模式识别期末试题分解

合集下载

最新模式识别期末考试

最新模式识别期末考试

问答1. 什么是模式?通过对具体个别事物进行观测所得到的具有时间和空间分布的信息称为模式。

模式所指的不是事物本身,而是我们从事物中获得的信息。

2. 模式识别系统主要由哪些部分组成?信息获取,预处理,特征提取与选择,分类决策,后处理。

3. 最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 p ( x |W i ), i =1,2 \ P (X | W j ) P (w j )如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。

4. 怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn | 3 i) = P(x1| 3 i) P(x2| 3 i)…P(xn| 3 i)后验概率: P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i) 类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均 值方差,最后得到类条件概率分布。

方差:var(x) (x^x)A 2 m —1 i 二二:解答1.设有如下三类模式样本集 3 1, 3 2和3 3,其先验概率相等,求 S W 和Sb3 1 : {(1 0) T , (2 0) T , (1 1)、3 2 : {(-1 0) T , (0 1) T, (-1 1)T}3 3: {(-1-1) T, (0 -1) T , (0 -2) T }答:由于三类样本集的先验概率相等,则概率均为1/3。

多类情况的类内散度矩阵,可写成各类的类内散布矩阵的先验概率的加权和,即:ccS w P®i )E{(x —m)(x —mJ T|斜}=送 C ii =1i 4类间散布矩阵常写成:cS b「P(・i)(m i - m °)(m i - m °)T其中,m 。

为多类模式(如共有 c 类)分布的总体均值向量,即:P ( X | W i ) P (W i ) 2利用贝叶斯公式得到后验概率 P(W i | x)二均值:1mmean(x)xim y 其中Ci 是第i 类的协方差矩阵。

模式识别试卷及答案

模式识别试卷及答案

模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。

答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。

答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。

答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。

答案:线性变换5. 神经网络的反向传播算法用于______。

答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。

答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。

答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。

(2)模型选择:根据问题类型选择合适的模式识别算法。

(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪一种方法不属于统计模式识别方法?A. 最小二乘法B. 感知机C. 支持向量机D. 决策树答案:A3. 在模式识别中,以下哪种技术用于降低特征维度?A. 主成分分析(PCA)B. 线性判别分析(LDA)C. 神经网络D. K-均值聚类答案:A4. 以下哪一种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 支持向量机(SVM)C. 主成分分析(PCA)D. K-最近邻(K-NN)答案:B5. 以下哪一项不是模式识别的评价指标?A. 准确率B. 精确率C. 召回率D. 信息熵答案:D二、填空题(每题2分,共20分)6. 模式识别的主要任务包括分类、回归、聚类和________。

答案:预测7. 统计模式识别方法包括最小二乘法、感知机、________和决策树。

答案:支持向量机8. 主成分分析(PCA)的主要目的是________特征。

答案:降低维度9. 在模式识别中,________用于将样本分为不同的类别。

答案:分类器10. 支持向量机(SVM)的基本思想是找到一个________,使得不同类别的样本之间的间隔最大化。

答案:最优分割超平面三、简答题(每题10分,共30分)11. 请简述模式识别的主要步骤。

答案:(1)数据预处理:对原始数据进行清洗、标准化和降维等处理。

(2)特征提取:从原始数据中提取有助于分类的特征。

(3)模型训练:使用训练集对分类器进行训练。

(4)模型评估:使用测试集对分类器的性能进行评估。

(5)模型优化:根据评估结果对模型进行调整和优化。

12. 请简述支持向量机(SVM)的基本原理。

支持向量机是一种二分类模型,其基本思想是找到一个最优分割超平面,使得不同类别的样本之间的间隔最大化。

SVM通过求解一个凸二次规划问题来寻找最优分割超平面,从而实现分类任务。

(完整word版)【模式识别】期末考试试卷01

(完整word版)【模式识别】期末考试试卷01

《模式识别》期末考试试题(B)一、填空题(15个空,每空2分,共30分)1.基于机器学习的模式识别系统通常由两个过程组成, 即分类器设计和()。

2.统计模式识别把( )表达为一个随机向量(即特征向量), 将模式类表达为由有穷或无穷个具有相似数值特性的模式组成的集合.3.特征一般有两种表达方法:(1)将特征表达为数值;(2)将特征表达为()。

