(完整版)统计与概率复习题及答案(新)
概率统计总复习(含答案)

概率统计总复习一填空选择题考点1 掌握事件的关系与运算,会写样本空间1.试验E 为抛一枚硬币,观察正面H ,反面T 出现的情况,则E 的样本空间S = .2.设,,A B C 为随机事件,则,,A B C 中至少有一个发生可表示为 ,,A B C 同时发生可表示为考点2古典概型的计算;1.同时抛掷3枚均匀的硬币,则恰好有2枚正面朝上的概率是2.袋中有5个球,其中3个新球,2个旧球,每次取一个,无放回地取两次,则两次取到的均为新球的概率为 .3.一袋中装有6个球,其中3个白球,3个红球,依次从中取出2个球(不放回),则两次取到的均为白球的概率为 15。
4.从1,2,3,4,5五个数中任意取两个数,则这两个数中含偶数的概率是 考点3 概率的计算A 概率的性质和事件的独立性综合计算1.已知(),()0.2,()0.96P A a P B P A B ==⋃=,若事件AB 相互独立,则 a =1/20 2 设()0.4,()0.3P A P B ==,,A B 独立,则()P AB = ()____P A B -=. 3.设事件A 与B 相互独立,已知()0.5,()0.8P A P A B == , ()P AB = . B 条件概率相关计算1.设事件A 与B 独立,且()0.4P A =,(|)0.5P B A =,则()P AB = 2.设()0.3P AB =,(|)0.4P B A =,则()P A = .3.已知()0.5,()0.6,()0.4P A P B P B A ===,那么()P AB = __0.2_____,()P AB =_0.4____, ()P A B ⋃=_______0.7_____.C 正态分布概率相关计算1.设随机变量~(1,1)X N ,则{02}P X <<= .((1)0.8413Φ=)2.已知2~(1,)X N σ,{12}0.3P X <<=,则{0}P X <=____0.2_____.3 设随机变量(1,4)X N ,则(13)P X -<<= ;若()0.5,P X a >= 则a = .0.6826,14.随机变量),2(~2σN X ,(04)0.3,<<=P X 则(0)<=P X 。
人教版六年级下册小学数学小升初复习统计与概率专项复习卷(附参考答案)

统计与概率专项复习卷班级:姓名:一、冷静思考,正确填写。
1.2024年6月以来,我国大部分地区在暖高压带控制下,高温天气增多,为了解某地区7月上旬气温变化情况,宜采用( )统计图;2024年7月15日国家统计局发布我国上半年国家经济运行情况报告,要体现第一、第二、第三产业产值情况,宜采用( )统计图;要体现货物进出口占比情况,宜采用( )统计图。
2.如图是实验小学六年级同学最喜欢的体育活动人数占比情况。
(1)从图中我们可以得出最喜欢跳绳的人数占总人数的( )%。
(2)如果最喜欢打篮球的有40人,那么最喜欢踢足球的有( )人。
(3)如果最喜欢跳绳的比最喜欢踢毽子的多6人,那么最喜欢跳绳的有( )人。
3.将1、3、5、7四张数字卡片反扣在桌面上(卡片背面完全相同),从中任意抽出两张,这两张数字卡片的和( )是偶数。
(填“一定”“可能”或“不可能”)4.盒子里有大小完全相同的红球6个,黄球3个,蓝球3个,任意摸出1个球,摸出( )球的可能性最大。
要使摸出三种球的可能性相同,可以( )。
5.李冰期末考试语文、英语、科学的平均成绩是76分,数学成绩公布后,他的平均成绩提高了3分,李冰的数学成绩是( )分。
6.盒子里放着三张卡片,分别写着7、8、9三个数字。
从盒子里任意摸出一张卡片,如果是质数,算笑笑赢;如果是合数,算淘气赢,那么( )赢的可能性大。
若想两人赢的可能性相等,可以在盒子里再放入一张写着数字( )的卡片。
(任意写出一种答案)7.根据统计图,填一填。
(1)6月收入( )万元,支出( )万元。
(2)( )月的收入和支出相差最少,相差( )万元。
(3)8月与( )月收入相同。
(4)11月的收入比10月增长( )%。
(5)根据折线统计图,请你提出一个数学问题。
8.下图是株洲市某年1~12月各月气温和降水量统计图。
估一估,填一填。
(1)这一年株洲市年降水量大约是( )毫米。
(结果保留整数)(2)这一年株洲市月平均气温大约是( )摄氏度(结果保留整数),株洲市气温的总体变化趋势是。
六年级数学下册期末复习 【统计与概率】(人教版,含答案)

六年级数学下册期末复习【统计与概率】一、填空题。
(每空一分,共25分)1、简单的统计图有()统计图、()统计图和()统计图。
统计一天的气温变化适用()统计图。
2、扇形统计图的优点是可以很清楚地表示出()与()的关系。
3、数据58,57,42,45,50,54,58的众数是(),平均数是(),中位数是()。
4、扔硬币时,正面朝上的可能性为(),若扔100次,大约有()次正面朝上。
5、小军和小华比赛拍皮球,小军2分钟拍166下,小华3分钟拍258下,( )拍得快。
6、有6个数的平均数是72,去掉一个数后,余下数的平均数是70,去掉的数是( )。
7、下面是鸡蛋各部分质量统计图。
从图中我们可以看出:一个鸡蛋中蛋壳的质量约占( ),蛋黄的质量约占( )。
如果一个鸡蛋重50克,那么这个鸡蛋中的蛋白重( )克。
8、如上图,甲停车场一共停车( )辆,乙停车场一共停车( )辆,( )停车场停的轿车少,( )停车场停的面包车少。
9、一个正方体,四个面上写着“1”,一个面上写着“2”,一个面上写着“3”。
抛一次,写着( )的面朝上的可能性最大,写着( )的面和写着( )的面朝上的可能性一样大。
