解读“互逆命题与互逆定理”

合集下载

互逆命题与互逆定理++知识考点梳理(课件)2024-2025学年华东师大版数学八年级上册

互逆命题与互逆定理++知识考点梳理(课件)2024-2025学年华东师大版数学八年级上册

13.5.1 互逆命题与互逆定理 返回目录
重 解题通法 把一个定理的条件与结论互换就得到了它的
难 题
逆命题,只有证明定理的逆命题为真命题且是定理,才能
型 突
说明两个命题是互逆定理.

互逆 定理
如果一个定理的逆命题也是定理,那么这两个 定理叫做互逆定理,其中的一个定理叫做另一 个定理的逆定理
判断 方法
判断两个命题是互逆定理要满足:①原命题是 定理;②定理的逆命题为真,即逆定理存在
13.5.1 互逆命题与互逆定理 返回目录
考 归纳总结
点 清
(1)互逆定理都是真命题;(2)一个定理一定有一个
单 解
逆命题,但不一定有逆定理,只有当一个定理的逆命题是真
读 命题时,该定理才有逆定理;(3)一对互逆定理是一对互
逆命题,但一对互逆命题不一定是一对互逆定理.
13.5.1 互逆命题与互逆定理 返回目录

对点典例剖析
点 典例1 写出下列命题的逆命题,并指出其逆命题的真假

单 性.

读 (1)两个平角相等;
例 定理:直角三角形的两个锐角互余.
型 突
(1)写出这个定理的逆命题;
破 (2)判断这两个命题是不是互逆定理.
13.5.1 互逆命题与互逆定理 返回目录
重 [解析]写出逆命题,根据直角三角形的定义判断逆命
难 题
题是否成立.

突 破
[答案] (1)两个锐角互余的三角形是直角三角形;
(2)逆命题为真且是定理,故这两个命题是互逆定理.
13.5.1 互逆命题与互逆定理
● 考点清单解读 ● 重难题型突破
13.5.1互逆定理
点 1. 互逆命题

13.5.1互逆命题与互逆定理 教案 2022-2023学年华东师大版数学八年级上册

13.5.1互逆命题与互逆定理 教案 2022-2023学年华东师大版数学八年级上册

13.5.1 互逆命题与互逆定理教案2022-2023学年华东师大版数学八年级上册1. 教学目标•理解互逆命题的概念•掌握判断互逆命题的方法•学会运用互逆定理解决问题2. 教学重难点•掌握繁琐推理过程的简化方法•理解互逆命题和互逆定理3. 教学准备•教材《数学八年级上册》•教学投影仪•课堂练习题4. 教学过程4.1 引入•导入互逆命题的概念:在数学中,当一个命题的真假与另一个命题的真假完全相反时,我们称这两个命题为互逆命题。