4.特征提取是指采用( )实现由模式测量空间向特征空间的转变。

5.同一类模式类样本的分布比较集中,没有或临界样本很少,这样的模式类称为()。

6.加权空间的所有分界面都通过()。

7.线性多类判别:若每两个模式类间可用判别平面分开, 在这种情况下,M类有( )个判别函数,存在有不确定区域.8.当取0—1损失函数时,最小风险贝叶斯判决准则等价于( )判决准则。

9.Neyman-Pearson决策的基本思想是()某一错误率,同时追求另一错误率最小。

10.聚类/集群:用事先不知样本的类别,而利用样本的先验知识来构造分类器属于( )学习. 11.相似性测度、聚类准则和( )称为聚类分析的三要素。

12.K/C均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的()达到最小。

13.根据神经元的不同连接方式,可将神经网络分为分层网络和相互连接型网络两大类。

其中分层网络可细分为前向网络、( )和层内互连前向网络三种互连方式.14.神经网络的特性及能力主要取决于网络拓扑结构及( )。

15.BP神经网络是采用误差反向传播算法的多层前向网络,其中,神经元的传输函数为S型函数,网络的输入和输出是一种( )映射关系。

二、简答题(2题,每小题10分,共20分)1.两类问题的最小风险Bayes决策的主要思想是什么?2.已知一组数据的协方差矩阵为11/21/21⎡⎤⎢⎥⎣⎦,试问: (1)协方差矩阵中各元素的含义是什么? (2)K —L 变换的最佳准则是什么?(3)为什么说经K-L 变换后消除了各分量之间的相关性?三、 计算题(2题,每小题13分,共26分)1.已知有两类样本集,分别为ω1={x 1, x 2}={(1,2)T , (-1,0)T }; ω2={x 3, x 4} ={(—1,—2)T , (1,-1)T }设初始权值w 1=(1,1,1)T , ρk =1,试用感知器固定增量法求判别函数,画出决策面。

模式识别与机器学习期末考查试题及参考答案

模式识别与机器学习期末考查试题及参考答案

模式识别与机器学习期末考查试卷研究生姓名:入学年份:导师姓名:试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。

答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。

主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。

机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。

主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。

两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。

机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。

(2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。

模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。

而机器学习的目标是通过学习提高系统性能,分类只是其最简单的要求,其研究更侧重于理论,包括泛化效果、收敛性等。

模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。

许多算法他们都在研究,但是研究的目标却不同。

如在模式识别中研究所关心的就是其对人类效果的提高,偏工程。

而在机器学习中则更侧重于其性能上的理论证明。

试题2:列出在模式识别与机器学习中的常用算法及其优缺点。

答:(1) K近邻法算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。

在应用算法解决问题的时候,要注意的两个方面是样本权重和特征权重。

优缺点:非常有效,实现简单,分类效果好。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Document number:PBGCG-0857-BTDO-0089-PTT1998一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别期末试题及答案

模式识别期末试题及答案

模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。

通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。

2.2 请解释监督学习和无监督学习的区别。

监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。

通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。

而无监督学习则没有标签或输出信息。

无监督学习的目标是从未标记的数据中找到模式和结构。

这种学习方法通常用于聚类、降维和异常检测等任务。

3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。

请简要解释逻辑回归模型的原理,并说明它适用的场景。

逻辑回归模型是一种用于解决二分类问题的监督学习算法。

其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。

这个映射的概率可以被解释为某个样本属于正类的概率。

逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Last revision on 21 December 2020一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于模式识别的主要任务?A. 分类B. 回归C. 聚类D. 降维答案:B2. 以下哪种方法不属于模式识别的监督学习方法?A. 支持向量机B. 决策树C. 神经网络D. K-均值聚类答案:D3. 在模式识别中,特征选择和特征提取的主要目的是什么?A. 提高模型的泛化能力B. 减少模型的计算复杂度C. 提高模型的准确率D. 所有以上选项答案:D4. 以下哪种距离度量方法不适用于模式识别?A. 欧几里得距离B. 曼哈顿距离C. 余弦相似度D. 切比雪夫距离答案:C5. 以下哪种算法不属于模式识别中的分类算法?A. K-最近邻B. 支持向量机C. 线性回归D. 决策树答案:C二、填空题(每题2分,共20分)1. 模式识别的主要任务包括分类、回归、聚类和__________。