10、书店前3天平均每天卖出86本书,第4天卖出的书比4天平均卖出的书少9件,第4天卖出()本书,4天一共卖出()本书。
二、判断题。
(5分)1、小明所在班级的平均身高是135cm,小刚所在班级的平均身高是138 cm,所以小明比小刚矮。
()2、乐乐的身高是152 cm,他去平均水深为140 cm的水域游泳,不会有危险。
()3、用条形统计图不但能清楚地看见数量的多少,还能看出数量增减变化的情况。
()4、明天降雨概率为80%,说明明天80%的地区下雨。
()5、掷一枚硬币99次,均为数字面,有可能发生。
()三.选择题。
(10分)1、要表示某实验小学各年级学生人数同全校学生总人数的关系,选择( )统计图比较合适。
A.条形B.扇形C.折线2、晴晴1分钟跳绳成绩统计图如下,从统计图上看晴晴的跳绳成绩,下面的说法正确的是( )。
统计和概率(全)(知识点习题与答案解析

统计与概率一、统计的基础知识1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查;抽样调查:对调查对象的部分进行调查;总体:所要考察对象的全体;个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体;样本容量:样本中个体的数目(不带单位);平均数:对于n 个数12,,,n x x x L ,我们把121()n x x x n+++L 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比;会填写频数分布表,会补全频数分布直方图、频数折线图;频数 样本容量 各 基 础 统 计量频数的分布与应用 2、 3、二、概率的基础知识 必然事件:一定条件下必然会发生的事件;不可能事件:一定条件下必然不会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情A发生的可能性称为这件事情的概率,记为P(A);P(必然事件)=1,P(不可能事件)=0,0<P (不确定事件)<1;★概率计算方法:P(A)= ————————————————例如注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率; P =110②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回..,再取出一个球,求两个球都是白球的概率;P =4251、确定事件 事件A 发生的可能结果总数 所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率…………概率初步单元测评一、选择题1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A.B. C.D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B.C.D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A.B. C.D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A.B.C.D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( ) A.B.C.D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.B.C.D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A.B.C.D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A.B.C.D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A.B.C.D.二、填空题13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.;15.16.6; 17. 1818.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)一、选择题1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题图1图211.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______. 14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________. 15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么? 20.并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1 100.23.(1)P(偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图像上,所求概率是336=112,即点A在函数y=2x图像上的概率是112。
概率和统计考试题库答案

概率和统计考试题库答案一、单项选择题1. 随机变量X服从二项分布B(3, 0.5),则P(X=1)的值为()。
A. 0.375B. 0.5C. 0.25D. 0.75答案:A2. 已知随机变量X服从正态分布N(0, 1),则P(-1<X<2)的值为()。
A. 0.6826B. 0.8413C. 0.9544D. 0.9772答案:C3. 一组数据的平均数为10,方差为4,则该组数据的众数可能为()。
