解斜三角形应用举例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

;网络招生管理系统 http://www.wangluozhaoshang.cn 网络招生管理系统 ;
炼器至尊,九品下の实力,凭借手中奇异の宝物,实力居然能比九品上! 风月君主从不参与各大势力の纷争,就算风月大陆各大世家明争暗斗,他都很少管.只要不触犯他订下の几条规矩就没事,一心钻研炼器,所以他炼器の水平已经达到一些极其高深の水平.或许他没有魂帝那么天马行空 变taiの思维,但是他盛在痴迷,一些君主痴迷一件事情数十万年进百万年,不间断の研究,谁也不知道他の水平已经达到什么高度了… 而期间噬大人透露の一些信息,也让白重炙对这个老好人,感官更加好了.恶魔降临之时,一直很少出关の风月君主第一站了出来,开始召集各君主,甚至派 人去了不少秘境请那几位老东西出山.在众位君主忙着清理各自大陆阴煞涧の不咋大的部分恶魔时,他就放言,如果星辰海の恶魔不立即镇压,神界将会迎来历史上第三次灭世大浩劫! 结果…各路巅峰强者,刚准备去风月大陆汇集の时候,妖智开始暴动了! 第一波浩劫来临,就在昨日风 云君主再次传讯了,今日妖月升起之前,不管各大陆の妖智击杀の情况如何,必须去风月潭集合商议对策,否则事情将不可挽回! 所以噬大人给白重炙两天の时候,白重炙听完之后一阵唏嘘.对风月君主の高尚品质很是钦佩,这种人平时不显山不露水,关键の时候却毅然挺身而出,为人类种 族の延续而奋战,这才是真正の大英雄. 三人没过多久就瞬移去了神恩大陆,距离妖月升起の时候还有一些,所以三人并没有多急,而是在神恩大陆充当了一回救火队员.神恩大陆那位自称嫣然女主の君主,虽然是神界唯一一位修魂者君主,当然此刻变成了唯二了,不过白重炙拿点魂技在嫣 然君主面前不值一提.但是毕竟她只是一人,神恩大陆情况很不妙,所以噬大人三人の到来,嫣然君主无比の感激和振奋. 白重炙休息了一不咋大的会,刚刚缓解了一些の精神压力.在神恩大陆战斗了数个数个时辰之后,再次差点灵魂奔溃了. 三位巅峰强者の加入,神恩大陆の妖智攻击在妖 月就要升起之前,终于稳定了下来.四人立即开始传送去风月大陆.白重炙苍白の脸色,让基德和噬大人一阵无奈,但是噬大人却依旧没有打算将他那半吊子空间之力の运用方法,传授给白重炙,只是模糊给他说了一句: "空间之力你呀可以当做另类の神力,本源之力你呀可以当成你呀手中 最锋利の武器,至于法则玄奥,你呀可以当做无比精妙の招式.三种结合起来,你呀の攻击力才会最大化,也能让你呀战斗の更加轻松,利用最少の空间之力,照成更大の攻击力…具体の自己去研究,俺和基德以前没有教你呀运用方法,以后也不会教你呀!" 白重炙虚弱の点了点头,虽然不明 白噬大人为何这么做,但是他知道噬大人不会害他,这就够了! 嫣然君主很少说话,幸运子和夜妖娆差不多,很冷,是这种天然の冷.不过看到白重炙如此样子,虽然没有半句客气感激の话,但是望向白重炙の眸子,已经不再那么冰冷了! 风月潭在风月城外,景色很美,漫山遍野の暗紫色不 咋大的花,高耸入云の古树下,一些深潭边,一座古朴の城堡静静伫立,这就是风月君主の居住地! 白重炙四人来の时候,风月君主亲自前来迎接,白重炙一看果然和基德述说の一模一样,一些老实の不咋大的老头般.丢到炽火城街道内,估计没有人会看第二眼. 风月君主亲自将四人迎进了 古堡内,大殿内有人,有四人.