第10课一元二次方程0
一元二次方程教案
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
四.小结:配方法的步骤:强化配方的步骤
五.课堂检测
(1)5X2-9x-18=0
(2)5X2=4-2x
教学后记
(包括达标情况、教学得失、改进措施等)
教学设计备课时间_________月________日
课题
用公式法解一元二次方程(一)
课时
1
课型
新授课
教学目标
1.用配方法推导出解一元二次方程的公式
2.能用公式法解一元二次方程
五.课堂达标
X2+2x—3=0
教学后记
(包括达标情况、教学得失、改进措施等)
教学设计备课时间_________月________日
课题
一元二次方程的解法(三)
课时
1
课型
新授课
教学目标
1、熟练掌握用配方法解一元二次方程的步骤
2、会解二次项系数不是1的一元二次方程
重点难点分析及
突破措施
教学重点:会用配方法解二次项系数不是1的一元二次方程
然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?
二.新授
让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.
ax2+bx+c=0(a≠0)注:根据学生学习程度的不同,可
ax2+bx=-c以采用学生独立尝试配方,合
一元二次方程课件ppt
y=ax²+bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?
① y x2
② y x2 1 x
③ y xx2 ④ yx2 x1
⑤ y1x2 2x4
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
只含有一个未知数,并且未知 数的最高次数是2的整式方程叫做一元二 次方程。
一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
特征:方程的左边按x的降幂排列, 右边=0
• 练习:下列方程中哪些是一元二次方程?试 说明理由。
3x25x3 不是
x2 4
是
x 2 x2 x 1
不是
根公式,得出方程的根 x b b2 4ac 2a
注意:
• ①当时 b24ac0,方程无解;
• ②公式法是解一元二次方程的万能方法;
• ③利用
的值,可以不解方程
就能判断b方2 程4a根c 的情况;
一元二次方程的根的判别式
• 一元二次方程 ax2bxc0(a0)的根的判
别式△= b2 4ac • 当△>0时,方程有两个不相等的实数根; • 当△=0时,方程有两个相等的实数根, • 当△<0时,方程没有实数根.
3 1 2 不是等式 x
2、我们学过哪些方程? • 一元一次方程、二元一次方程、分式方程。
3、什么叫一元一次方程?方程的“元”和 “次”是什么意思?
一元
一次
只含有一个未知数,并且未知数的次数是1次 的整式方程叫一元一次方程。
一元二次方程(说课稿)
一元二次方程的定义中有哪些特点?
①方程两边都是整式 一元二次方程 ②只含有一个未知数 ③未知数的最高次数是2次
2、自主探究,学习新知
得出一般形式后,再引导学生从类比中大胆猜想一 元二次方程一般形式中a≠0这一结论, b、c能否为 2 0?让学生充分交流后归纳小结:在 ax bx c 0 中,当a≠0时是一元二次方程,当a=o,b≠0时就 是一元一次方程。这样以疑激思,以教师的“不作 为”促使学生的“有所为”,培养了学生的直觉思 维和逻辑思维能力,同时也让学生体会了一元二次 方程和一元一次方程之间的转化。 最后引导学生由一元一次方程的项与系数的概念类 比得出一元二次方程的项与系数的概念。强调项与 系数都必须包括符号。
(1)5 x 10; (3) x 160;
2
(2)9 x 4 x 6 1 2 (4) y 0 y
2
(5)3 x y 6; (7)ax 4 x 0
2
(6)4 x 6 x 3x 4 x
2
2
一元二次方程的三个特点: 是整式方程;只含一个未 知数;未知数的最高次数 是2!
教学过程设计
4、 独立思考,巩固新知 为了使学生进一步明确一元二次方程的概念, 我设计了3道练习题,第一题是判别一元二次方程, 以抢答的形式完成,在巩固知识的同时,培养学生 的反应能力;第二道题是例题的延伸,以小组竞赛 活动的方式对本课知识进行巩固。第三题是由学生 自己写出几个一元二次方程和其他方程,由同桌找 出其中的一元二次方程,并指出一元二次方程中的 各项系数和常数项。这样不仅调动了学生学习的积 极性、主动性,增强了学生积极参与数学活动的意 识和集体荣誉感,而且还能培养学生的观察能力和 判断能力。同时也提供了生生互动的平台,形成民 主和谐、平等合作、积极向上的课堂氛围。
一元二次方程概念
把实际问题转化为一元二次方程模型.