A. 8B. 10C. 12D. 14答案:B4. 已知随机变量X服从泊松分布,其期望为2,则P(X=0)的值为()。
A. 0.1353B. 0.2588C. 0.0183D. 0.0549答案:C5. 一组数据的中位数为15,众数为20,则该组数据的平均数可能为()。
A. 10B. 15C. 20D. 25答案:C二、多项选择题6. 以下哪些事件是不可能事件()。
A. 抛一枚硬币,正面朝上B. 抛一枚硬币,反面朝上C. 抛一枚硬币,正面和反面同时朝上D. 抛一枚硬币,正面和反面都不朝上答案:CD7. 以下哪些分布是离散型随机变量的分布()。
A. 正态分布B. 二项分布C. 泊松分布D. 均匀分布答案:BC8. 以下哪些统计量可以用来衡量数据的离散程度()。
A. 平均数B. 方差C. 标准差D. 众数答案:BC9. 以下哪些统计方法可以用来估计总体参数()。
A. 点估计B. 区间估计C. 假设检验D. 回归分析答案:AB10. 以下哪些是随机变量X和Y的协方差的性质()。
A. 协方差总是非负的B. 协方差总是非正的C. 协方差可以是正的、负的或零D. 协方差总是零答案:C三、判断题11. 随机变量X和Y的协方差为零,说明X和Y是独立的。
()答案:错误12. 一组数据的方差越大,说明这组数据越稳定。
()答案:错误13. 正态分布是连续型随机变量的分布。
()答案:正确14. 随机变量X服从二项分布B(n, p),其期望E(X)=np。
(完整版)统计与概率复习题及答案(新)

.统计与概率一、选择题(将唯一正确的答案填在题后括号内):1.设有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,从中任取1个乒乓球,抽到非一等品的概率是( ) A .B .C .D .2.某厂家准备投资一批资金生产10万双成人皮鞋,现对顾客所需鞋的大小号码抽样调查如下:100名顾客中有15人穿36码,20人穿37码,25人穿38码,20人穿39码,…,如果你是厂商你准备在这10万双鞋中生产39码的鞋约( )双 A .2万B .2.5万C .1.5万D .5万3波动比乙班学生的成绩波动大;•③甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数(跳绳次数≥150次为优秀).其中正确的是( ) A .①B .②C .③D .②③4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( ) A .0B .411C .412D .16.数学老师为了估计全班每位同学数学成绩的稳定性,要求每位同学对自己最近4次的数学测试成绩进行统计分析,那么小明需要求出自己这4次成绩的( ) A.平均数B.众数C.频率D.方差7.沃尔玛商场为了了解本商场的服务质量,随机调查了 本商场的100名顾客,调查的结果如图所示,根据图 中给出的信息,这100名顾客中对该商场的服务质量 表示不满意的有A .6人B .11人C .39人D .44人8.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是 ( )A BC D 。
9.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.21,乙的成绩的方差为3.98,由此可知A 甲比乙的成绩稳定B 乙比甲的成绩稳定4251251545511033121 A 44% B 39%C 11%D A :很满B :满意C :说不清D :不满第7题图贝贝欢欢C 甲、乙两人的成绩一样稳定D 无法确定谁的成绩更稳定10.有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%,他们的理解正确的是A.巴西国家队一定夺冠B.巴西国家队一定不会夺冠C.巴西国家队夺冠的可能性比较大D.巴西国家队夺冠的可能性比较小11.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( ) A .B .C .D .12.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样),那么这粒豆子停在黑色方格中的概率是( ).A .B .C .D .二、填空题13.在全年级的375名学生中,有两名学生生日相同的概率是_________.14.从甲、乙两班抽取人数相等的学生参加了同一次数学竞赛,其竞赛成绩的平均分、方差分别为:甲=乙=80,s 甲2=240;s 乙2=180,则成绩较稳定的是________. 15.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人.16.用5分评价学生的作业(没有人得0分),然后在班上抽查16名学生的作业质量来估计全班的作业质量,从中抽查的数据中已知其众数是4分,那么得4分的至少有_______人.17.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查结果如下(单位:年):甲:3,4,6,8,8,8,10,5 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12三个厂家在广告中都标明产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、•众数、中位数哪一种集中趋势的特征数,•甲:•______.•乙:_______.丙:________.18.