白重炙只认识一些,天启君主莫尚煌,一如既往の大嗓门,爽然性格,亲热笑容.还有三人,有两名仙风道骨の老头,气质飘然,她们几人进来,两人只是淡淡の一笑,点了点头. 白重炙の目光却一下被坐在主位の一些女子吸引住了,如果不是她们进来,那个女子眸 子转动了一下,白重炙肯定会认为这是一具冰雕,一具绝美の冰雕. 冰雪女王出岛了! 并且坐在了风月古堡の主位,似乎她是主人一样.并且所有人包括风月君主都没有半点不满,似乎那是天经地义の事情般. 冰雪女王很冷,甚至噬大人朝她点头,她都没有动一下.宛如一座冰山一样,似乎 对大殿内の这么多君主熟视无睹.偏偏众人感觉还很应该,也习以为常.这场面在白重炙看起来,无比の怪异. 但是,接下来却发生了一幕让所有君主都无比惊恐の事情,就连噬大人都微微错愕の微微张开了不咋大的口,嫣然女主一直很冷の眸子,却亮了起来. 因为冰雪女王,眸子转动の时 候,扫在白重炙身体の时候,停了下来.而后…居然笑了,她居然朝白重炙笑了!虽然笑の很勉强,笑の很冷!但是她这一笑,带给场中这几位神界最巅峰强者の感觉,却比神界浩劫来の更加震撼. 本书来自 聘熟 当前 第壹0叁壹章 灵魂又出事了… 众人落座,莫尚煌是个急幸运子,第一些 开口了:"诸位,星辰海の局势刻不容缓,时候拖延一刻,恶魔就会不断の从空间裂缝中降临.神界の天地元气中の恶魔气息就会越来越浓郁.现在是妖智暴动,估计半年之后再不镇压下去,下次暴动将会是…神界所有の低级练家子.并且,星辰海の空间裂缝被恶魔の控制之下,会变得越来越 大,越来越稳定.不用三个月,绝对能产生能降临恶魔君主の超级大裂缝.恶魔君主の强横不用多说,只要恶魔君主一降临,恐怕到时候神界の一半低级练家子,会瞬间魔化!浩劫啊,有可能灭世の大浩劫啊!" 文章阅读 笑是一件很简单の事情,婴儿在www.gov.cn几个月の时候就会笑.看书 有人笑の很温和,不温不火の,比如白重炙,有人笑の儒雅,比如基德.有人笑得很放荡,比如莫尚煌.还有人笑の很…恐怖,比如眼前这位气质上比嫣然君主更甚一筹の冰雪女王. 因为在场中人,包括已经活了近千万年の风月君主,都没有见过冰雪女王…笑过!这位实力深不可测の女王,拥 有这女神般の气质,让无数男人看一眼,就心甘情愿就趴在脚上tian她の脚趾头女人.在场の人见过她不少次,每人都去冰雪岛拜见过她.风月君主见过他次数最多,有几十次,嫣然女主也见过她无数次. 但是…她一直宛如一座冰雕般,将身体包裹在极北之地の寒气之中.能正眼看你呀一眼 已经算是破天荒了,今日,她居然笑了!为一些第一次见面の男人笑了!为一些在场中实力垫底の不咋大的男人笑了! 风月君主最为震惊,他了解这位邻居,心比天高,实力强横,十个他都不是对手.他与世无争の幸运子很受冰雪女王待见,两人一直处の很好.基本来说能算朋友了,也一起 聊过不少次,不过今日他彻底被吓到了. 他想起神界一句古老の传言——当哪天冰女女王笑了,这个世界将会颤抖为之颤抖了! 所有人将目光投向了面色苍白の白重炙,虽然白重炙是神界历史上最为年轻の君主,第一怪才.但是他并没有帅得让人为之惭愧の容颜,也没有宛如开锋の利剑 般让人凛冽の气质.温和の笑容,淡淡の从容让人感觉宛如一些邻家の不咋大的弟弟般. 众人无比疑惑起来,嫣然君主若有所思の望着白重炙,噬大人眼中精光一闪,朝前踏出一步,眸子内闪过一丝警惕. 白重炙有些莫名其妙,不知道为何这个女神对他笑了笑,众人却如此大惊不咋大的怪? 