答案:降维2. 监督学习算法包括线性判别分析、__________、神经网络等。

答案:支持向量机3. 无监督学习算法包括K-均值聚类、层次聚类、__________等。

答案:DBSCAN4. 特征选择和特征提取的主要目的是降低数据的__________和__________。

答案:维度、计算复杂度5. 模式识别中常用的距离度量方法有欧几里得距离、曼哈顿距离、余弦相似度和__________。

答案:切比雪夫距离三、判断题(每题2分,共20分)1. 模式识别是人工智能领域中一个重要的分支,主要研究如何使计算机能够自动识别和处理模式。

()答案:√2. 监督学习算法和无监督学习算法在模式识别中具有相同的作用。

()答案:×3. 支持向量机是一种基于最大间隔的分类算法。

()答案:√4. K-均值聚类算法是一种基于距离度量的聚类算法。

()答案:√5. 特征选择和特征提取的主要目的是提高模型的泛化能力。

()答案:√四、简答题(每题10分,共30分)1. 简述模式识别的基本流程。

四川大学模式识别期末考试内容

四川大学模式识别期末考试内容

四川⼤学模式识别期末考试内容⼀.计算题1、在图像识别中,假定有灌⽊和坦克2种类型,它们的先验概率分别是0.7和0.3,损失函数如下表所⽰。

其中,类型w 1和w 2分别表⽰灌⽊和坦克,判决a 1=w 1,a 2=w 2。

现在做了2次实验,获得2个样本的类概率密度如下:5.02.0)|(1=ωx P 3.06.0)|(2=ωx P(1)试⽤最⼩错误率贝叶斯准则判决2个样本各属于哪⼀类?坦克、灌⽊。

(2)试⽤最⼩风险决策规则判决2个样本各属于哪⼀类?灌⽊、灌⽊。

答:(1)最⼩错误率贝叶斯准则,决策为坦克第⼀个样本:2121221111)|()|(5625.04375.01)|(1)|(4375.032143.0*6.07.0*2.07.0*2.0)()|()()|()|(ωωωωωωωωωω∈?>=-=-===+==∑=x x P x P x P x P P x p P x p x P j j j ,决策为灌⽊第⼆个样本:1121221111)|()|(449205.0795.01)|(1)|(795.044353.0*3.07.0*5.07.0*5.0)()|()()|()|(ωωωωωωωωωω∈?<==-≈-=≈=+==∑=x x P x P x P x P P x p P x p x P j j j(2)最⼩风险决策规则,决策为灌⽊第⼀个样本1212221212122212111211122211211)|()|(3175.25625.0*0.14375.0*4)|()|()|()|(35375.15625.0*24375.0*5.0)|()|()|()|(0.1425.0ωωλωλωλωλωλωλλλλλ∈?<=+=+===+=+======∑∑==x x a R x a R x P x P x P x a R x P x P x P x a R j j j j j j ,决策为灌⽊第⼆个样本12122212121222121112111)|()|(385.3205.0*0.1795.0*4)|()|()|()|(8075.0205.0*2795.0*5.0)|()|()|()|(ωωλωλωλωλωλωλ∈?<=+=+===+=+==∑∑==x x a R x a R x P x P x P x a R x P x P x P x a R j j j j j j2、给出⼆维样本数据(-1,1),(2,2),(1,-1),(-2,-2),试⽤K-L 变换作⼀维数据压缩。

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

广东模式识别期末试卷

广东模式识别期末试卷

广东模式识别期末试卷
一.简述典型的模式识别系统的各部分组成,分别阐述各个组成
部分的功能。

举例说明模式识别的应用。

(20分)
二.假设在某地区切片细胞中正常(ω1)和异常(ω2)两类的先
验概率分别为:P(ω1)=0.8,P(ω2)=0.2。

现有一待识别细胞呈现出
状态x,由其类条件概率密度分布曲线查得p(x|ω1)=0.2,p(x|ω
2)=0.5,
(1)试对细胞x进行分类(判断细胞为正常还是异常);
(2)在以上的基础上,当λ11=0,(λ11表示λ(α1|ω1)的简
写),λ12=6,λ21=1,λ22=0时,按最小风险贝叶斯决策进行分类。