要把北京奥运的5个吉祥物“福娃”放在展桌上,有2个位置如右图已定,其他3个“福娃”在各种不同位置放置的情况下,“迎迎”和“贝贝”的位置不相邻这一事件发生的概率为__________.19.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .9161312191613121x x 19题图5 10 15 20 0黄瓜根数/株株数(第12题)20题图20.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到上面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.三、解答题21.在一个不透明的口袋中装有红球2个、黑球2个,它们只有颜色不同,若从口袋中一次摸出两个球,求摸到两个都是红球的概率.(要求画出树状图)22.水稻种植是梅州的传统农业.为了比较甲、乙两种水稻的长势,农技人员从两块试验田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势.23. “五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图,根据统计图回答下列问题: (1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%; (2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采 用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法 来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的 数字比小李掷得着地一面的数字大,车票给小张,否则给小李.” 试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?24.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占,知识面占,普通话占计算加权平均数,作为最后评定的总成绩.项 目 选 手形 象 知识面 普通话 李 文 70 80 88 孔 明807510%40%50%x A B C 图地点车票(张)5040 30 20 10 0(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩应超过多少分?25. 如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图. (1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数; (3)若该校八年级学生有800人,据此样本求八年级捐款总数.第25题图26.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至31日,评委会把同学们上交作品的件数按5天一组分组统计,绘制成频率分布直方图,如图所示,已知从左至右各长方形高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题:(1)本次活动共有多少作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件 作品获奖,问这两组哪组获奖率较高?x统计与概率(8)参考答案一、1.C 2.A 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.C 11.A 12.C二、13.1 14.乙 15.5 16.4 17.众数 平均数 中位数18. 3119.小张 20.60 13三、21.画出树状图(略)摸到两个都是红球的概率P = 22.∵5.8x 甲=, 5.2x 乙=,∴ 甲种水稻比乙种水稻长得更高一些.∵ 22.16s 甲=,20.56s 乙=, ∴ 乙种水稻比甲种水稻长得更整齐一些.23.解:(1)30;20. (2)(3)可能出现的所有结果列表(略)画树状图(略)共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为83166=;则小李获得车票的概率为 . ∴这个规则对小张、小李双方不公平.21126=1263168P ==35188-=24.(1)83 (2)9025. 25.(1)50(人) (2)108° (3)7600元26.解:(1)第三小组频率为=0.2,参加评比的作品的数量为=60件.(2)第四小组参加的数量最多为=18件.(3)第六小组参加的数量为×60=3件.因<.故第六组获奖率高4234641+++++120.262060⨯120101823。
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。
(完整版)《概率与数理统计》练习册及答案

第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)}B 。
{(反,正),(正,反),(正,正),(反,反)}C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2。
设A,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A 。
P (AB )=P (A)P (B) B 。
P(A —B)=P (A )-P (B) C.)()(B A P B A P -= D.P(A+B)=P(A )+P(B )4。