教学步骤
师生活动
设计意图
回顾
课件展示:教师引导学生完成下列题目,复习一元一次方程的相关知识.
1.回顾一元一次方程的概念;一元一次方程中的“一元”是指?“一次”是指?
2.一元一次方程的一般形式是ax+b=0(a,b是常数,且a≠0).
3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=-3.
A.ax2+bx+c=0B.(m-3)x2-2x=0
C.(a-1)xa2-1-x+2=0D.(m2+1)x2+2x-5=0
2.已知b(b≠0)为方程x2+ax-b=0的一个根,则下列正确的是(A)
A.a+b=1B.a-b=1
C.a+b=-1D.a-b=-1
通过练习,可巩固和加深对新知的理解,培养学生严谨的数学思维以及灵活应用所学知识解决数学问题的能力.
(2)是一元二次方程?
解:(1)当k-5=0且k+2≠0时,方程为一元一次方程,即k=5.
所以当k=5时,方程(k-5)x2+(k+2)x+5=0为一元一次方程.
(2)当k-5≠0时,方程为一元二次方程,即k≠5.
所以当k≠5时,方程(k-5)x2+(k+2)x+5=0为一元二次方程.
【变式训练】
1.下列方程中一定是一元二次方程的是(D)
(试一试)指出下列各方程的二次项、一次项和常数项.
①3x2+2x-1=0;②2x2=3;③ =0.
问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?
师生共同小结(板书):
一元二次方程的根:
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.
《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)
知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1
x
=
.
4
16
3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )
一元二次方程的解法 PPT课件 10(共6份) 华东师大版
第1课时 用直接开平方法解一元二次方程
学习目标
• 1.体会解一元二次方程降次的转化思想. • 2.会利用直接开平方法解形如x2=p或 • (mx+n)2=p(p≥0)的一元二次方程.
创设情景 明确目标
一桶某种油漆可刷的面积为1500dm2,李林用这 桶油漆恰好刷完10个同样的正方体现状的盒子的全 部外表面,你能算出盒子的棱长吗?
•
46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。
•
47、小事成就大事,细节成就完美。
•
48、凡真心尝试助人者,没有不帮到自己的。
•
49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。
•
50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。
•
51、对于最有能力的领航人风浪总是格外的汹涌。
•
32、肯承认错误则错已改了一半。
•
33、快乐不是因为拥有的多而是计较的少。
•
34、好方法事半功倍,好习惯受益终身。
•
35、生命可以不轰轰烈烈,但应掷地有声。
•
36、每临大事,心必静心,静则神明,豁然冰释。
•
37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。
•
38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
② 方程(2)与方程(1)有什么不同?怎样将方程 (2)转化为方程(1)的形式?
③方程(3)左右两边有什么特点?怎样达到降次的 目的?
小组讨论2
对于可化为(mx+n)2=p(p≥0)或(ax+b)2=(cx+d)2 的方程,可以用直接开平方发求解吗?
一元二次方程课件ppt
(5)如果右边为非负数,直接开平方法 求出方程的解,如果右边是负数,一元二 次方程无解。
心动 不如行动
例1: 用配方法解方程
x26x70
解: 移项得:x26x7
配方得:x26x32732
即(x3)2 16
开平方得: x34
∴原方程的解为:x11, x27
范例研讨运用新知
x12;x21.
学习是件很愉快的事
淘金者
❖ 你能用分解因式法解下列方程吗?
1 .x2-4=0; 解:1.(x+2)(x-2)=0,
2.(x+1)2-25=0. 2.[(x+1)+5][(x+1)-5]=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2 xb xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
2a
2a
b b 2a 2a
b0
❖用“因式分
解法”解一元 二次方程
回顾与复习 1
1.我们已经学过了几种解一元二次方程
1.x2 7;
2.3y2y1.4
解:1.一元二次方程解: 2.一元二次方程
x2 70
3y2 y 14 0
的两个根 x1 是7,x2 7. x27(x7)x (7).
的3两y2个y根1 是y1 4 3 (2y, y22)y (73 . 7).