•引导学生举例:例如,命题A:“今天是晴天”,命题B:“今天不是晴天”。

这两个命题互为逆命题。

4.2 回顾逆命题•复习逆命题的概念:逆命题是将原命题的否定词逆转得到的命题。

•提示学生如何得到逆命题的方法:将原命题的否定词逆转,即将原命题中的“是”变为“不是”,“不是”变为“是”。

4.3 互逆命题的判断•提醒学生回顾逆命题的相关知识,然后介绍判断互逆命题的方法:–方法1:通过思考两个命题的意义是否完全相反来判断是否为互逆命题。

–方法2:通过判断两个命题的实质连接词是否相同来判断是否为互逆命题。

•通过几个例子的讨论,帮助学生掌握判断互逆命题的方法。

4.4 互逆定理•介绍互逆定理的概念:互逆定理是指,两个互逆命题中,有一个命题为真,则另一个命题为假。

•提供例子,通过解析例子来说明互逆定理的原理。

•强调互逆定理的重要性,以及在数学证明中的应用。

4.5 练习与讨论•以课堂练习题为基础,组织学生进行练习和讨论。

•收集学生的答案和思路,引导他们合理表达解题过程。

4.6 总结与拓展•结合教学内容,对互逆命题和互逆定理进行总结,并强调学生掌握的关键点。

•提供拓展讨论,引导学生思考互逆命题的更多应用场景。

5. 课后作业•布置课后作业:完成教材上的相关练习题,并思考实际应用中的互逆命题。

6. 总结本节课主要介绍了互逆命题与互逆定理的概念,帮助学生掌握判断互逆命题的方法,并引导他们运用互逆定理解决问题。

华师大版八年级数学上册《互逆命题与互逆定理》课件

华师大版八年级数学上册《互逆命题与互逆定理》课件

13.5.1 互逆命题与互逆定理
新知梳理
► 知识点一 互逆命题 在两个命题中,如果第一个命题的_条_ 件__是第二个命题
的_结_ 论__,而第一个命题的_ 结论___是第二个命题的_条_ 件__, 那么这两个命题叫做互_ 逆_命__题.如果把其中一个命题叫做原命 题,那么另一个命题就叫做它的逆__命_ 题_.
13.5.1 互逆命题与互逆定理
活动2 教材导学
1.互逆命题
命题“等边对等角”是_真_ __命题,把它改写为“如果……,
那么……”的形式,结果是如果一__个三角形的两边相__等,那么
___这两边所对的角相等 _.它的条件是_一_个三角形的两边_相_,等
结论是_这两边所对的角相等___;把这个命题的结论作条件,同
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月4日星期一2022/4/42022/4/42022/4/4 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/42022/4/42022/4/44/4/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/42022/4/4April 4, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
[归纳总结] 写一个命题的逆命题的步骤:(1)分清原命题的 条件和结论;(2)调换原命题的条件和结论;(3)运用正确的数学 语言和通顺的语句表达出来.
注意:(1)要特别注意写一个命题的逆命题的步骤中的第三 步,如“等腰三角形两底角相等”,它的逆命题为“两内角相等 的三角形是等腰三角形”,而不是“两底角相等的三角形是等腰 三角形”.

第13章 13.5 13.5. 1 互逆命题与互逆定理

第13章  13.5  13.5. 1 互逆命题与互逆定理

证明:过点E作EM⊥BC于点M,过点D作DN⊥BC于
点N,∵BD、CE分别是△ ABC的中线,∴S△ BEC=S△ BDC,

1 2
BC·EM=
1 2
BC·DN,∴EM=DN,在Rt△ EMC和
Rt△ DNB中,CE=BD,EM=DN,
∴Rt△ EMC≌Rt△ DNB,∴∠ECM=∠DBC,在△ EBC
6.在△ ABC 中,∠A 的相邻外角是 110°,要使△ ABC 是等腰三角形,则∠B= 55°或 70°或 40° .
7. 命题“等腰三角形两腰上的中线相等”的逆命题 是 两边上的中线相等的三角形是等腰三角形 ,这个命 题是 真 命题.(填“真”或“假”)
【解析】逆命题:两边上的中线相等的三角形是等 腰三角形.已知:如图,在△ ABC中,BD、CE分别是 边AC和AB上的中线,且CE=BD,求证:△ ABC是等腰 三角形.
知识点 互逆定理 4. 下列定理是否都有逆定理?若有,请写出来. (1)如果两个角都是直角,那么这两个角相等; (2)内错角相等,两直线平行; (3)等边三角形的三个内角都等于60°.
解:(1)逆命题是:如果两个角相等,那么这两个角 是直角,它是一个假命题,故(1)没有逆定理.
(2)逆命题是:两直线平行,内错角相等,它是一个 真命题,故(2)的逆命题就是它的逆定理.

如图,△ ABC 是等边三角形. (1)若 AD=BE=CF,求证:△ DEF 是等边三角形; (2)请问(1)的逆命题成立吗?若成立,请证明;若不 成立,请用反例说明.
解:(1)∵△ABC 是等边三角形, ∴∠A=∠B=∠C, AB=AC=BC, 又∵AD=BE=CF, ∴AB-AD=BC-BE=AC-CF, 即 BD=CE=AF. ∴△ADF≌△BED≌△CFE.