设A ,B 为随机事件,则下列各式中不能恒成立的是( )。
A 。
P(A -B)=P(A)-P (AB ) B 。
P (AB )=P(B )P (A|B ),其中P (B)〉0C 。
P(A+B)=P(A)+P (B) D.P(A )+P(A )=1 5。
若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B 。
1)(≤AB PC 。
P(A+B)=P(A)+P (B )D 。
P (A-B)≤P(A) 6.若φ≠AB ,则( ).A. A ,B 为对立事件B.B A =C.φ=B A D 。
P(A-B )≤P (A ) 7。
若,B A ⊂则下面答案错误的是( )。
A. ()B P A P ≤)( B 。
()0A -B P ≥C.B 未发生A 可能发生 D 。
B 发生A 可能不发生 8。
下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B 。
.1)(,<Ω≠A P A 则若 C 。
1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( )。
【精华版】通用版数学六年级下册总复习专题:统计与概率 含答案 5页-新版

1、4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是(),中位数是(),平均数是()。
2、给一个正方体木块的6个面分别涂上红、黄两种颜色,则不论如何涂都至少有()个面的颜色相同。
5、4,7.7,8.4,6.3,7.0,6.4,7.0,8.6,9.4这组数据的众数是(),中位数是(),平均数是()。
6、任意从装有10枚白子和12枚黑子的盒子里摸出1枚子,那么摸到()的可能性大,摸到()的可能性小。
众数是2。
②众数与中位数的数值不等。
③中位数与平均数相等。
④平均数与众数数值相等。
1、六(2)班第一组有6名男同学,他们的身高分别是148厘米、139厘米、146厘米、153厘米、156厘米、149厘米。
这组男同学的平均身高是多少厘米?2、一段上坡路,往返路程共120千米,小林骑车上坡每小时行10千米,下坡每小时行15千米,求自行车的平均速度。
七月八月九月十月十一月十二月050100150200单位:毫米单位:月4、5个裁判员给一名体操运动员评分,去掉一个最高分和一个最低分平均得分9.58分。
如果只去掉一个最高分,平均得分为9.46分,如果只去掉一个最低分,平均得分9.66分。
最高分和最低分各是多少分?5、利用右边的空白转盘设计一个实验,使指针停在蓝色区域的可能性分别是停在绿色、黄色和红色区域的3倍。
人的话只有一句是真话,会开车的是谁?为什么?8、前进小学六年级学生喜欢的运动项目统计如右图,其中喜欢足球的有40人。
(1)前进小学六年级喜欢跳绳的有多少人?(2)喜欢乒乓球的人数比喜欢踢毽的多多少人?(3)通过观察和分析这些数据,你能判断出前进小学六年级学生最喜欢的是哪种运动吗?能判断哪种运动喜欢的人数是最少的吗?请说明理由。
【数学】北师大版数学五年级下册总复习3统计与概率(有答案)

北师大版数学五年级下册总复习3统计与概率(有答案)一、甲、乙两种品牌的电视机第一、二、三、四季度的销售情况如下图(20分)1.乙品牌电视机第一季度的销售量比第四季度的销售量少多少台?2.哪种品牌电视机四个季度的销售总量最大?3.甲品牌电视机哪个季度的销售量最大?4.请你根据统计图分析一下乙品牌电视机的销售趋势。
二、下图是某品牌毛衫和衬衣9月至次年4月的销量统计图。
看图回答问题(20分)某品牌毛衫和衬衣9月至次年4月的销量统计图1.哪条折线表示的是毛衫销量?哪条折线表示的是衬衣销量?2.如果你是销售部经理,这个统计图对你有什么帮助?三、下面是裁判员记录的一组参加立定跳远的同学的成绩(单位:cm)(10分) 155150150150148147145110601.请你计算出这组数据的平均数。
2.这个平均数能不能代表这一组同学的立定跳远的水平?为什么?四、某小学三、四年级学生参加兴趣小组的人数统计如下(15分)根据上面的统计表,完成下面的统计图,并回答问题。
某小学三、四年级学生参加兴趣小组的人数统计图1.()组的总人数最多,()组的总人数最少。
(4分)2.三年级参加兴趣小组的人数是四年级参加兴趣小组的人数的几分之几?(5分)五、(北京·期末)展览馆上星期六有两种展览,一种是恐龙展览,另一种是鲨鱼展览。
在星期六那天,工作人员记录了不同时间点参观每种展览的人数,如下表(15分)时间8:00 9:00 10:00 11:00 12:00 参观恐龙展览的人数9 15 21 27 33参观鲨鱼展览的人数8 12 14 18 201.按照这个规律,13:00时,两种展览各有多少人参观?(2分)2.根据上面的统计表完成下面的折线统计图。
(6分)上星期六不同时间点参观恐龙展览和鲨鱼展览的人数统计图3.10:00时,参观鲨鱼展览的人数是参观恐龙展览人数的几分之几?(3分)4.在8:00~12:00期间,参观恐龙展览和鲨鱼展览的人数各呈怎样的变化趋势?(4分)六、2018年北京市、桂林市各季度平均气温统计表(20分)1.根据上面的统计表制成复式折线统计图。
(完整版)概率论与数理统计试题及答案.doc

2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
概率统计复习题(含解答)

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。
若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。