3
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
初中数学《一元二次方程》教育教学课件
方程解法 之 基本方法 • 开平方法
【之一 开平方法】
(1)形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程可采用直接开平方法解一元二 次方程 。
(2)如果方程化成x2=p(p≥0)的形式,那么可得x=± p 。 (3)如果方程能化成(mx+n)2=p(p≥0)的形式,那么mx+n=± p ,进而得出方程的根。
(x-2)(x+2)=0
即 x+2=0或x-2=0 ∴ x1=-2,x2= 2
方程解法 之 基本方法 • 因式分解法
十字相乘法
十字相乘法是因式分解法解 一元二次方程中一个重要的部分。 一元二次方程左边为二次三项式, 形如x²+(p+q)x+pq=0,可化为 (x+p)(x+q)=0,从而得出:
x1=-p;x2=-q。
方程解法 之 基本方法 • 配方法
配方法的口诀
二次系数化为一, 分开常数未知数; 一次系数一半方, 两边加上最相当。
【例题】
1、解方程 x²+2x-3=0 解:把常数项移项得:x²+2x=3 等式两边同时加1(构成完全平方式)得:
x²+2x+1=4 配方得:(x+1)²=4 ∴ x1=-3 , x2=1
根据题意,得 [100(1+x)-50](1+ x)=63. 整理,得 50x2+125x-13=0. 解得x1=0.1 ,x2=-2.6 . ∵x2=-2.6 不合题意, ∴x= 10%. 答:第一次存款时的年利率为10%。
解应用题 之 精选例题
概念解析 之 四种形式
【一般形式】
ax²+bx+c=0(a≠0)
《第10课时 一元二次方程的根与系数的关系》教案
第10课时一元二次方程的根与系数的关系预设目标1、熟练掌握一元二次方程根与系数的关系;2、灵活运用一元二次方程根与系数关系解决实际问题.3、提高学生综合运用根底知识分析解决较复杂问题的能力.教学重难点重点:一元二次方程根与系数关系的应用.难点:某些代数式的变形.教法学法合作,探究,讨论教学过程一、自主学习感受新知【问题1】假设一元二次方程x2+10x+16=0的两根是x1、x2,那么x1 + x2 =____;x1• x2 =_______.【问题2】关于x的方程10422=-+kxx的一个根是-2,那么方程的另一根是;k=。
【问题3】甲乙同时解方程2x+px+q=0,甲抄错了一次项系数,得两根为2﹑7,乙抄错了常数项,得两根为3﹑-10。
那么p= ,q= 。
【问题4】以-3和5为根的一元二次方程是。
二、自主交流探究新知【例1】1x、2x是方程05322=--xx的两个根,不解方程,求以下代数式的值:〔1〕2221xx+〔2〕21xx-〔3〕2222133xxx-+【例2】假设一元二次方程2x+ax+2=0的两根满足:21x+22x=12,求a的值。
【例3】关于x的方程221(1)104x k x k-+++=,且方程两实根的积为5,求k的值.【分析】这是一道确定待定系数m的一元二次方程,•又讨论方程解的情况的优秀考题,需要考生具备分类讨论的思维能力.三、自主演练稳固新知1.方程〔2x-1〕〔3x+1〕=x2+2化为一般形式为______,其中a=____,b=____,c=____.2.关于x的一元二次方程mx2+nx+m2+3m=0有一个根为零,那么m的值等于_____.3.关于x的一元二次方程x2+mx+n=0的两个根为x1=1,x2=-2,那么x2+mx+n分解因式的结果是______.4. 关于x的一元二次方程2x2-3x-a2+1=0的一个根为2,那么a的值是〔〕A.1 B.3 C.-3 D.±35. 假设关于x的一元二次方程〔m-1〕x2+5x+m2-3m+2=0的常数项为0,那么m的值等于〔〕A.1 B.2 C.1或2 D.06、教材P48习题B组4、5题板书设计一元二次方程的根与系数的关系根与系数的关系式例1 例2例3 例4学生练习作业教材第48页:习题A组第3题教学反思一次函数复习〔二〕课题第四章一次函数复习〔二〕本课〔章节〕需13课时,本节课为第12—13课时,为本学期总第46—47课时教学目标知识与技能:1、使学生理解一次函数的意义,掌握根据条件确定一次函数表达式的方法,会画一次函数图像。
一元二次方程的解法十字相乘法
对于多项式 x2 +(a+b)x+ab
x
a
步骤:
1.竖分二次项与常数项;
x
b
2.交叉相乘,积相加;
3.检验确定,横写因式。
x2 ax+bx=(a+b)x ab
即:x 2+(a+b)x+ab=(x+a)(x+b)
十字相乘法: 借助十字交叉线分解因式的方法
对于二次三项式的分解因式, 借用一个十字叉帮助我们分解因式, 这种方法叫做十字相乘法。
=(x-2)(x+5)
当常数项是负数 时,分解的两个 数异号,其中绝 对值较大数符号 与一次项系数符 号相一致。
因式分解时,不但要 注意首尾分解,而且 需十分注意一次项系 数,才能保证因式分 解的正确性。
练习 因式分解:
(1) x2 + 5x+ 6
(2)
课后练习:分解因式 (x-y)2+(x-y)-6
总结:
二次多项式x2+px+q在分解因式时: 如果常数项q是正数,那么把它分解成两个 同号因数,它们的符号与一次项系数p的符 号相同;
如果常数项q是负数,那么把它分解成两个 异号因数,其中绝对值较大的因数与一次 项系数p的符号相同; 对于分解的两个因数,还要看它们的和是 不是等于一次项系数。
总结:
2.