(20分)
三、模糊集: A=0.4 / x1+ 0.6/ x2 +0.9/ x3 + 0/ x4 +0.4
/ x5 B=0.2 / x1 + 0.8/ x2 + 0/ x3 + 0.7/ x4 +1 / x5;(15分)
四、已知,;
试求模糊合成矩阵;(15分)
五、为什么说K-L变换是一种独特的正交变换(它的特点);(10
分)
六、设有一维空间二次判别函数
试映射成广义齐次线性判别函数;并总结把高次函数映射成齐次
线性判别函数的方法。

(20分)。

模式识别期末考试试题

模式识别期末考试试题

模式识别期末考试试题# 模式识别期末考试试题## 一、选择题(每题2分,共20分)1. 模式识别中,特征提取的目的是什么?A. 降低数据维度B. 提高计算效率C. 增强数据的可解释性D. 以上都是2. 在K-近邻算法中,K值的选择对结果的影响是什么?A. 无影响B. 影响分类的准确性C. 影响算法的运行时间D. 影响数据的可读性3. 决策树算法中,信息增益的计算是基于以下哪个概念?A. 熵B. 互信息C. 条件熵D. 联合熵4. 支持向量机(SVM)的主要思想是?A. 寻找数据点之间的最大间隔B. 寻找数据点之间的最小间隔C. 寻找数据点的平均间隔D. 寻找数据点的中心点5. 以下哪个算法属于聚类算法?A. K-近邻B. 决策树C. K-均值D. 支持向量机## 二、简答题(每题10分,共30分)1. 描述主成分分析(PCA)的基本原理及其在模式识别中的应用。

2. 解释什么是过拟合(Overfitting)现象,并给出避免过拟合的几种常用方法。

3. 给出神经网络在模式识别中的基本工作原理,并说明其优缺点。

## 三、计算题(每题25分,共50分)1. 给定以下数据点,使用K-均值算法将它们分为两个簇,并说明算法的步骤:- 数据点:(1, 2), (2, 3), (5, 6), (8, 7), (9, 8)2. 假设有一个二维数据集,其中包含两类数据点,分别用圆形和三角形表示。

数据点的特征如下表所示:| 特征1 | 特征2 | 类别 || | | - || 1.5 | 2.5 | 圆形 || 2.0 | 3.0 | 圆形 || 3.5 | 4.5 | 三角形 || 4.0 | 5.0 | 三角形 |使用线性判别分析(LDA)方法,找出最佳线性边界,并将数据点分为两类。

## 四、论述题(共30分)1. 论述深度学习在图像识别领域的应用,并讨论其与传统机器学习方法相比的优势和局限性。

## 五、案例分析题(共30分)1. 假设你是一名数据科学家,你的团队正在开发一个用于识别手写数字的系统。

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、填空题1. 模式识别是研究通过_________从观测数据中自动识别和分类模式的一种学科。

答案:计算机算法2. 在模式识别中,特征选择的主要目的是_________。

答案:降低数据的维度3. 支持向量机(SVM)的基本思想是找到一个最优的超平面,使得两类数据的_________最大化。

答案:间隔4. 主成分分析(PCA)是一种_________方法,用于降低数据的维度。

答案:线性降维5. 隐马尔可夫模型(HMM)是一种用于处理_________数据的统计模型。

答案:时序二、选择题6. 以下哪种方法不属于模式识别的监督学习方法?()A. 线性判别分析B. 支持向量机C. 神经网络D. K-means聚类答案:D7. 在以下哪种情况下,可以使用主成分分析(PCA)进行特征降维?()A. 数据维度较高,且特征之间存在线性关系B. 数据维度较高,且特征之间存在非线性关系C. 数据维度较低,且特征之间存在线性关系D. 数据维度较低,且特征之间存在非线性关系答案:A8. 以下哪个算法不属于聚类算法?()A. K-meansB. 层次聚类C. 判别分析D. 密度聚类答案:C三、判断题9. 模式识别的目的是将输入数据映射到事先定义的类别中。