8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。
9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。
设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。
三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案
这篇文档将提供一系列概率论与数理统计的复题和答案。
以下是一些例题,供您练和巩固知识。
1. 一个骰子投掷三次,计算以下事件的概率:
- A:至少有一次出现6点
- B:三次投掷的和为18点
答案:
- A的概率 = 1 - (5/6) * (5/6) * (5/6) = 91/216
- B的概率 = 1/6 * 1/6 * 1/6 = 1/216
2. 一批商品的质量服从正态分布,均值为80,标准差为5。
从中随机取一件,计算以下事件的概率:
- A:质量在75到85之间
- B:质量小于70
答案:
- A的概率 = P(75 < X < 85),其中X服从均值为80,标准差为5的正态分布,可通过查表或计算得到概率值。
- B的概率 = P(X < 70),同样需要查表或计算。
3. 在某次调查中,有50%的受访者表示会购买某个产品。
从100位受访者中随机选择10人,计算以下事件的概率:- A:恰好有5人表示会购买该产品
- B:至少有8人表示会购买该产品
答案:
- A的概率 = C(10, 5) * (0.5)^5 * (0.5)^5 = 0.2461,其中C为组合数。
- B的概率 = P(X >= 8),其中X服从二项分布,可通过计算得到概率值。
这些复习题可以帮助您巩固概率论与数理统计的知识。
建议您自行尝试计算答案,并对比参考答案进行学习。
祝您学习顺利!。
(完整版)概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。
2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。
3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。
4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。
5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。
6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.统计与概率
一、选择题(将唯一正确的答案填在题后括号内):
1.设有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,从中任取1个乒乓球,抽到非一等品的概率是( ) A .
B .
C .
D .
2.某厂家准备投资一批资金生产10万双成人皮鞋,现对顾客所需鞋的大小号码抽样调查如下:100名顾客中有15人穿36码,20人穿37码,25人穿38码,20人穿39码,…,如果你是厂商你准备在这10万双鞋中生产39码的鞋约( )双 A .2万
B .2.5万
C .1.5万
D .5万
3
波动比乙班学生的成绩波动大;•③甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数(跳绳次数≥150次为优秀).其中正确的是( ) A .①
B .②
C .③
D .②③
4.下列事件中必然发生的是( )
A .抛两枚均匀的硬币,硬币落地后,都是正面朝上
B .掷一枚质地均匀的骰子,朝上一面的点数是3
C .通常情况下,抛出的篮球会下落
D .阴天就一定会下雨
5.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( ) A .0
B .
41
1
C .
41
2
D .1
6.数学老师为了估计全班每位同学数学成绩的稳定性,要求每位同学对自己最近4次的数学测试成绩进行统计分析,那么小明需要求出自己这4次成绩的( ) A.平均数
B.众数
C.频率
D.方差
7.沃尔玛商场为了了解本商场的服务质量,随机调查了 本商场的100名顾客,调查的结果如图所示,根据图 中给出的信息,这100名顾客中对该商场的服务质量 表示不满意的有
A .6人
B .11人
C .39人
D .44人
8.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是 ( )
A B
C D 。
9.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩
的方
差为1.21,乙的成绩的方差为3.98,由此可知
A 甲比乙的成绩稳定
B 乙比甲的成绩稳定
4
25
1
25
1
5
45
511033121 A 44% B 39%
C 11%
D A :很满
B :满意
C :说不清
D :不满
第7题图
贝贝欢欢
C 甲、乙两人的成绩一样稳定
D 无法确定谁的成绩更稳定
10.有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%,他们的理解正确的是
A.巴西国家队一定夺冠
B.巴西国家队一定不会夺冠
C.巴西国家队夺冠的可能性比较大
D.巴西国家队夺冠的可能性比较小
11.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( ) A .