3.
4.
1.2 一元二次方程的解法
——十字相乘法
复习回顾
一、计算:
(1) (x+1)(x+ 2)
(2)
(3)
(4) 总结:
复习回顾
反过来: (1)
(2)
(3)
(4) 所以:
= (x+1)(x+2)
一元二次方程的相关教案【优秀3篇】
一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。
因此一元二次方程便成为了方程中研究的重要内容。
一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。
因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。
再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。
初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。
我在这些方程中安排了两个无理根方程。
第10课时 一元二次方程和分式方程的应用-2022年广东中考数学总复习课件
1.随着我国新能源汽车的生产技术不断提升,市场 上某款新能源汽车的价格由今年 3 月份的 270 000 元/ 辆下降到 5 月份的 243 000 元/辆.若价格继续下降,且
月平均降价的百分率保持不变,则预测到今年 7 月份
该款新能源汽车的价格将会(参考数据: 0.9 ≈0.95)
() A.低于 22 万元/辆 C.超过 22 万元/辆
经检验,x=0.18 为方程的解,且符合题意.
答:电动车每行驶 1 千米所需电费为 0.18 元.
14.(2021·上海)现在 5G 手机非常流行,某公司第 一季度总共生产 80 万部 5G 手机,三个月生产情况如 图.
(1)求 3 月份生产了多少部手机? (2)5G 手机速度很快,比 4G 下载速 度每秒多 95 MB,下载一部 1 000 MB 的 电影,5G 比 4G 要快 190 秒,求 5G 手机 的下载速度.
答:5G 手机的下载速度是每秒 100 MB.
15.甲、乙两个工程队均参与某筑路工程,先由甲 队筑路 60 km,再由乙队完成剩下的筑路工程,已知乙
队筑路总长是甲队筑路总长的 4 倍,甲队比乙队多筑 3
路 20 天. (1)求乙队筑路的总长;
(2)若甲、乙两队平均每天筑路长度之比为 5∶8,
求乙队平均每天筑路多少千米.
解:设计划平均每天修建步行道的长度为 x 米,
则采用新的施工方式后平均每天修建步行道的长度为
1.5x 米,
依题意,得1
200 x
-112.50x0
=5,
解得 x=80,
经检验,x=80 是原方程的解,且符合题意.
答:计划平均每天修建步行道的长度为 80 米.
13.小马驾车从 A 地到 B 地,驾驶原来的燃油汽车
数学九年级全册课件第21章 第10课时 实际问题与一元二次方程(2)(传播、互赠或握手问题)
返回目录
第二十一章
一元二次方程
有一个人收到短信后,再用手机转发短消息,每人只转发
一次,经过两轮转发后共有 133 人收到短消息,问每轮转发中平
均一个人转发给( C )个人.
A.9
B.10
C.11
D.12
返回目录
第二十一章
一元二次方程
(1)经过凸 n 边形(n>3)其中一个顶点的对角线有 nn--33 条;
33
一元二次方程
(3)若有 x 个同学,毕业时互赠礼物留念,则每位同学送出
(x(x--11)) 份礼物,共需礼物有 xx((xx--11)) 份;
(4)现有 x 个同学参加毕业 10 周年聚会,他们互相握手,则每
一位同学与 ((xx--1)1) 个同学握手,全部同学握手的总次数为
返回目录
第二十一章
一元二次方程
(2)若把 5 个人换成 x 人,其他条件不变,则第 2 天结束后共
有 ((22xx22++44xx++22)) 人患了流感.
