程()()()()()t t f q Γv tφφρφρφφ,grad div div =++-=∂∂ ( 5-1 )5.1 显式Euler 方法考虑1D, 定速度,常物性,无源项的特例22xx u t ∂∂Γ+∂∂-=∂∂φρφφ ( 5-2 ) 时间向前,空间中心差分,得FD 与FV 相同形式代数方程()t x x u nin i n i n i n i nin i∆⎥⎦⎤⎢⎣⎡∆-+Γ+∆--+=-+-++21111122φφφρφφφφ( 5-3 ) 可写成()ni n i n i n i c d c d d 1112221-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+-=φφφφ ( 5-4 ) 其中()xtu c and x t d ∆∆=∆Γ∆=2ρ ( 5-5 ) d 表示时间步长与特征扩散时间()Γ∆/2ξρ的比。

后者代表一个扰动由于扩散通过∆x 一段距离所需时间。

c 表示时间步长与特性对流传递时间x u ∆/的比。

后者代表一个扰动由于对流通过∆x 一段距离所需时间。

c 成为Courant number, 为CFD 中一个关键的参数。

此格式为时间为1阶精度,空间为2阶精度。

方程(4)内的系数在某些条件下,可能会是负值。

用矩阵表示:n n A φφ=+1 ( 5-6 )观察函数:()∑---=-=in i ni n n 211φφφφε( 5-7 )如果系数矩阵A 的本征值中有大于1,则ε随着n 的增加而增加。

如果本征值全部小于1,则ε是递减的。

一般本征值很难求得,对于本特例,它的解可用复数形式表示ji n n j e ασφ= ( 5-8 )其中,α为波数,可取任意值。

∙ 无条件发散:φn 无条件随n 增加→|σ|>1 ∙无条件稳定:φn 无条件随n 降低→|σ|<1代入差分方程,得到本征值为:()αασsin 2cos 21c i d +1-+= ( 5-9 )考虑特殊情况,∙ 无扩散:d=0, →σ >0, 无条件发散,充分条件∙无对流:c=0, →当cos α= -1时,σ最大,→d<1/2,无条件收敛,充分条件从另一个稳定条件考虑,要求系数矩阵A 的所有系数为正,可得到类似稳定性条件:(充分条件)d c d 2and 5.0<<( 5-10 )第一个条件要求()Γ∆<∆22x t ρ ( 5-11 )表示,每当∆x 减少一半,时间步长需减少到1/4. 第二个条件要求2Pe or2<<Γ∆cell xu ρ ( 5-12 )这同前述的用1D 稳态对流/扩散问题的CDS 要求是一致的。

化工原理传热习题及答案

化工原理传热习题及答案

化工原理习题及答案第五章传热姓名____________班级____________学号_____________成绩______________一、填空题:1.(6分)某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=,此时单位面积的热损失为_______。

(注:大型容器可视为平壁)***答案*** 1140w2.(6分)某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为120mm, λ=,此时单位面积的热损失为_______。

(注:大型容器可视为平壁)***答案*** 1000w3.(6分)某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为150℃, 而环境温度为20℃,要求每平方米热损失不大于500w, 采用某隔热材料,其导热系数λ=,则其厚度不低于_______。

(注:大型容器可视为平壁)***答案*** 91mm4.(6分)某间壁换热器中,流体被加热时,圆形直管内湍流的传热系数表达式为___________________.当管内水的流速为,计算得到管壁对水的传热系数α=2.61(kw.m.K).若水的其它物性不变,仅改变水在管内的流速,当流速为,此时传热系数α=_____________.***答案*** α=0.023(λ/d)Re Prα=3.81(kw.m.K)5.(6分)某间壁换热器中,流体被加热时,圆形管内湍流的传热系数表达式为_____________________.当管内水的流速为,计算得到管壁对水的传热系数α=2.61(kw.m.K).若水的其它物性不变,仅改变水在管内的流速,当流速为,此时传热系数α=________________.***答案*** α=0.023(λ/d)Re Prα=5.26(kw.m.K)6.(3分)牛顿冷却定律的表达式为_________,给热系数(或对流传热系数)α的单位是_______。

传热学习题_5版_作业

传热学习题_5版_作业

传热学习题_建工5版绪 论0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45()K m W ⋅, 两侧表面温度分别为C t w ︒=1501及C t w ︒=2852,试求热流密度及热流量。

解:根据付立叶定律热流密度为:i dxdt t grad i q xλλ-=-=21212303752015028545m /W .x x t t dx dt q w w x -=-⨯-=---=-=λλ负号表示传热方向与x 轴的方向相反。