B .
C .
D .
12.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样),那么这粒豆子停在黑色方格中的概率是( ).
A .
B .
C .
D .
二、填空题
13.在全年级的375名学生中,有两名学生生日相同的概率是_________.
14.从甲、乙两班抽取人数相等的学生参加了同一次数学竞赛,其竞赛成绩的平均分、方差分别为:甲=乙=80,s 甲2=240;s 乙2=180,则成绩较稳定的是________. 15.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人.
16.用5分评价学生的作业(没有人得0分),然后在班上抽查16名学生的作业质量来估计全班的作业质量,从中抽查的数据中已知其众数是4分,那么得4分的至少有_______人.
17.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查结果如下(单位:年):
甲:3,4,6,8,8,8,10,5 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12
三个厂家在广告中都标明产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、•众数、中位数哪一种集中趋势的特征数,•甲:•______.•乙:_______.丙:________.
18.要把北京奥运的5个吉祥物“福娃”放在展桌上,有2个位置如右图已定,
其他3个“福娃”在各种不同位置放置的情况下,“迎迎”和“贝贝”的位置不相邻这一事件发生的概率为__________.
19.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .
916
1
3
1
2
1916
1
3
1
2
1x x 19题图
5 10 15 20 0
黄瓜根数/株
株数
(第12题)
20题图
20.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到上面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.
三、解答题
21.在一个不透明的口袋中装有红球2个、黑球2个,它们只有颜色不同,若从口袋中一
次摸出两个球,求摸到两个都是红球的概率.(要求画出树状图)
22.水稻种植是梅州的传统农业.为了比较甲、乙两种水稻的长势,农技人员从两块试验
田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:
请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势.
23. “五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的
车票种类、数量绘制成条形统计图,如图,根据统计图回答下列问题: (1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%; (2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件
下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;
(3)若最后剩下一张车票时,员工小张、小李都想要,决定采 用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法 来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的 数字比小李掷得着地一面的数字大,车票给小张,否则给小李.” 试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
24.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占,知识面占,普通话占计算加权平均数,作为最后评定的总成绩.
项 目 选 手
形 象 知识面 普通话 李 文 70 80 88 孔 明
80
75
10%40%50%x A B C 图
地点
车票(张)
50
40 30 20 10 0
(1)计算李文同学的总成绩;
(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩应超过多少分?
25. 如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图. (1)求该样本的容量;
(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数; (3)若该校八年级学生有800人,据此样本求八年级捐款总数.
第25题图
26.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至31日,评委会把同学们上交作品的件数按5天一组分组统计,绘制成频率分布直方图,如图所示,已知从左至右各长方形高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题:
(1)本次活动共有多少作品参加评比? (2)哪组上交的作品数量最多?有多少件?
(3)经过评比,第四组和第六组分别有10件、2件 作品获奖,问这两组哪组获奖率较高?
x
统计与概率(8)参考答案
一、1.C 2.A 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.C 11.A 12.C
二、13.1 14.乙 15.5 16.4 17.众数 平均数 中位数18. 3
1
19.小张 20.60 13
三、21.画出树状图(略)
摸到两个都是红球的概率P = 22.
∵
5.8x 甲=, 5.2x 乙=,
∴ 甲种水稻比乙种水稻长得更高一些.
∵ 2
2.16s 甲
=,20.56s 乙=, ∴ 乙种水稻比甲种水稻长得更整齐一些.
23.解:(1)30;20. (2)
(3)可能出现的所有结果列表(略)画树状图(略)共有 16 种可能的结果,
且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为
83166=;则小李获得车票的概率为 . ∴这个规则对小张、小李双方不公平.
21
126
=1
263168
P =
=35188
-
=
24.(1)83 (2)90
25. 25.(1)50(人) (2)108° (3)7600元
26.解:(1)第三小组频率为
=0.2,
参加评比的作品的数量为=60件.
(2)第四小组参加的数量最多为=18件.
(3)第六小组参加的数量为×60=3件.因<.
故第六组获奖率高
4
234641
+++++12
0.26
2060⨯12010182
3。