返回目录
第二十一章
一元二次方程
(1)现有 3 个同学,毕业时互赠礼物留念,则每位同学送出
2 2 份礼物,共需礼物有 33××22 份;
(2)若有 4 个同学,毕业时互赠礼物留念,则每位同学送出
返回目录
第二十一章
一元二次方程
(2)一个凸边形共有 20 条对角线,它是几边形;
解:根据n(n2-3)=20, 解得:n=8 或 n=-5(舍去), ∴它是八边形.
返回目录
第二十一章
一元二次方程
(3)是否存在有 18 条对角线的凸多边形?如果存在,它是几边
形?如果不存在,说明得出结论的道理.
上册实际问题与一元二次方程人教版九年级数学全一册课件
C.21x(x+1)=110
D.21x(x-1)=110
上册实际问题与一元二次方程人教版 九年级 数学全 一册课 件
上册实际问题与一元二次方程人教版 九年级 数学全 一册课 件
5.【例3】在一次酒会上,每两人都只碰一次杯,如果一共碰 杯105次,则参加酒会的人数为 15 . 小结:问题中若两个人进行了1次活动(单循环),则x人进行 了12x(x-1)次活动.
答:P,Q两点从出发开始到
8 5
秒时,点P和点Q的距离第一次
是10 cm.
上册实际问题与一元二次方程人教版 九年级 数学全 一册课 件
上册实际问题与一元二次方程人教版 九年级 数学全 一册课 件
上册实际问题与一元二次方程人教版 九年级 数学全 一册课 件
(2)过点P作PE⊥CD交CD于E,则QE=DQ-AP=16-5t,在
Rt△PQE中,PE2+QE2=PQ2,
可得(16-5t)2+62=102,
解得t1=254(不合题意,舍去),t2=85.
2.某公司销售一种进价为20元/个的水杯,如果售价为25元/ 个,每天可卖出250个,则 (1)卖1个水杯的利润为 5 元; (2)每天的总利润为 1 250元; (3)每个水杯售价每涨价1元,每天要少卖出10个,若每个杯 子售价涨了3元后,每个水杯的利润是 8 元,每天的销售量 为 220 个,每天的总利润为 1 760 元.
第二十一章 一元二次 方程
第10课时 实际问题与一元二 次方程(3)
学习目标
1.会根据具体问题(数字和利润等问题)中的数量关系列出一元 二次方程并求解. 2.进一步巩固一元二次方程在实际问题中的运用:建立数 学模型、找相等关系、列方程.
知识要点
知识点一:数字问题 (1)两个连续的整数:x,x+1; (2)两个连续的奇(偶)数:x,x+2; (2)两位数:十位数字为a,个位数字为b,则这个两位数为 10a+b.
北师大版九年级数学上册《一元二次方程——用配方法求解一元二次方程》教学PPT课件(2篇)
(二)预习反馈 1. 用配方法解一元二次方程 2x2-6x+1=0 时,此方程配方后可化 为( A )
A. x-322=74
B. 2x-322=54
C. x-322=54
D. 2x-322=47
2. 填空:
(1)3x2+12x+ 1122 =3(x+ 22 )2; 25
(2)12x2-5x+ 2 =12(x- 55 )2.
5. 用配方法解下列方程: (2)0.8x2+x=0.3
解:方程化为 x2+54x=38, 配方,得 x2+54x+582=38+582, 即x+852=4694,开方,得 x+58=±78, 解得 x1=-23,x2=41.
5. 用配方法解下列方程: (3)(x+1)(x-3)=2x+5
解:方程化为 x2-4x=8, 配方,得 x2-4x+4=8+4,即(x-2)2=12, 开方,得 x-2=±2 3, 解得 x1=2+2 3,x2=2-2 3.
4. 解下列方程: (3)2(x+1)2=18 解:方程变形,得(x+1)2=9, 开平方,得 x+1=±3, 解得 x1=2,x2=-4.
4. 解下列方程: (4)x2-2x-2=0 解:方程变形,得 x2-2x=2, 配方,得 x2-2x+1=3,即(x-1)2=3, 开方,得 x-1=± 3, 解得 x1=1+ 3,x2=1- 3.
3. 完成下面的解题过程:
解方程:9x2+6x+1=4.