通过整个导热面的热流量为:)W (A q 1822502330375=⨯⨯-==Φ0-15 空气在一根内经50毫米,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的对流换热系数()K m /W h ⋅=273,热流密度25110m /W q =, 是确定管壁温度及热流量Φ。

解:热流量)W (....)dl (q qA 72005520501435110=⨯⨯⨯===πΦ根据牛顿冷却公式()qA t t hA )dl (h t hA f w =-===π∆Φ管内壁温度为:C A q t t f w ︒=+=+=15573511085第一章 导热理论基础1-1 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。

解:(1)由附录7可知,在温度为20℃的情况下λ铜=398 ()K m W ⋅,λ碳钢=36()K m W ⋅, λ铝=237()K m W ⋅,λ黄铜=109()K m W ⋅. 所以,按导热系数大小排列为:λ铜>λ铝>λ黄铜>λ钢 (2) 隔热保温材料定义为:温度在350℃以下时,导热系数不超过0.12 ()K m W ⋅的材料。

(3) 由附录8得,当材料的平均温度为20℃时的导热系数:膨胀珍珠岩散料:λ=0.0424+0.000137t ()K m W ⋅ λ=0.0424+0.000137×20=0.04514 ()K m W ⋅; 矿渣棉: λ=0.0674+0.000215t ()K m W ⋅λ=0.0674+0.000215×20=0.0717 ()K m W ⋅;聚乙烯泡沫塑料在常温下(附录7))K m /(W ..⋅-=03800350λ。

传热学第四版课后题答案解析第五章

传热学第四版课后题答案解析第五章

第五章复习题1、试用简明的语言说明热边界层的概念。

答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。

2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。

3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。

4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。

基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v xy u ∂+-=∂∂+∂∂ρρ根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有 2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。

传热学第五版第五章答案

传热学第五版第五章答案

传热学第五版第五章答案【篇一:高等传热第五章习题答案】面矩形直肋关于中线是对称的,在对称面上为绝热边界条件,所以这里只研究其关于中心位置对称的一部分的温度场情况。

其图形如下图所示:各个边界条用有限差分法求解肋片中的二维稳态温度场1. 将区域离散化,把原来在空间上连续的物理量的场,转化为有限个离散的网格单元节点。

沿x方向和沿y方向分别按间距?x和?y,?x和?y相等,将x轴方向等划分为40段线段,y方向等划分为20段线段,将用一系列与坐标轴平行的网格线,把求解区域分割成许多小的矩形网格。

网格线的交点成为节点每个节点,每个节点可以看作是以它为中心的一个区域的代表。

?绝热……(21)……2. 建立离散方程,41? 区域内的所有点,包括内节点?i,j?都应满足以上的方程。

把内节点,即i?2……n?1,j?2……m?1处的二阶偏导数用对应的差商来近似,?2tti,j?1?2ti,j?ti,j?1?2tti?1,j?2ti,?jt??? , ?y2?x2?y2?x2则有:ti,j?i1,j1?ti?1,j?ti?1,j?ti,j?1?ti,j?1? 4? 边界上的点:当i?1,j?2……n-1时,为了使个节点的精度能够平衡,可以利用虚节点的概念对此边界节点进行处理,,则节点?1,j?可以按照内节点处理,得到:ti,j?1t1,j?1?t1,j?1?2t2,j? ?4当i?1,j?1时,ti,j?1t1,2?t2,1? ?2当i?2……n-1,j?1时,节点的处理也可以引进虚节点的概念,看成是内节点,则有:ti,1?1?ti?1,1?ti?1,1?2ti,2? 4当 i?n,j?1……m,根据边界条件则有:ti,j?t0当j?m,i?2……n-1,根据边界条件则有: ??所以可以假想上部有一个虚节点ti,m?1,则有:ti,m?ti,m?1?y?h?ti,m?tf?,但其精度低,ti,m?将??1ti?1,m?ti?1,m?ti,m?1?ti,m?1? ?42h?yti,m?1?ti,m?12?y???h?ti,m?tf?,得到:ti,m?1?2h?y??tf?ti,m??ti,m?1将其带入上式,可以得到:ti,m??ti?1,m?ti?1,m?2ti,m?1?2h?y??tf??4?? ?????当j?m,i?1时,假想两个虚节点t0,m和t1,m?1 则有:t1,m?1?t2,m?t1,m?1?t1,m?1?t0,m? 4将式子t0,m?t2,m?t1m,?12h?y??tf?t1m,??t?1m带入上式可以得到:,1h?y??h?y??t1,m??t2,m?t1,m?1?tf??2????????温度的无量纲化:令??t?tft0?tf,其中令tf?0,t0?1。