互逆命题与互逆定理

互逆命题与互逆定理

互逆命题与互逆定理
在逻辑推理和数学证明中,互逆命题和互逆定理是两个重要的
概念。

它们在推理过程中起着至关重要的作用,帮助我们理清思绪,找到正确的答案。

首先,让我们来了解一下什么是互逆命题。

互逆命题是指两个
命题,它们的否定分别是对方。

换句话说,如果一个命题为真,则
另一个命题必为假,反之亦然。

例如,命题A,“今天是晴天”,
其互逆命题为命题B,“今天不是晴天”。

这两个命题互为对立命题,其真假情况完全相反。

接下来,我们来看一下互逆定理。

互逆定理是指在数学或逻辑
推理中,如果一个定理成立,那么它的互逆定理也必然成立。

互逆
定理通常用于证明或推导过程中,帮助我们简化问题,找到解决方案。

例如,在数学中,如果一个定理表明“如果A成立,则B成立”,那么它的互逆定理表明“如果B不成立,则A不成立”。

互逆命题和互逆定理在逻辑推理和数学证明中都具有重要的意义。

它们帮助我们理清思路,找到正确的答案,同时也提醒我们在
推理过程中要注意对立命题和定理的关系。

通过理解和运用互逆命
题和互逆定理,我们可以更好地进行逻辑推理和数学证明,提高解决问题的能力和效率。

总之,互逆命题和互逆定理是逻辑推理和数学证明中不可或缺的概念,它们帮助我们理清思路,简化问题,找到正确的答案。

通过深入理解和灵活运用这两个概念,我们可以更好地进行推理和证明,提高解决问题的能力,为学习和研究打下坚实的基础。

13.5.1.互逆命题与互逆定理课件 2024-2025学年 华东师大版数学八年级上册

 13.5.1.互逆命题与互逆定理课件 2024-2025学年 华东师大版数学八年级上册

(3)内错角相等. 【自主解答】(3)内错角相等的逆命题是相等的角是内错角,逆命题是假命题,原 命题是假命题; (4)若两个角相加等于180°,则这两个角互为邻补角. 【自主解答】(4)若两个角相加等于180°,则这两个角互为邻补角的逆命题是若 两个角互为邻补角,则两个角相加等于180°,逆命题是真命题,原命题是假命题.
本课结束
【技法点拨】 互逆命题、互逆定理的区别与联系
命题 定理
是否有逆命题/逆定理
一定有逆命题
不一定有逆定理(定理的逆 命题是真命题且该逆命题 作为定理使用)
原命题 逆命题 原定理
逆定理
真假判断 真或假 真或假 真命题
真命题
素养 当堂测评
1.(4分·推理能力)下列命题的逆命题是假命题的是( D ) A.直角三角形的两个锐角互余 B.两直线平行,内错角相等 C.三边对应相等的三角形是全等三角形 D.若x=y,则x2=y2 2.(4分·推理能力)下列三个定理中,存在逆定理的有______个. ( C ) ①有两个角相等的三角形是等腰三角形;②全等三角形的周长相等;③同位角相 等,两直线平行.
【举一反三】 1.(2024·怀化期中)下列说法错误的是( B ) A.任何命题都有逆命题 B.任何定理都有逆定理 C.命题的逆命题不一定是真命题 D.定理的逆定理一定是真命题
2.下列定理中,哪些有逆定理?如果有逆定理,写出它的逆定理. (1)全等三角形的对应边、对应角分别相等. 【解析】(1)逆命题是:边、角分别对应相等的两个三角形全等,是真命题, 故原定理有逆定理:边、角分别对应相等的两个三角形全等. (2)三角形的两边之和大于第三边. 【解析】(2)逆命题为:如果三条线段中,任意两条线段长度之和大于第三条线段 的长度,那么这三条线段能围成三角形,是真命题, 故原定理有逆定理:如果三条线段中,任意两条线段长度之和大于第三条线段的 长度,那么这三条线段能围成三角形.

13.5.1互逆命题与互逆定理

13.5.1互逆命题与互逆定理

13.5.1.互逆命题与互逆定理学习目标:1.理解互逆命题与互逆定理2.正确应用互逆命题与互逆定理重点与难点:区分互逆命题与互逆定理一、知识回顾:1、命题的概念:2、命题都有两部分:3、命题分为和两种.(1)、平行四边形的对边互相平行(2)、如果两个角相等,那么这两个角是对顶角(3)、等腰三角形顶角的平分线垂直平分底边二、新知导入:说出下列命题的题设和结论:1、两直线平行,内错角相等;2、内错角相等,两直线平行;3、全等三角形的对应角相等;4、对应角相等的三角形全等;5、平行四边形的对边互相平行;6、对边互相平行的四边形是平行四边形;观察上面三组命题,你发现了什么?概括:一般来说,在两个命题中,如果第一个命题的是第二个命题的,而第一个命题的是第二个命题的,那么这两个命题叫做。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的。

例1:指出下列命题的题设和结论,写出它们的逆命题,并判断真假。

(1)、如果一个三角形是直角三角形,那么它的两个锐角互余.((2)、等边三角形的每个角都等于60°(3)、同旁内角互补,两直线平行. 讨论交流:在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明。

(1)、(2)、(3)、归纳:如果一个定理的逆命题也是,那么这两个定理叫做。

其中的一个定理叫做另一个定理的。

注意1:逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题2:所有的命题都有逆命题,但不是所有的定理都有逆定理练习.写出下列命题的逆命题.并判断原命题逆命题的真假。

(1)如果a+b>0,那么a>0,b>0.(2)如果a>0,那么a2>0.(3)等角的补角相等.(4)、若|a|=|b|,则a=b;(5)、若a=b,则33a b=;(6)、若x=a,则2()0x a b x ab-++=;这节课我们学到了什么?①逆命题、逆定理的概念。

