实验一光电二极管、光电三极管光照特性的测试

合集下载

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告1.实验目的:1.1掌握光电二三极管的基本概念和工作原理;1.2测试光电二三极管的特性曲线,并分析其特性参数;1.3确定光电二三极管的灵敏度和响应速度。

2.实验原理:光电二三极管是一种能将光能转化为电能的器件,由光敏电阻和PN 结构二极管构成。

当光照射到光敏电阻上时,电阻的值会发生变化,从而改变了二极管的电流和电压特性。

光电二三极管的响应速度较快,可以用于光电转换和光控开关等应用。

3.实验器材:3.1光源:可调节亮度的LED灯;3.2光电二三极管:选择适合实验的光电二三极管,如LS7180;3.3直流电源:提供稳定电压;3.4示波器:用于测量和观察电流和电压波形;3.5多用电表:用于测量电流和电压的值。

4.实验步骤:4.1搭建光电二三极管测试电路:将直流电源的正极连接到光电二三极管的阳极,负极连接到二极管的阴极,将示波器的探头连接到二极管的阳极和阴极之间,设置示波器的触发模式为自由触发。

4.2调节光源的亮度:将LED灯的亮度调节到适当的强度,使光照射到光电二三极管的光敏电阻上。

4.3测试静态特性:通过调节直流电源的电压,测量和记录不同电压下光电二三极管的电流和电压值,绘制出电流-电压特性曲线。

4.4测试动态特性:通过改变光源的亮度和频率,测量和记录光电二三极管的响应时间和灵敏度,分析其动态特性。

5.实验结果与讨论:5.1静态特性曲线图:根据实验数据绘制出光电二三极管的电流-电压特性曲线图,并进行分析。

通常光电二三极管处于正向偏置状态下工作,因此电流-电压曲线会呈现出非线性关系。

[插入电流-电压特性曲线图]5.2动态特性分析:根据实验数据和观察结果,分析光电二三极管的响应时间和灵敏度。

光电二三极管的响应时间较短,一般在微秒级别,灵敏度高,能够检测很低的光照强度变化。

6.实验结论:本实验通过测试光电二三极管的特性曲线和分析其特性参数,掌握了光电二三极管的基本工作原理和特性。

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料一、实验目的1.了解光电二三极管的结构和工作原理;2.熟悉光电二三极管的特性测试与分析方法;3.掌握光电二三极管的响应特性和光谱特性。

二、实验原理三、实验仪器与材料1.光电二三极管;2.电源;3.电压表;4.电流表;5.光源;6.滤光片。

四、实验步骤1.组装实验电路:将光电二三极管连接到电源、电压表和电流表上,确保连接正确。

2.设置工作电压:调节电源的输出电压,将光电二三极管工作在正向偏置的工作点上。

3.测试光电流:用电流表测量光电流的大小,并记录数据。

4.测试响应时间:在光电二三极管上方以一定频率的光源扫描,记录响应时间。

5.测试光谱特性:将不同波长的光源照射到光电二三极管上,记录光照强度和光电流的关系,并绘制光电流-波长曲线。

五、实验结果与分析1.光电流与光照强度的关系:通过实验测得的数据,可以绘制光电流-光照强度曲线。

根据曲线的斜率可以得出光电二三极管的光电流灵敏度。

2.响应时间:通过实验测得的数据,可以计算出光电二三极管的响应时间。

响应时间越短,说明光电二三极管的响应速度越快,适用范围越广。

3.光谱特性:通过实验测得的数据绘制光电流-波长曲线,可以得出光电二三极管的光谱响应范围和峰值波长。

六、实验结论1.光电二三极管的响应特性:通过实验测得的数据可以得出光电二三极管的响应时间和响应速度。

响应时间越短,说明响应速度越快,适用范围越广。

2.光电二三极管的光谱特性:通过实验测得的数据可以得出光电二三极管的光谱响应范围和峰值波长。

七、实验心得通过本次实验,我对光电二三极管的特性有了更深入的了解。

光电二三极管在光电转换方面具有很大的应用潜力,可以广泛用于光学测量、光通信和光电子科学等领域。

实验中,我通过测量数据和分析结果,进一步认识到光电二三极管的重要性和特点。

对于今后的研究和应用,这些认识和经验对我来说是非常宝贵的。

同时,在实验中我也锻炼了实验操作的能力和数据处理的技巧,这对我的科研能力提升起到了积极的促进作用。

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料实验目的:通过实验,了解光电二三极管的基本结构和工作原理,掌握光电二三极管的特性测试方法,并探究光照强度对其电流特性的影响。