数值传热大作业报告

数值传热大作业报告

目录一、物理问题的描述及分析 (2)二、离散过程及算法分析 (2)2.1 离散过程………………………………………………………………………………...错误!未定义书签。

2.2 算法分析……………………………………………………………………...................错误!未定义书签。

装三、结果演示 (2)四、结论 (11)五、心得体会 (11)六、附件 (12)订线一、物理问题的描述及分析对如图所示的二维方腔顶盖驱动流问题,顶盖拖动速度为u top ,方腔的长度和高度均为H ,流体密度为ρ、动力粘度为μ。

流动与传热的控制方程如下:0u v x y∂∂+=∂∂ 22221u u u p u u u v t x y x x y μρρ⎛∂∂∂∂∂∂++=-++ ∂∂∂∂∂∂⎝其中,u 、v 分别为x 、y 方向速度分量,p 为压力。

用高度H 、流体密度ρ和拖动速度u top 作为无量纲标尺,将控制方程无量纲化,流场初始状态为静止,Re =1000 (top u HRe ρμ=),求流动达到稳定状态时,x 方向中垂线(/2x H =)上的无量纲速度U x ,y 方向中垂线(/2y H =)上的无量纲速度V ,绘制出速度分布曲线 ;绘出压力场、速度场。

二、离散过程及算法分析2.1 离散过程无量纲化后的控制方程:0U VX Y∂∂+=∂∂ (1) 22221Re U U U P U U U V X Y X X Y τ⎛⎫∂∂∂∂∂∂++=-++ ⎪∂∂∂∂∂∂⎝⎭ (2) 22221Re V V V P V V U V X Y Y X Y τ⎛⎫∂∂∂∂∂∂++=-++ ⎪∂∂∂∂∂∂⎝⎭(3) 利用有限差分,同位网格方法对其进行离散,空间项采用中心差分,速度用显式,压力用隐式:u22221v v v p v v u v t x y y x y μρρ⎛∂∂∂∂∂∂++=-++ ∂∂∂∂∂∂⎝1,,n ni j i jU U U ττ+-∂=∂∆ (4a ) 1,1,,2n n i j i j n i j U U U U U X X +--∂=∂∆;,1,1,2n ni j i j n i j U U U V V Y Y+--∂=∂∆ (4b ) 111,,n n i j i jP P P X X+++-∂-=-∂∆ (4c ) 21,,1,222n n n i j i j i j U U U U X X +--+∂=∂∆;2,1,,1222n n ni j i j i j U U U U Y Y +--+∂=∂∆ (4d ) 以下对边界邻点进行特殊处理:U 的左边界邻点:()1,,1,2,343i j i j i ji jU U U UO X X X+-+-∂=+∆∂∆ ()21,,1,2,2281243i j i j i ji jU U U U O X X X -+-+∂=+∆∂∆U 的右边界邻点:()1,,1,2,433i j i j i ji jU U U U O X X X+---∂=+∆∂∆ ()21,,1,2,221283i j i j i ji jU U U U O X X X-+-+∂=+∆∂∆U 的下边界邻点:(),1,,12,343i j i j i j i jU U U U O Y Y Y+-+-∂=+∆∂∆ ()2,1,,12,2281243i j i j i j i jU U U U O Y Y Y -+-+∂=+∆∂∆U 的上边界邻点:(),1,,12,433i j i j i j i jU U U U O Y Y Y+---∂=+∆∂∆ ()2,1,,12,221283i j i j i j i jU U U U O Y Y Y-+-+∂=+∆∂∆同理,可以写出V 的边界邻点的表达式,这里不再赘述。

数值传热学习题解答(汇总版)

数值传热学习题解答(汇总版)

习题1-7解:由于对称性,取半个通道作为求解区域。

常物性不可压缩流体,二维层流、稳态对流换热的控制方程组为: 质量守恒方程0=∂∂+∂∂yv x u 动量守恒方程 ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂−=∂∂+∂∂22221y u x u x py vu x uu νρ ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂−=∂∂+∂∂22221y v x v y p y vv x uv νρ 能量守恒方程 ()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂2222y T xT a y vT x uT 边界条件:进口截面 ()0,,===v c T y u u in ; 平板通道上(下)壁面 0,0=∂∂==yTv u ; 中心线上对称条件: 0,0u T v y y∂∂===∂∂; 出口截面0,0,0=∂∂=∂∂=∂∂xT x v x u ; 或者写:采用数值传热学的处理方法。