②能写出一个命题的逆命题。

③在证明假命题时会用举反例说明逆命题与逆定理 测试题一、基础题1.在两个直角三角形中,有两条边分别对应相等,这两个直角三角形一定全等吗?如果不一定全等,请举出一个反例.2.写出下列命题的逆命题,并判断这些命题的真假. (1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果一个三角形的两个内角相等,那么这两个内角所对的边相等.3.已知:如图,在五边形ABCDE 中,∠B=∠E=90°,BC=ED ,∠ACD=∠ADC .求证:AB=AE .二、学科内综合题4.已知等腰△ABC 的底边BC=8cm ,且|AC-BC|=2cm ,则腰AC 的长为( ) A .10cm 或6cm B .10cm C .6cm D .8cm 或6cm 5.下 列 这 些 真 命 题 中,其 逆 命 题 也 真 的 是 ( ) A .全 等 三 角 形 的 对 应 角 相 等 B .两 个 图 形 关 于 轴 对 称,则 这 两 个 图 形 是 全 等 形 C .等 边 三 角 形 是 锐 角 三 角 形 D .直 角 三 角 形 中,如 果 一个 锐 角 等 于 30°,那 么 它 所 对 的 直 角边 等 于斜 边 的 一半 6.如上图中所示,在△ABC 中,AB=AC ,∠BAC=90°, 直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别 交AB 、AC 于点E 、F .给出以下四个结论:①AE=CF ; ②△EPF 是等腰直角三角形; ③S四边形AEPF=21S △ABC ;④EF=AP.当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论始终正确的有( )A .1个B .2个C .3个D .4个 7.如右图右所示,△ABC 中,AB=AC ,要使AD=AE ,需要添加的一个条件是 .8.若等腰三角形的一个底角是30°,则这个等腰三角形的顶角是 .9.如右图,AM 是△ABC 的角平分线,N 为BM 的中点,NE ∥AM ,交AB 于D ,交CA 的延长线于E ,下列结论正确的是( ) A .BM=MC B .AE=BD C .AM=DE D .DN=BN 10.(3分)若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为( ) A .30° B .75° C .30°或60° D .75°或15° 三、应用题11.如图所示,已知△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,求∠A 的度数.四.探究题12.如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O ,给出下列四个条件: ①∠EBO=DCO ;②∠BEO=∠CDO ;③BE=CD ;④OB=OC.(1)从这4个条件中选出2个条件,能判定△ABC 是等腰三角形的方法用 种. (2)选择(1)中的一种情形,证明△ABC 是等腰三角形.。

华东师大版 八年级上册 13.5.1 互逆命题与互逆定理(共33张PPT)

华东师大版 八年级上册 13.5.1  互逆命题与互逆定理(共33张PPT)
(2)如果两个角都是直角,那么这两个 角相等.
(1)逆命题:如果这个整数能被5整 除,那么这个整数的个位数字是5;举例: 10、20、30等.
练习
2.举例说明下列命题的逆命题是假命题:
(1)如果一个整数的个位数字是5,那么 这个整数能被5整除;
(2)如果两个角都是直角,那么这两个 角相等.
(2)逆命题:如果这两个角相等,那 么这两个是直角;举例:30°与30°、 45°与45°等.
(2)逆命题:有理数必为自然数. 原命题为真命题,逆命题为假命题.
例题 (三)应用实例
写出下列命题的逆命题,并判断原、 逆命题的真假.
(3)若 a = b ,则a = b; (4)若a = b,则a3 = b3; (5)若x = a,则x2 (- a b)x ab = 0.
(3)逆命题:若a=b,则|a|=|b|. 原命题为假命题,逆命题为真命题.
B.如果直角三角形两直角边的长分别为a和b, 那么∠A=90°
C.若三角形三边长的比为1∶2∶3,则这个三角 形是直角三角形
D.如果直角三角形的两直角边的长分别为a和b,
斜边为c,那么斜边上的高h的长ቤተ መጻሕፍቲ ባይዱ ab c
作业 2.备选习题:
(3)命题“若a>b,则a²>b²”的逆命题

.
(4)写出命题“三角形两边之和大于第三
(1)全等三角形的对应角相等; (2)自然数必为有理数;
(3)若 a = b ,则a = b; (4)若a = b,则a3 = b3; (5)若x = a,则x2 (- a b)x ab = 0.
例题 (三)应用实例
写出下列命题的逆命题,并判断原、 逆命题的真假.
(1)全等三角形的对应角相等; (2)自然数必为有理数; (1)逆命题:对应角相等的三角形是全 等三角形. 原命题为真命题,逆命题为假命题.

专题15-逆命题及逆定理(知识点串讲)(解析版)

专题15-逆命题及逆定理(知识点串讲)(解析版)