解:移项,得 9x2+6x= 3 , 1
二次项系数化为 1,得 x2+23x= 3 ,
4 两边都加上一次项系数一半的平方,得 x2+23x+19= 9 ,即
4 x+312= 9 ,
开平方,得1x+13= ±±23 , 解得 x1= 3 ,x2= --11 .
第10课一元二次方程的根的判别式及根与系数的关系(初三复习课教案)
第10课一元二次方程的根的判别式及根与系数的关系(教学案)启东市长江中学九年级数学组执教者:黄美娟复习目标:1•掌握用判别式判断一元二次方程的根的情况和用判别式确定方程中字母 系数的取值范围,会灵活运用判别式解决有关问题。
2•理解一元二次方程的根与系数的关系式,会用它解决有关简单问题。
复习重点:掌握根的判别式及根与系数关系.灵活运用配方法、因式分解法等数 学方法和降次、化归、方程、分类讨论的数学思想解决问题。
复习难点:根的判别式和根与系数关系的综合题;不遗漏、不重复地列出所解问 题应具备的条件,特别是不忽略隐含条件并注意对待定系数的检验。
—、预习交流复习书本P34-37, P40-41内容,完成【知识整理】和【基础扫描】 (一)、【知识整理】(二)、【基础扫描】1. (2011*福州)一元二次方程x (x-2) =0根的情况是( )A. 有两个不相等的实数根B.有两个相等的实数根C •只有一个实数根 D.没有实数根 2. (2011・威海)关于x 的一元二次方程x?+ (m-2) x+m+l=0有两个相等的实数根,则m 的值是()A.OB.8 CA±y{2 D.0 或 8 3・(2010-荆门市)若关于x 的方程a X 2+2X +1= 0有两个不等实数根,则实数a的取值范围 ________—元二次方程 ax - +bx+c=0(aH0)J4.(2010-眉山)已知方程x2 -5x+2=O的两个解分别为x |、x 2,Wljx1 + x2-x1・x2的值为()A.-7B.-3C.7D.35.(2011-常州)已知关于x的方程x2+mx-6=0的一个根为2,则m= _________ ,另一个根是—6•已知£ , x?是一元二次方程X2-2X-1=0的两根,则x「+X2:= ________ , Xj +2 X2= __7.(2011-南充市)已知关于x的一元二次方程x:+2x+k+1= 0的实数解是X]和 X?.(1)求k的取值范围;(2)如果X1+X2-X1X2 且k为整数,求k的值.8.(2010*中山)已知关于x的一元二次方程x2-2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为xi, X2,且xi+3X2=3,求m的值.二、展示交流 1例1. (1) m为任意实数时,关于x的方程-x2-(m + \)x+m2 + 2m + 2 = 0 的根的情况是___________ 2(2) a,b,c分别是三角形的三边,则方程(a+b)x2+2cx + (a + b) = 0的根的情况是___________例2:已知关于x的一元二次方程(m-l)x2+x+l=0有实数根,则m的取值范围_______ °变式1:已知关于x的方程(m・l)x2+x+l=0有两个不相等实数根,则m的取值范围________变式2:已知关于x的方程(m-1) x2+x+l=0有两个实数根,则m的取值范围例3 (2010>芜湖)已知A), x2是方程X2+3X +\= 0的两个实数根,求下列式子的值(l)(x ] - 2)(x 2 - 2) (2)x「+ Sx2 + 20例4已知关于x的一元二次方程x?+ (2m-1) x+m2 =0有两个实数根X】和x?・(1)求实数m的取值范围;(2)当(Xi + x?) • (Xj- x2) =0 时,求 m 的值.三、课堂小结1 •本课我们复习了哪些知识点?2 •解题时注意哪些问题?四、当堂检测1.(2011-潍坊)关于x的方程x2+2kx+k-l=O的根的情况描述正确的是()A、k为任何实数,方程都没有实数根B、k为任何实数,方程都有两个不相等的实数抿C、k为任何实数,方程都有两个相等的实数根D、根据k的取值不同,方程根的悄况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种2.(2010*自贡)关于x的一元二次方程-X,+ (2m+l) x+l-m2=0无实数根,则m的取值范围是_________3.(2011-德州)若” X,是方程x2+x-l=0的两个根,贝9立+生二____________ ,Xi X.4•已知方程X2-2X+C=0的一个根是3,则方程的另一个根__________ c的值5•已知x,, X2是关于X的一元二次方程x2-6x+k=0的两个实数根,且 x「x22- x r x2=115.求 k 的值。