基本初等函数的导数公式的推导过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数的导数公式推导过程
一、幂函数()f x x α=(α∈Q *)的导数公式推导过程
命题
若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程
()f x '
()()()()()()000112220011222011222011220
lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x
x x x x x x x x x x x x x x x
x x x x x
x x x x x x x x x αα
αααααα
αααααααααααααααααα
ααααααα∆→∆→--∆→--∆→--∆→--∆→+∆-=∆+∆-=∆+∆+∆++∆-=∆-+∆+∆++∆=∆∆+∆++∆=∆=+∆++()11
11
C x x
x ααααααα---∆== 所以原命题得证.
二、正弦函数()sin f x x =的导数公式推导过程 命题
若()sin f x x =,则()cos f x x '=.
推导过程
()f x '
()()
()()()()0000020lim
sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x
x x x x
x x x x x x
x x x x x x
x x x x x
x x x x x ∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆∆+∆-=∆∆+∆-=∆∆+∆-=∆∆∆⎡∆⎤⎛⎫⎛⎫⋅+⋅-- ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦=2
00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x
x x x x x x
x x x x x x
x x x x
x x x x ∆→∆→∆→∆→⎥∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆⎛⎫+ ⎪⎝⎭=∆∆⎡⎤⎢⎥∆⎛⎫=+⋅⎢⎥ ⎪∆⎝⎭⎢⎥⎣⎦ 当0x ∆→时,sin 22
x x ∆∆=,所以此时sin
212x
x ∆=∆. 所以()0lim cos cos 2x x f x x x ∆→∆⎛⎫'=+= ⎪⎝⎭
,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程
命题
若()cos f x x =,则()sin f x x '=-.
推导过程
()f x '
()()()()()()0000020lim cos cos lim cos cos sin sin cos lim cos cos cos sin sin lim cos cos 1sin sin lim cos 12sin 1sin 2sin cos 222lim x x x x x x f x x f x x
x x x x
x x x x x x
x x x x x x
x x x x x
x x x x x ∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆∆-∆-=∆∆--∆=∆∆--∆=∆⎡∆⎤∆∆⎛⎫⎛⎫⋅---⋅ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦=()
2000002sin cos 2sin sin cos 222lim 2sin sin cos cos sin 222lim 2sin sin 22lim sin 2lim sin 22lim sin 2sin si x x x x x x
x x x x x x
x x x x x x
x x x x
x x x x x x x ∆→∆→∆→∆→∆→⎪∆∆∆∆⎛⎫-⋅ ⎪⎝⎭=∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆⎛⎫- ⎪⎝⎭=∆∆⎡⎤⎢⎥∆⎛⎫=-⋅⎢⎥ ⎪∆⎝⎭⎢⎥⎣⎦
∆⎛⎫=- ⎪⎝⎭
=-=-n x
所以原命题得证.
四、指数函数()x f x a =(a >0,且1a ≠)的导数公式推导过程
命题
若()x f x a =(a >0,且1a ≠),则()ln x f x a a '=. 推导过程
()f x '
()()
0000lim
lim lim 1lim x x x x
x x x x
x x x x f x x f x x
a a x a a a x
a a x ∆→+∆∆→∆∆→∆∆→+∆-=∆-=∆⋅-=∆⎛⎫-=⋅ ⎪∆⎝⎭ 令1x t a ∆=-,则1x a t ∆=+,即()log 1a x t ∆=+.且当0x ∆→时,1x a ∆→,10x a ∆-→,即0t →.所以原极限可以表示为: ()f x '
()()()0010lim log 11lim 1log 11lim log 1x t a x t a x t t a t a t a t t a t →→→⎡⎤=⋅⎢⎥+⎣⎦
⎡⎤⎢⎥=⋅⎢⎥⎢⎥+⎣⎦
⎡⎤⎢⎥=⋅⎢⎥+⎢⎥⎣⎦
又因为()10lim 1e t
t t →+=,所以 ()f x '
1log e ln lne
ln x a x x a a a a a
=⋅
=⋅= 所以原命题得证.
五、对数函数()log a f x x =(a >0,且1a ≠,x >0)
的导数公式推导过程
命题
若()log a f x x =(a >0,且1a ≠,x >0),则()1ln f x x a
'=.