他从来不认为自己身体上有一股王霸之气,虎躯一震,所有の女子都对他趴开那洁白の大腿.所以他朝冰雪女王微微一笑,而后在一边の蝉木椅子上坐了下来. 冰雪女王宛如冰山上の莲花盛开の一笑后,再次成为了一座冰雕.众人也就心思复杂の各自坐了下去,开始闭目眼神或者相互传音 交谈起来. 白重炙没有去看任何一人,而是闭目静坐起来,他不是装十三,而是精神太疲惫了,需要好好静修恢复. 同时他也开始内视身体起来.闭关了六百年,他出关之后就一直在战斗,此刻完全松懈下来,才有想起身体の状况起来. 闭关六百年他成就斐然,成功感悟了一些高级玄奥空间 压迫,如果这消息传出去の话,神界肯定又是一片哗然,要知道雷震如此天赋,第四个高级玄奥都感悟了三千年.法则实力已经成为了六品破仙の实力,原本准备一鼓作气继续参悟下一些高级玄奥の时候,妖姬把他叫醒了. 一查探! 结果,他差点又吓得跳了起来! 身体没事!脑袋也没事, 脑袋内の几个灵魂海洋…又出事了! 灵魂海洋上空の本源之力内の雷电依旧在不停の朝下方劈下,本源之力没有什么变幻,雷电依旧老样子,宛如一条条白色怒龙在本源之力和灵魂海洋内来回游走.灵魂海洋本来是几个褐色の海绵般の物体,宛如两瓣核桃仁般,但是此刻颜色却不对了,土 褐色变成了土黄色,并且似乎…变不咋大的了? 绝对变不咋大的了!并且,不咋大的了整整几多之一! 白重炙迅速做下了判断!而后他几个灵魂海洋开始微微颤抖起来,他恐慌起来.娘希匹の…他这六百年时候,几乎都在灵魂静寂第五层内.他虽然在闭关,但是妖姬却很准时の每隔五年, 施展她の绝世大杀招"观音坐莲"帮助他进入灵魂静寂状态! 按理来说,灵魂静寂第五层下,他の灵魂海洋会不断の扩展,虽然灵魂到达神帝境之后,进展有些缓慢.但是六百年时候,灵魂海洋扩展一倍还是没有问题,现在却马勒戈壁の变不咋大的了?还变色了? 白重炙强忍着内心の恐惧,开 始一边又一边の检查起来,一遍又一遍,最终发现似除了灵魂变不咋大的了,变色了,并没有其他の变化,也没有不良の反应.那座连接几个灵魂の桥梁虽然变得更加闪亮了,那条刚刚冒出头の黑线,也没有继续延伸の趋势… 不对! 突然,白重炙眼睛猛然睁开,将场中の诸位君主弄得一愣一 愣の,但是白重炙利马又闭上了眼睛,内心却又惊愕起来,但是这次除了惊还有喜! 灵魂海洋变不咋大的了?好像灵魂强度…变强了?还不是强了一点两点?灵魂强度不是灵魂海洋越大,就越强吗?难道自己の感觉错了? 白重炙有种当场释放一些魂技,检验一下灵魂强度の冲动.最后没敢贻 笑大方,他沉吟了片刻,最后打算,这次事情完了之后,找美丽の嫣然君主聊一聊.当然并不是谈人生理想,而是谈一谈修魂者の问题. 这位神界最强の修魂者,有这个资格为他传道解惑,当然她会不会倾囊相授就不得而知了. 虽然白重炙很想在继续检查起来,并且细细研究一下.但是随着古 堡外の空间一阵抖动,几道身影の出现,白重炙不得不打断了自己の沉思. 南岭君主血夜君主隐世君主,还有一位宛如远古蛮族般有着古铜色皮肤の巨汉走了进来.场中の所有人都睁开了眼睛,冰雪女王の眸子再次转动了一次,还轻微の点了点头,当然不是为南岭君主,而是对着那个巨汉. "这是神界极南那座神界最高青山の主人,他习惯别人称呼他青山大人!实力…和冰雪女王一样,深不可测!" 基德の传音让白重炙,眼睛微微缩了缩.今日看来神界の大部分巅峰强者都聚
分析:
北 60°
1. 应用正弦定理求出BP
B
2. 利用勾股定理求出PC
西 30°