图1-10 习题1-7的图示本题如果采用整个通道作为计算区域,应该扣除0.5 分2-3.解:由u x u ∂∂=()xuu ∂∂21=η22y u ∂∂得: 其守恒形式为:()xuu ∂∂=2η22y u ∂∂ 对方程两端在t ∆时间间隔内对其控制容积积分得:()dxdydt x uu t t t nsew ⎰⎰⎰∆+∂∂=⎰⎰⎰∆+∂∂t t t e w n s dydxdt y u 222η()()[]dxdt y u y u dydt uu uu s n t t t ewtt t w e n s ][2⎪⎪⎭⎫ ⎝⎛∂∂−⎪⎪⎭⎫ ⎝⎛∂∂=−⎰⎰⎰⎰∆+∆+η 将()()2)(PE e uu uu uu +=, ()()()2P W w uu uu uu +=,()n PN n y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂,()sSP s y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂。

y y y s n ∆==)()(δδ 带入,得:xdt y u u u ydt uu uu t t t S P N tt tW E ∆∆+−=∆⎥⎦⎤⎢⎣⎡−⎰⎰∆+∆+]2[22)()(η t x yu u u t y uu uu tSt P t N t W t E ∆∆∆+−=∆∆−222)()(η整理得离散方程为:()()0242=∆−+−∆−yu u u xuu uu t P t S t N tWt E η2—3:解:由2221()u 2u u ux x y η∂∂∂===∂∂∂得:原方程的守恒形式为: 222()2u ux yη∂∂=∂∂ 对方程两端在t ∆时间间隔内对其控制容积积分,把可积的部分积出后得:22()t tsne wtu u dtdy +∆−⎰⎰= 2t te wtn s u u dtdx y y η+∆⎡⎤⎛⎫⎛⎫∂∂−⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎣⎦⎰⎰选定2u 随y 而变化的型线,这里取为阶梯式,即在控制容积内沿y 方向不变,则2222()=y ()t tt ts ne we w ttu u dtdy u u dt +∆+∆−∆−⎰⎰⎰选定2u 随t 而变化的规律,这里采用阶梯式显式,则22()t tewty u u dt +∆∆−⎰= ()()22t t e w u u t y ⎡⎤−∆∆⎢⎥⎣⎦选定uy∂∂随x 而变化的型线,这里取为阶梯式,即在控制容积内沿x 方向不变,则22t tt t e wtt n s n s u u u u dtdx x dt y y y y ηη+∆+∆⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂−=∆−⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎰⎰⎰ 选定uy∂∂随t 而变化的规律,这里采用阶梯显式,则 2t ttn s u u x dt y y η+∆⎡⎤⎛⎫⎛⎫∂∂∆−⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎣⎦⎰= 2t t n s u u t x y y η⎡⎤⎛⎫⎛⎫∂∂−∆∆⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦进一步选取u 随x,y 分段线性变化,则2222E Pe u u u += , 222w 2W P u u u +=()nt PtN ty uu y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂n , ()stSt p ts y u u y u δ−=⎪⎪⎭⎫ ⎝⎛∂∂。

数值传热学大作业

数值传热学大作业

数值传热学大作业燃烧室出口换热与流动的数值模拟学院专业班级学号姓名燃烧室出口换热与流动的数值模拟摘要:本文针对稳态、层流、常物性的燃烧室出口的换热与流动问题,采用商业软件FLUENT 进行了数值模拟。

通过数值模拟,本文得到了温度分布和速度分布,计算得到三种流体各自的换热量以及漏斗状壁面两侧烟气和空气的局部的表面对流换热系数。

1物理问题描述某圆柱形燃烧室出口截面结构如图1-1所示,燃烧产生的高温烟气从燃烧室流出后在图1标号为①的位置进入图中漏斗结构,最终从②流出。

冷却水从标号为⑤的位置进入“水套”结构,由⑥流出;常温空气从标号为③的位置流入空气流道,分别与高温烟气和冷却水发生热交换,最终从④流出。

图1-1 燃烧室出口结构:①烟气入口;②烟气出口;③空气流道入口;④空气流道出口⑤冷却水入口;⑥冷却水出口表1给出了该结构的几何参数,漏斗状的结构(图1中标号为A的结构)、水套(图1中标号为B的结构)的壁厚均为5mm,材料为钢,过程是稳态。