()答案:正确10. 在模式识别中,特征提取和特征选择是两个不同的概念,其中特征提取是将原始特征转换为新的特征,而特征选择是从原始特征中筛选出有用的特征。

()答案:正确四、简答题11. 简述模式识别的主要任务。

答案:模式识别的主要任务包括:分类、回归、聚类、异常检测等。

其中,分类和回归任务属于监督学习,聚类和异常检测任务属于无监督学习。

12. 简述支持向量机(SVM)的基本原理。

答案:支持向量机的基本原理是找到一个最优的超平面,使得两类数据的间隔最大化。

具体来说,SVM通过求解一个凸二次规划问题来确定最优超平面,使得训练数据中的正类和负类数据点尽可能远离这个超平面。

模式识别期末试题

模式识别期末试题

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

模式识别试题及总结.doc

模式识别试题及总结.doc

《模式识别》试卷( A)一、填空与选择填空(本题答案写在此试卷上,30 分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1 二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2)(3)(4)6、Fisher 线性判别函数的求解过程是将N 维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A 01, A0A1 ,A1A0 , B BA , B0}, A)(2)({A}, {0, 1}, {A 0, A0A}, A)(3)({S}, {a, b}, {S 00S, S11S, S00, S11},S)(4)({A}, {0, 1}, {A 01, A0A1, A1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有(1、 2);马式距离具有(1、2、3、 4)。

(1)平移不变性( 2)旋转不变性( 3)尺度缩放不变性( 4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

模式识别期末试题

模式识别期末试题

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有(1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

模式识别试题及总结

模式识别试题及总结

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有(1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

模式识别期末试题分解

模式识别期末试题分解

和模式分类 。

3、聚类分析算法属于 (1);判别域代数界面方程法属于(1)无监督分类 (2)有监督分类 (3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用j-i 1-13 = 2 (函-两y (函-m);-i(3)。

9、 影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有(1、2 );马式距离具有(1、2、3、4)。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、 线性判别函数的正负和数值大小的几何意义是( 正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

)。

12、 感知器算法 丄。

(1)只适用于线性可分的情况;(2 )线性可分、不可分都适用。

13、 积累势函数法较之于 H-K 算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况) );、填空与选择填空(本题答案写在此试卷上, 30分)1、模式识别系统的基本构成单元包括: 模式米集 特征提取与选择(1) ({ A ,B},{0,, A >01, A0 A1 , A-. 1 A0 , B-. BA , B )0}, A)(2) ({ A}, {0, 1}, {A >0, A —; 0 A}, A)(3) ({ S}, { a, b}, { S — 00 S, S11 S, S -00,S > 11},S)(4) ({A}, {0, 1}, {A >01, A > 0A1, A >1 A0}, A)8 、下列四元组中满足文法定义的有(1)( 2)( 4)。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、 F 列函数可以作为聚类分析中的准则函数的有(1)( 3)( 4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

)。

12、感知器算法1。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

13、积累势函数法较之于H-K算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况));位势函数K(x,x k)与积累位势函数K(x)的关系为(∑∈=XxxxKxK~kkk),()(α)。

14、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于(某一种判决错误较另一种判决错误更为重要)情况;最小最大判决准则主要用于(先验概率未知的)情况。

15、“特征个数越多越有利于分类”这种说法正确吗?(错误)。

特征选择的主要目的是(从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数)。

一般在(可分性判据对特征个数具有单调性)和( C n m>>n )的条件下,可以使用分支定界法以减少计算量。

16、散度Jij越大,说明ωi类模式与ωj类模式的分布(差别越大);当ωi类模式与ωj类模式的分布相同时,Jij=(0)。

17、已知有限状态自动机Af=(∑,Q,δ,q0,F),∑={0,1};Q={q0,q1};δ:δ(q0,0)= q1,δ(q0,1)= q1,δ(q1,0)=q0,δ(q1,1)=q0;q0=q0;F={q0}。

现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用Af对上述字符串进行分类的结果为(ω1:{a,d};ω2:{b,c} )。