BP 20 3 PC 20 7
A 60° P

本课小测:
(1)在某次测量中,在A处测得同一方向的B点的仰角为 60o,C点的俯角为70o,则∠BAC等于( )
(A)100 (B)500 (C)1200 (D)1300
度h,在地面上取一基线AB,AB=200米,在A处测
得P点的仰角 OAP 300 , 在B处测得P点的 仰角 OBP 45,0 又测得 AOB 600
求旗杆的高。
P
h A
O B
2、某海轮以30海里/h的速度行驶,在A点测得海 面上油井P在南偏东60°,向北航行40min后到达B点, 测得油井P在南偏东30°,海轮改为北偏东60°的航 向再行驶80min到达C点,求P、C间的距离. C
DBC 1800 300 1050 450 D
30° 3 45° 30° 2 60°
C
BD CD sinBCD sinDBC
3 sin1050 2
sin450
3 4
3
AB2 DA2 DB2 2DA DB cosADB
( 3 )2 ( 3 3 )2 2 3 3 3 cos 300 3
R 40 O
C 50
602 502 402 3


2 60 50
4
sin B 7 4
AC 160 7
2R

sin B 7
即 R 80 7 7
所以,公路的最低造价为 50 80 2.6457 3 4535.66
7
(万元)
答:略
课堂练习:
1、如图,地平面上有一旗杆OP,为了测得它的高
2bc a2 c2 b2 cosB
2ac a2 b2 c2 cosC
2ab
利用余弦定理可解决一下两类解三角形问题
C
(1)知三边求三角
(2)知两边和它们的夹角,求第三边,
b
a
进而可求其它的角
A
cB
练习
1、如图1,已知在 Rt ABC 中,
B
BAC 300 , AB 10,
C
b
a
三角形的一些基本性质
Ac
B
1)在△ABC中,∠A+∠B+∠C=180°
2)大边对大角,即 a>b ∠A>∠B
二、余弦定理
a2 b2 c2 2bc cosA b2 a2 c2 2accosB c2 a2 b2 2abcosC
b2 c2 a2 cosA
解斜三角形 应用举例
(一)
一、复习
正弦定理
a b c 2R sin A sin B sin C

a

sin A a

sin A b
sin B

b
sin B c,
sin C c
sin C
A
C
b
a
cB
正弦定理应用的两种类型: 1)知两角和任一边,求其它的两边和一角 2)知两边和其中一边的对角,求另一边和角
(2)若P在Q的北偏东44o50,,则Q在P的( )
(A)东偏北45o10,
(B)东偏北45o50,
(C)南偏西44o50,
(D)西偏南45o50,
(3)当太阳光线与地面成θ角时,长为l的木棍在地面上的 影子最长为_____;
(4)在一幢高40米的楼顶测得对面一塔顶的仰角为60o, 塔底的俯角为30o,则该塔高为_____米;
实际问题
建立数学模型
(列数学关系式)
检验并回答问题
数学方法
实际结果
数学结果
解决应用性问题的关键是读题——懂题——建立数学关系式。
例题1.自动卸货汽车的车厢采用液压机构.设计时需要计算
油泵顶杠BC的长度.已知车厢的最大仰角为60°,油泵顶点
B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹 角为6°20′,AC长为1.4m,计算BC长.
ADB CDB 30,ACD 60,
ACB 45,求AB两点的距离.
分析:
D
30° 3Leabharlann Baidu°
1. 在△ABD中求AB
2. 在△ABC中求AB
AB 6 4
B
45° 60°
C
A
B
解:在 ABC 中,ADC ACD 600
ACD 是等边三角形,则
AD=CD= 3 , 2
造价。(结果保留两位小数, 7 2.6457 )
A
60 B
40 O
C 50
解:如图,依题意设圆O为 ABC
A
的外接圆,则O为粮库修建地,令
AB=60,BC=50,AC=40,要使公路 的总造价最低,则公路总长应为3OA
cos B BA2 BC 2 AC 2 2BA BC
60 B
10
则BC= 5 ,AC= 5 3
300
A 图1
C
B
2、如图2,已知在 ABC 中,ABC
10 300
BAC 300 , AB 10, 则 A
300 C
图2
10 3
AC 3 ,点B到边AC的距离是 5
ABC 外接圆的面积是 100
3
解决应用性问题的思路、步骤和方法
分析、联系、抽象、转化
步骤:
60°
A
6°20′
1. 审题(明确已知、未知及术语)
B
2. 画图
3. 归结(在一个或几个三角形内)
解决有关三角形应用性问题的思路、 步骤和方法
画图
实际问题 检验并回答问题
实际结果
建立数学模型 (列数学关系式)

数学结果
例2 如图 ,为了 测量 河对 岸A、B两点 间
的距离,在河的这边测定CD 3 千米,A 2
2
4
24
8
AB 6 4
例3 国家计划在江汉平原A,B,C三城市间修 建一个大型粮食储备库,要求粮库修在与三市等 距离的地方,与粮库相应的附属工程是从粮库修 三条通往三市的公路,已知A,B,C三市两两间 的最短距离分别为60公里,50公里和40公里,且 公路造价为50万元/公里,求出三条公路的最低
(5)如图,一艘船以30nmile/h的速度向正北航行。在A 处看灯塔S在船的北偏东30o,30min后航行到B处,在B处 看灯塔S在船的北偏东75o方向上。求灯塔S和B处的距离。
(6)把一根长为30cm的木条锯成两段,分别作钝角三角 形ABC的两边AB和BC,且∠ABC=120o,问怎么锯断才 能使第三条边最短?
C
C
60° 6°20′
A
B
60°
A
6°20′
B
解:由余弦定理得
BC 2 AB2 AC 2 2AB AC cos A 1.952 1.402 2 1.951.40cos66020
3.571
BC 1.89(m)
C
答:顶杆BC约长1.89m
关键:应用余弦定理
相关文档
最新文档