实验仪器与材料:1.光电二三极管2.光源3.恒流电源4.快速数字万用表5.电阻箱6.连线电缆实验原理:光电二三极管是能将光信号转化为电信号的光电器件,由半导体材料制成。

当光照射到光电二三极管的PN结时,光子能量会激发电子从固体内部跃迁到导带,形成电流。

实验中通过改变光照强度来探究其对光电二三极管电流特性的影响。

实验步骤:1.将光电二三极管插入电源以及数字万用表中,根据光电二三极管的正负极性正确连接。

2.将恒流电源与光电二三极管进行连接,设置合适的电流值。

(注意:尽量选取较小的电流,以避免光电二三极管受到过大的电流烧毁)3.打开光源,并将光源调到合适的位置,以使其尽可能均匀地照射到光电二三极管上。

4.用快速数字万用表测量光电二三极管的电流值,并记录下来。

5.改变光源的距离以调节光照强度,再次测量光电二三极管的电流值,记录下来。

6.依次改变光源的距离,重复步骤4和5,并记录相应的电流值。

7.将实验数据进行整理和分析。

实验数据记录与分析:通过实验,我们得到了一系列不同光照强度下的光电二三极管电流值。

根据光照强度与电流值的关系,我们可以发现,随着光照强度的增大,光电二三极管的电流值也随之增大。

这是因为光照强度的增大会使得光子的能量增加,从而激发更多的电子跃迁到导带,形成更大的电流。

实验总结与思考:通过本次实验,我们深入了解了光电二三极管的基本结构和工作原理,掌握了光电二三极管特性测试的方法,并通过实验数据分析研究了光照强度对其电流特性的影响。

在实际应用中,我们可以利用光电二三极管的特性,将其应用于光电传感器、光电开关、光照度计等领域。

然而,在实验中我们需要注意的是,光电二三极管对光照的敏感度较高,一些外界因素,如环境光的影响会对实验的结果产生一定的干扰,因此,尽量保持实验环境的一致性是十分重要的。

实验2-2光电二极管光电特性测试

实验2-2光电二极管光电特性测试

实验2-2 光电二极管光电特性测试实验目的1、了解光电二极管的工作原理和使用方法;2、掌握光电二极管的光照度特性及其测试方法。

实验内容1、暗电流测试;2、当光电二极管的偏置电压一定时,光电二极管的输出光电流与入射光的照度的关系测量。

实验仪器1、光电探测原理实验箱1台2、连接导线若干实验原理1、光电二极管结构原理光电二极管的核心部分也是一个PN结,和普通二极管相比有很多共同之处,它们都有一个PN结,因此均属于单向导电性的非线性元件。

但光电二极管作为一种光电器件,也有它特殊的地方。

例如,光电二极管管壳上的一个玻璃窗口能接收外部的光照;光电二极管PN结势垒区很薄,光生载流子的产生主要在PN 结两边的扩散区,光电流主要来自扩散电流而不是漂移电流;又如,为了获得尽可能大的光电流,PN结面积比普通二极管要大的多,而且通常都以扩散层作为受光面,因此,受光面上的电极做的很小。

为了提高光电转换能力,PN结的深度较普通二极管浅。

图2-2.1为光电二极管外形图(a)、结构简图(b)、符号(c)和等效电路图(d)。

光电二极管在电路中一般是处于反向工作状态(见图2-2.2,图中E为反向偏置电压),在没有光照射时,反向电阻很大,反向电流很小(一般小于0.1微安),这个反向电流称为暗电流,当光照射在PN结上,光子打在PN结附近,使PN结附近产生光生电子和光生空穴对,称为光生载流子。