专题15 逆命题及逆定理知识框架重难突破一、互逆命题与互逆定理1.互逆命题对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.备注:所有的命题都有逆命题. 原命题正确,它的逆命题不一定是正确的.2.互逆定理如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.备注:(1)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理;(2)一个假命题的逆命题可以是真命题,甚至可以是定理.二、线段垂直平分线性质定理及其逆定理线段垂直平分线(也称中垂线)的性质定理是:线段的垂直平分线上的点到这条线段的两个端点的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.备注:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理的题设是已知线段相等,结论是确定线段被垂直平分,一定要注意两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.要点二、角平分线性质定理及其逆定理角平分线性质定理是:角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边距离相等的点在角的平分线上.备注:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意两者的区别,在使用这两个定理时不要混淆了.例1.(2019·四川南充市·八年级期末)下列命题的逆命题成立的是( )A .对顶角相等B .等边三角形是锐角三角形C .正方形的对角线互相垂直D .平行四边形的对角线互相平分【答案】D【解析】解:A 、逆命题为相等的角是对顶角,不成立;B 、逆命题为:锐角三角形是等边三角形,不成立;C 、逆命题为:对角线互相垂直的四边形是正方形,不成立;D 、逆命题为:对角线互相平分的四边形是平行四边形,成立,故选:D .练习1.(2019·山东德州市·)数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a 2>4.下列命题中,具有以上特征的命题是( )A .两直线平行,同位角相等B .如果|a |=1,那么a =1C .全等三角形的对应角相等D .如果x >y ,那么mx >my 【答案】C解:A 、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .练习2.(2020·山西临汾市·八年级期末)下列命题的逆命题是真命题的是( )A .若22a b >,则a b >B .两个全等三角形的对应角相等C .若0a =,0b =,则0ab =D .全等三角形的对应边相等解:A :逆命题:若a b >,则22a b >,当a=1,b=-2时,错误;B :逆命题:对应角相等的两个三角形全等,错误;C :逆命题:若0ab =,则0a =,0b =,也可能a=0,b≠0,错误;D :逆命题:对应边相等的两个三角形全等,根据SSS 可以判定,正确,故选D.例2.(2020·四川巴中市·八年级期末)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.练习1.(2018·富顺县赵化中学校八年级期末)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ___________________ .它是 ________ 命题(填“真”或“假”).【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.例3.(2020·四川绵阳市·八年级期末)如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .∠A 、∠B 两内角的平分线的交点处B .AC 、AB 两边高线的交点处C .AC 、AB 两边中线的交点处D .AC 、AB 两边垂直平分线的交点处解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.练习1.(2019·四川成都市·八年级期末)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85. 例4.(2020·四川广元市·八年级期末)如图,在ABC 中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .(1)若70ABC ∠=︒,则NMA ∠的度数是 ;(2)若8AB cm =,MBC △的周长是14cm .①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出PBC 周长的最小值.【答案】(1)50︒;(2)①6;②14 cm .解:解:(1)如图,∵AB=AC ,∴∠C=∠ABC=70°,∴∠A=40°,∵AB 的垂直平分线交AB 于点N ,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线,∴AM=BM ,∴△MBC 的周长=BM+CM+BC=AM+CM+BC=AC+BC ,∵AB=8,∴AC=8,∵△MBC 的周长是14,∴BC=14-8=6;②∵PB+PC=PA+PC,PA+PC≥AC,∴当点P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.练习1.(2020·四川成都市·七年级期末)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【答案】(1)100°;(2)20°,推导见解析;(3)20解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠FAC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+FA=20,由(2)可知,DA=DB,FA=FC,∴BC=DB+DF+FC=DA+DF+FA=20.练习2.(2020·四川成都市·八年级期末)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、C分布对应A1、C1);(2)请在y轴上找出一点P,满足线段AP+B1P的值最小.【答案】(1)作图见解析;(2)作图见解析.(1)如图所示:(2)如图所示:点P 即为所求.例5.(2020·四川泸州市·)如图,在Rt ABC ∆中,90C ∠=︒,AD 是角平分线,若BC 10cm =,:3:2BD CD =,则点D 到AB 的距离是( )A .6cmB .5cmC .4cmD .3cm【答案】C过点D 作DE ⊥AB ,∵90C ∠=︒,∴DC ⊥AC,∵AD 平分∠BAC ,∴DE=DC,∵BC 10cm =,:3:2BD CD =,∴DE=DC=4cm ,故选:C.练习1.(2020·四川成都市·七年级期末)如图,在Rt ABC 中,90B ∠=︒,在边AB 、AC 上分别截取AD ,AE ,使AD AE =,分别以D 、E 为圆心,以大于12DE 的长为半径作弧,两弧在BAC ∠内交于点M ,作射线AM 交BC 边于点F .若2FB =,则点F 到AC 的距离为______.【答案】2根据作图过程可知:AF 平分∠BAC ,过点F 作FG ⊥AC ,∵∠B =90°,∴FB ⊥AB ,∴FG =FB =2.∴点F 到AC 的距离为2.故答案为:2.练习2.(2020·四川广元市·八年级期末)如图,OC 平分∠MON ,P 为OC 上一点,PA ⊥OM ,PB ⊥ON ,垂足分别为A 、B ,连接AB ,得到以下结论:(1)PA =PB ;(2)OA =OB ;(3)OP 与AB 互相垂直平分;(4)OP 平分∠APB ,正确的个数是( )A .1B .2C .3D .4【答案】C解:∵OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,∴P A =PB ,故(1)正确;在Rt △APO 和Rt △BPO 中,OP OP PA PB =⎧⎨=⎩,∴Rt △APO ≌Rt △BPO (HL ),∴∠APO =∠BPO ,OA =OB ,故(2)正确,∴PO 平分∠APB ,故(4)正确,OP 垂直平分AB ,但AB 不一定垂直平分OP ,故(3)错误,故选:C .例6.(2020·四川绵阳市·八年级期末)如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若1BD =,3BC =,则AC 的长为( )A .5B .4C .3D .2【答案】A解:延长BD,与AC 交于点F,∵BD CD ⊥∴∠BDC =∠FDC=90°∵CD 平分ACB ∠,∴∠BCD =∠FCD在△BDC 和△FDC 中90BDC FDC BCD FCDCD CD ∠∠=︒⎧⎪∠∠⎨⎪=⎩== ∴△BDC ≌△FDC∴BD=FD =1 BC=FC=3∵A ABD ∠=∠∴AF=BF∵1BD =,3BC =,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A例7.(2020·四川巴中市·七年级期末)如图,DE 是ABC 中AB 边的垂直平分线,分别交AB ,BC 于点D ,E ,AE 平分BAC ∠,若30B ∠=︒.求C ∠的度数.【答案】∠C 的度数为90°.∵DE 是线段AB 的垂直平分线,∠B=30°,∴AE= BE ,∴∠BAE=∠B=30°,∵AE 平分∠BAC ,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°-∠BAC-∠B=180°-60°-30°=90°.∴∠C 的度数为90°.练习1.(2018·四川南充市·)如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.【答案】32解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BDDF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=6,AC=3,∴BE=32.故答案为:32练习2.(2020·四川眉山市·八年级期末)已知120MAN ∠=︒,AC 平分MAN ∠,点,B D 分别在,AN AM 上.(1)如图1,若CD AM ⊥于点D ,CB AN ⊥于点B .①利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可得,AC AD 的数量关系为________. ②请问:AC 是否等于AB AD +呢?如果是,请予以证明.(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【答案】(1)①12AD AC =(或2AC AD =),理由见解析;②AD AB AC +=,理由见解析;(2)仍成立,理由见解析解:(1)①12AD AC =(或2AC AD =) AC 平分,120MAN MAN ∠∠=︒,60CAD ∴∠=︒,又90ADC ∠=︒,30ACD ∴∠=︒利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可知12AD AC = ②AD AB AC += 证明:由①知,12AD AC = 同理,AC 平分,120MAN MAN ∠∠=︒,60CAB ∴∠=︒,又90ABC ∠=︒,30ACB ∴∠=︒,12AB AC = AD AB AC ∴+=(2)仍成立证明:过点C 分别作,AM AN 的垂线,垂足分别为,E FAC 平分,MAN ∠CE CF ∴=,180,180ABC ADC ADC CDE ∠+∠=︒∠+∠=︒ CDE ABC ∴∠=∠又90CED CFB ∠=∠=︒()CED CFB AAS ∴∆≅∆ED FB ∴=AD AB AE ED AF FB AE AF ∴+=-++=+ 由(1)中②知AE AF AC +=AD AB AC ∴+=.。