给定工况和给定的流体参数如表2所示:表2 工质工矿与流体参数为了方便计算,在数值模拟中,本文做了一些假设:(1)流体的物性都是固定的;(2)流体中的粘性耗散度忽略不计;(3)流动及换热处于稳态、层流、充分发展状态;(4)假设流体流动过程中不存在热辐射的情况。

2控制方程及求解方法考虑几何对称性,将问题简化为一个2D模型,则该问题中的控制方程如下。

连续性方程:动量方程:能量方程:本文采用了SIMPLE算法进行求解。

SIMPLE算法自1972年问世以来在世界各国计算流体力学及计算传热学界得到了广泛的应用,这种算法提出不久很快就成为计算不可压流场的主要方法,随后这一算法以及其后的各种改进方案成功的推广到可压缩流场计算中,已成为一种可以计算任何流速的流动的数值方法。

SIMPLE 算法的基本假设:速度场的假定与压力场的假定各自独立进行,二者无任何联系。

对假定压力场的修正通过已求解的速度场的质量守恒条件得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5-2解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示:
(取常物性)22x x u ∂∂Γ=∂∂φφρ边界条件如下:L L x x φφφφ====,;,00由(5—2)得方程的精确解为: 11)/(00--=--⋅Pe L x Pe L e e φφφφΓ=/uL Pe ρ将分成15等份,有:L ∆=P Pe 15对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)(CD)中心差分节点离散方程: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ10,2 =i 2)
一阶迎风节点离散方程: ∆-∆++++=P P i i i 2)1(11φφφ10,2 =i 3)混合格式当时,节点离散方程:,1=∆P 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ10,2 =i 当时,节点离散方程: , 10,5=∆P 1-=i i φφ10,2 =i 4)QUICK 格式,节点离散方程: , ⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆)336(81221211111i i i i i i P P P P P φφφφφφ2=i , ⎥⎦
⎤⎢⎣⎡---++++++=+--∆∆
-∆∆+∆)35(812212112111i i i i i i i P P P P P φφφφφφφ2≠i
用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= =0,y(16)==1,程序中Pa 为,x 为题中所提的x/L 。

由于本程序假设y(1)=0φL φ∆P =0,y(16)==1,所以)0φL φy y y y y y L =--=--=--0
10)1()16()1(00φφφφPa=input('请输入Pa=')
x=0:1/15:1
Pe=15*Pa;
y=(exp(Pe*x)-1)/(exp(Pe)-1)
plot(x,y,'-*k') %精确解
hold on
y(1)=0,y(16)=1;
for i=2:15
y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;
end
plot(x,y(1:16),'-or') %中心差分
hold on
for i=2:15
y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa);
end
plot(x,y(1:16),'-.>g') %一阶迎风
hold on
for i=2:15
if Pa==1
y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;
else
y(i)=y(i-1)
end
end
plot(x,y(1:16),'-+y') %混合格式
hold on
for i=2:15
if i==2
y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else
y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end
end
plot(x, y(1:16),'-<b') %QUICK 格式
hold on
legend('精确解','中心差分','一阶迎风','混合格式','QUICK 格式')
运行结果如下图所示:当 :
1=∆P
当:
5=∆P
当:
10=∆P
5-3 解:根据课本式(5-19)得:乘方格式:⎪⎪⎩⎪⎪⎨⎧<-≤≤--+≤≤->=∆∆∆∆∆∆∆∆10,010,)1.01(100,)1.01(10,055P P P P P P P P D a e E 当时有:1.0=∆P 951.0)1.01.01()1.01(55=⨯-=-=∆P D a e E 301.0/3)()()()()()(===Γ=Γ=∆e
e e e e e e e e P u x u u x D ρδρρδ5297.2830951.0951.0=⨯==e E D a 由系数关系可得:∆=-P D a D a e E w W 53.3130)951.01.0((=⨯+=⨯+
=∆w e E W D D a P a
根据式(5-51g )得: 205
.01.010=⨯=∆∆=t
x a P p ρ根据式(4-12)得: (本题方程中无源项)0P W E P a fa fa a ++=当采用隐式时,则得到:1=f 0597.62253.315297.280=++=++=P W E P a fa fa a 即:时,,,,1.0=∆P 5297.28=E a 53.31=W a 20=p a 0597.62=P a 当时,按照以上算法得出:10=∆P ,, , 0=E a 3=W a 20
=p a 5=P a。

相关文档
最新文档