18、影响聚类算法结果的主要因素有(②③④)。

①已知类别的样本质量;②分类准则;③特征选取;④模式相似性测度。

19、模式识别中,马式距离较之于欧式距离的优点是(③④)。

①平移不变性;②旋转不变性;③尺度不变性;④考虑了模式的分布。

20、基于二次准则函数的H-K算法较之于感知器算法的优点是(①③)。

①可以判别问题是否线性可分;②其解完全适用于非线性可分的情况;③其解的适应性更好;④计算量小。

21、影响基本C均值算法的主要因素有(④①②)。

①样本输入顺序;②模式相似性测度;③聚类准则;④初始类心的选取。

22、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(②④)。

①先验概率;②后验概率;③类概率密度;④类概率密度与先验概率的乘积。

23、在统计模式分类问题中,当先验概率未知时,可以使用(②④)。

①最小损失准则;②最小最大损失准则;③最小误判概率准则;④N-P判决。

24、在(①③)情况下,用分支定界法做特征选择计算量相对较少。

①C n d>>n,(n为原特征个数,d为要选出的特征个数);②样本较多;③选用的可分性判据J对特征数目单调不减;④选用的可分性判据J具有可加性。

25、散度J D是根据(③)构造的可分性判据。

①先验概率;②后验概率;③类概率密度;④信息熵;⑤几何距离。

26、似然函数的概型已知且为单峰,则可用(①②③④⑤)估计该似然函数。

①矩估计;②最大似然估计;③Bayes估计;④Bayes学习;⑤Parzen窗法。

27、Kn近邻元法较之Parzen窗法的优点是(②)。

①所需样本数较少;②稳定性较好;③分辨率较高;④连续性较好。

28、从分类的角度讲,用DKLT做特征提取主要利用了DKLT的性质:(①③)。

①变换产生的新分量正交或不相关;②以部分新的分量表示原矢量均方误差最小;③使变换后的矢量能量更趋集中;29、一般,剪辑k-NN最近邻方法在(①)的情况下效果较好。

①样本数较大;②样本数较小;③样本呈团状分布;④样本呈链状分布。

30、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(②③)。

①已知类别样本质量;②分类准则;③特征选取;④量纲。

二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。

于是是平面的单位法矢量,上式可写成设是平面中的任一点,是特征空间中任一点,点到平面的距离为差矢量在上的投影的绝对值,即(1-1)上式中利用了在平面中,故满足方程式(1-1)的分子为判别函数绝对值,上式表明,的值正比于到超平面的距离,一个特征矢量代入判别函数后所得值的绝对值越大表明该特征点距判别界面越远。

(2)(4分)的正(负)反映在超平面的正(负)侧两矢量和的数积为(2分)显然,当和夹角小于时,即在指向的那个半空间中,>0;反之,当和夹角大于时,即在背向的那个半空间中,<0。

由于,故和同号。

所以,当在指向的半空间中时,;当在背向的半空间中,。

判别函数值的正负表示出特征点位于哪个半空间中,或者换句话说,表示特征点位于界面的哪一侧。

五、(12分,每问4分)在目标识别中,假定有农田和装甲车两种类型,类型ω1和类型ω2分别代表农田和装甲车,它们的先验概率分别为0.8和0.2,损失函数如表1所示。

现在做了三次试验,获得三个样本的类概率密度如下::0.3,0.1,0.6:0.7,0.8,0.3(1)试用贝叶斯最小误判概率准则判决三个样本各属于哪一个类型;(2)假定只考虑前两种判决,试用贝叶斯最小风险准则判决三个样本各属于哪一类;(3)把拒绝判决考虑在内,重新考核三次试验的结果。

表1类型损失判决1ω1α 1 45 11 1解:由题可知:,,,,(1)(4分)根据贝叶斯最小误判概率准则知:,则可以任判;,则判为;,则判为;(2)(4分)由题可知:则,判为;,判为;,判为;(3)(4分)对于两类问题,对于样本,假设已知,有则对于第一个样本,,则拒判;,则拒判;,拒判。

1.监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

2.动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

3. 线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。

该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。

感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。

其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。

支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。

二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis 距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

相关文档
最新文档