13.5.1互逆命题与互逆定理

13.5.1互逆命题与互逆定理
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航Байду номын сангаас◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶
基础夯实 ➢第二阶
能力跃升
◆要点导航 ◆典例全解 ◆反馈演练 ➢第一阶

13.5.1互逆命题与互逆定理课件华东师大版数学八年级上册

13.5.1互逆命题与互逆定理课件华东师大版数学八年级上册

2. 举例说明下列命题的逆命题是假命题. (2)如果两个角都是直角,那么这两个角相等.
逆命题:如果两个角相等,那么这两个角 是直角. 例如60°= 60°,但这两个角不是直角.
3. 在你所学过的知识内容中,有没有原命题与逆 命题都正确的例子?试举出几对. “两直线平行﹐同位角相等” “同位角相等,两直线平行” “内错角相等,两直线平行” “两直线平行,内错角相等”
6.下列定理中,有逆定理的有①__③____.(填序号) ①同旁内角互补,两直线平行; ②同角的余角相等; ③两直线平行,内错角相等.
7.按要求完成下列各题. (1)请写出以下命题的逆命题:
①相等的角是内错角; 解:如果两个角是内错角,那么这两个角相等.
②如果a+b>0,那么ab>0.
如果ab>0,那么a+b>0.
“内错角相等,两直线平行”
1. 指出下列命题的条件和结论,并说出它们的逆命题 并判断其真假.
(1)如果一个三角形是直角三角形,那么它的两个锐角互余;
条件
结论
逆命题:如果一个三角形的两个锐角互余,
那么这个三角形是直角三角形.
真命题
(简单说成:两锐角互余的三角形是直角三角形.)
(2)等边三角形的每个角都等于60°; 写出一个命题的逆
13.5.1 互逆命题与互逆定理
什么叫做命题?
表示判断的语气叫做命题. 例如“两直线平行,内错角相等”
“内错角相等,两直线平行”
观察这两个命题的条件和结 论,你发现什么?
两个命题的条件和结论恰好互换了位置
例如“两直线平行,内错角相等” “内错角相等,两件是第 二个命题的结论,而第一个命题的结论是第二个 命题的条件,那么这两个命题叫做互逆命题.
(2)判断(1)中①的原命题与逆命题是不是互为逆定理. 解:∵(1)中①的原命题与逆命题都是假命题, ∴①的原命题与逆命题不是互为逆定理.

互逆命题与互逆定理

互逆命题与互逆定理


作业:
课本P84 练习:第2题 习题18.2 :第2题
互逆命题与 互逆定理
一、命题与逆命题
命题:
判断一件事情的语句叫做命题。
命题的组成:
条件+结论
形式:“如果……那么……” “若……则……”
二、互逆命题
互逆的两个命题:
把一个命题的题设与结论对调所 得的命题叫做这个命题的逆命 题,这两个命题称为互逆命题
形式:若A则B(原命题)
若B则A(逆命题)
三、互逆定理
A.如果∠C-∠B=∠A,则△ABC是直角 三角形。
B.如果c2= b2—a2,则△ABC是直角三角 形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC 是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则 △ABC是直角三角形。
3.叙述下列命题的逆命题,并判断逆 命题是否正确。
课堂练习
• 1.判断题。
⑴勾股定理的逆定理是:如果两条直角 边的平方和等于斜边的平方,那么这 个三角形是直角三角形。
⑵命题:“角平分线上的点,到这个角 的两边的距离相等”的逆命题是真命 题。
⑶△ABC的三边之比是1:1: 2 ,则
△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是 a、b、c,下列命题中的假命题是( )
互逆的两个命题:
如果一个定理的逆命题经过证明 是正确的,它也是一个定理,
称这两个定理互为逆定理 形式:若A则B(原定理)
若B则A(逆定理)
ห้องสมุดไป่ตู้
例题分析
例1:写出命题“对顶角相 等”的逆命题,并判断其 真假。
例(补充)说出下列命题的逆命题, 这些命题的逆命题成立吗?

13.4.1 互逆命题与互逆定理

13.4.1 互逆命题与互逆定理
石 狮蚶中 教 学 笔 记
课题
互逆命题与互逆定理
教学目标
1、理解互逆命题与互逆定理;
2、正确应用互逆命题与互逆定理。
教学重点
区分互逆命题与互逆定理
教学难点
区分互逆命题与互逆定理
教学方法
问题与探究
教学用具
圆规、直尺、小黑板
教学过程(内容、步骤及师生行为)
备注
一、复习与引入
1、命题:判断正确或错误的句子。
命题可以分为题设与结论两部分
⑴真命题:正确的命题。
⑵假命题:错误的命题。
2、本节课,我们将探究什么是一个命题的逆命题,什么是一个定理的逆定理。
二、探究新知
1、命题与逆命题
⑴讲解:例如“两直线平行,内错角相等”这个命题,题设为“如果两条平行线被第三条直线所截”,结论为“那么内错角相等”。如果把这个命题的题设和结论互换一下位置,新句子也是一个命题,这时题设变为“如果两条直线被第三条直线所截,内错角相等”,结论变为“那么这两条直线平行”。这样我们就说后一个命题是前一个命题的逆命题;前一个命题也是后一个命题的逆命题。这两个命题互为逆命题。
⑵如果一个定理的逆命题是真命题,那么这个逆命题也就成了定理,那么这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理。
3、应用实例
写出下列命题的逆命题,并判断原命题、逆命题的真假。
⑴全等三角形的对应角相等;
⑵自然数必为有Biblioteka 数;⑶若|a|=|b|,则a=b;
⑷若a=b,则 ;
⑸若x=a,则 ;
三、课时练习:
1、第19.4.4节课本练习第1、2、3题.。
四、课时小结:
1、互逆命题:如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设。

互逆命题与互逆定理

互逆命题与互逆定理
平行四边形有一组对边平行且相等。 ⑶磁悬浮列车是一种调整行驶时不接触地面的交 通工具。
高速行驶时不接触地面的交通工具是磁悬浮列 车。
相信自己行,你就行!
作业:课后练习
a=b a2=b2
a2=b2

a=b

互逆命题
观察表中的命题,命题⑴与命题⑵ 有什么关系?命题⑶与命题⑷呢?
在两个命题中,如果第一个命题的条件是第二个命题的结
论,而第一个命题的结论是第二个命题的条件,那么这两个命题 叫做互逆命题。
我们把其中的一个叫做原命题,另一个叫做它的逆命题。
练习1:指出下列命题的条件和结论,并说出它 们的逆命题。 1、如果一个三角形是直角三角形,那么它的
倍 速 课 时 学 练
做一做:下列说法哪些正确,哪些不正确?
(1)每个定理都有逆定理。 × (2)每个命题都有逆命题。√ (3)假命题没有逆命题。 × (4)真命题的逆命题是真命题。×
说出下列命题的逆命题: ⑴既是中心对称,又是轴对称的图形是圆。 圆既是中心对称,又是轴对称的图形。 ⑵有一组对边平行且相等的四边形是平行四边形
两个锐角互余.
条件:一个三角形是直角三角形.
结论:它的两个锐角互余.

速 课
逆命题:如果一个三角形的两个锐角互余,
时 学
那么这个三角形是直角三角形.

2、等边三角形的每个角都等于60° 条件:一个三角形是等边三角形. 结论:它的每个角都等于60°
逆命题:如果一个三角形的每个角都等于60° 那么这个三角形是等边三角形.
1.什么叫命题?
2.命题由几部分组成?
3.命题通常可写成“如果…,那么…” 的形式,把“一组对边平行且相等的四 边形是平行四边形”改写成“如果…, 那么…”的形式.

互逆命题与互逆定理PPT教学课件

互逆命题与互逆定理PPT教学课件

【标准解答】选A、C、D.根据题意可知,开始A、B两偏振 片的透光方向相同,当被测样品置于A、B之间时,光线旋转 一个角度θ,因此到达O处光的强度会明显减弱;为了使得O 处的光线强度最大,则必须将其中一个偏振片旋转角度θ,使 光线穿过偏振片时,光的偏振方向与偏振片的透光方向一致.
【典例】如图所示,电灯S发出的光先后经过偏振片A和B,人 眼在P处迎着入射光方向看不到光亮,则( )
逆命题:如果两个角相等,那么这两个角是直角.
4、如果一个整数的个位数字是5 ,那么这个整数 能被5整除.
逆命题:如果一个整数能被5整除,那么这个整数
的个位数字是5. 假
ห้องสมุดไป่ตู้论交流:
在你学过的定理中,有哪些定理的逆命题是 真命题?试举出几个例子说明。
归纳
2
归纳:如果一个定理的逆命题也是定理,那么 这两个定理叫做互逆定理。
A.图中a光为偏振光 B.图中b光为偏振光 C.以SP为轴将B转过180°后,在P处将看到光亮 D.以SP为轴将B转过90°后,在P处将看到光亮
【标准解答】选B、D.自然光沿各个方向是均匀分布的,通过 偏振片后,透射光是沿着某一特定方向振动的光.从电灯发出 的光是自然光,则选项A错误;它通过A后,变成偏振光,则 选项B正确;在P处看不到光亮,则A、B的透振方向垂直, 若将B转过180°后,两偏振片透振方向仍垂直,仍看不到光 亮.若将B转过90°后,两偏振片透振方向一致,能看到光亮, 故选项C错误,选项D正确.
三、自然光和偏振光的比较
自然光和偏振光的比较见表
(1)偏振现象在生活中非常普遍,并不是只有自然光 通过偏振片后才变为偏振光,生活中除光源直接发出的光外, 我们看到的绝大部分光都是偏振光,如自然光射到水面时的 反射和折射光线,尤其是二者互相垂直时,都是典型的偏振 光,并且是完全偏振光,振动方向相互垂直.(2)只有横波才能 发生偏振现象,光是横波.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《教材解读》配赠资源版权所有,侵权必究
解读“互逆命题与互逆定理”
一、弄清互逆命题的概念
观察下面两个命题:(1)同位角相等,两直线平行;(2)两直线平行,同位角相等.不难看出,第一个命题的题设是第二个命题的结论,而第二个命题的结论又是第一个命题的题设,我们把这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个叫做它的逆命题.
由互逆命题的定义可知,凡是命题,都可以写出它的逆命题,也就是说每个命题都有逆命题.同时我们也发现一个真命题的逆命题不一定是真命题.如原命题“对顶角相等”是真命题,它的逆命题“相等的角是对顶角”却是假命题.
同样,原命题是假命题,它的逆命题不一定是假命题.如“对应角相等的三角形是全等三角形”是假命题,它的逆命题“全等三角形的对应角相等”却是真命题.
互逆命题是说明两个命题之间的关系,两个命题的题设和结论可以互换,它们之中可以确定其中任何一个为原命题,但是一旦确定,另一个就是它的逆命题了.
二、弄搞清互逆定理的概念
如果一个定理的逆命题经过证明是真命题,那么它也一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.如“内错角相等,两直线平行”和“两直线平行,内错角相等”等,都是互逆定理.
所有定理不一定都有逆定理,因为一个真命题的逆命题不一定也是真命题,如“对顶角相等”这个定理就没有逆定理.
三、准确叙述一个命题的逆命题
(1)对于一些简单的命题可直接交换它们的题设和结论,如“两直线平行,同位角相等”,直接交换它们的题设和结论就得到这个命题的逆命题.
(2)为了准确叙述,可把命题改写成“如果……,那么……”的形式,然后再把原命题的题设和结论互换,如“面积相等的两个三角形全等”,把它改写成“如果两个三角形的面积相等,那么这两个三角形全等”,然后再写出它的逆命题:“如果两个三角形全等,那么这两个三角形的面积相等”.特别注意,在交换一个命题的题设和结论时,语言表述要准确,防止用词不当而造成错误.
例如:“直角三角形的两个锐角互余”的逆命题写成“互余的两个锐角是直角三角形的两个锐角”就不恰当,而应写成“两个锐角互余的三角形是直角三角形”.
又如:“如果两个有理数相等,那么它们的绝对值相等”的逆命题写成“如果它们的绝对值相等,那么这两个有理数相等”也不准确,应把“它们”改成“两个有理数”.
总之,在写一个命题的逆命题时,一定要理解其含义,防止出现类似上面的错误.。

相关文档
最新文档