它们在PN结处的内电场作用下作定向运动,形成光电流。

光的照度越大,光电流越大。

如果在外电路上接上负载,负载上就获得了电信号。

因此光电二极管在不受光照射时处于截止状态,受光照射时处于导通状态随着光电子技术的发展,光信号在探测灵敏度、光谱响应范围及频率特性等方面的要求越来越高,为此,近年来出现了许多性能优良的光伏探测器,如硅、锗光电二极管、PIN 光电二极管、雪崩光电二极管(APD)等。

光电二极管目前多采用硅或锗制成,但锗器件暗电流温度系数远大于硅器件,工艺也不如硅器件成熟,虽然它的响应波长大于硅器件,但实际应用尚不及后者广泛。

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光敏二极管特性测试实验一、实验目的1.学习光电器件的光电特性、伏安特性的测试方法;2.掌握光电器件的工作原理、适用范围和应用基础。

二、实验内容1、光电二极管暗电流测试实验2、光电二极管光电流测试实验3、光电二极管伏安特性测试实验4、光电二极管光电特性测试实验5、光电二极管时间特性测试实验6、光电二极管光谱特性测试实验7、光电三极管光电流测试实验8、光电三极管伏安特性测试实验9、光电三极管光电特性测试实验10、光电三极管时间特性测试实验11、光电三极管光谱特性测试实验三、实验仪器1、光电二三极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1、概述随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。

光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。

光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。

从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。

从对光的响应来分,有用于紫外光、红外光等种类。

不同种类的光敏二极管,具胡不同的光电特性和检测性能。

例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。

这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。

又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。

因此,在使用光敏二极管进要了解其类型及性能是非常重要的。

物理实验技术中的光电二极管特性测量与分析

物理实验技术中的光电二极管特性测量与分析

物理实验技术中的光电二极管特性测量与分析光电二极管是一种能够将光能转化为电能的器件,广泛应用在光电传感器、光通信、光电测量和光谱分析等领域。

在物理实验技术中,测量和分析光电二极管的特性对于研究光电效应、了解器件性能以及优化实验设计都具有重要意义。

一、光电二极管原理和基本特性光电二极管的原理是基于光电效应,利用光照射在PN结上产生电子-空穴对,使得PN结两端产生电压。

其关键特性包括响应频率、光电流、暗电流、光电流增益等。

测量这些特性需要合适的实验装置和方法来获取准确的结果。

二、光电二极管特性的测量方法1. 频响特性测量频响特性测量是评估光电二极管对光信号变化的响应速度的重要方法。

常用的实验装置包括函数发生器、光源和示波器。

通过改变函数发生器输入的正弦光信号频率,测量光电二极管输出的电流或电压的变化,从而得到频响特性曲线。

这些曲线反映了光电二极管的截止频率、带宽和相移等信息。

2. 光电流和暗电流测量光电流和暗电流是衡量光电二极管敏感度的重要指标。

光电流指的是光照射下二极管产生的输出电流,可以通过连接电流表或电流放大器进行测量。

而暗电流是指在没有光照射的情况下,二极管自身产生的微弱电流。

暗电流直接影响光电二极管的信噪比和稳定性,需要特殊的实验装置和方法进行测量。

三、光电二极管特性分析测量得到的光电二极管特性数据可以通过分析得到有关器件性能的重要信息。

以下是几个典型的分析方法:1. 截止频率和带宽分析利用频响特性曲线可以确定光电二极管的截止频率和带宽。

截止频率是指光电二极管对信号频率的响应达到3dB衰减的频率,可以通过对频响特性进行插值计算得到。

带宽是指光电二极管在特定条件下能够传输信号的频率范围,可以根据频响特性曲线的满足条件进行判断。

2. 光电流增益分析光电流增益是指光电二极管单位光功率入射时输出电流的增益。

可以通过将测得的光电流与已知的入射光功率相除得到。

光电流增益反映了光电二极管对光信号的放大效果,是评估器件性能的重要指标。

实验一-万用表测量二极管、三极管

实验一-万用表测量二极管、三极管

实验一万用表测量二极管、三极管一、实验目的1.熟练掌握指针式万用表和数字万用表的使用方法。

1.熟练掌握用指针式万用表测量普通二极管和三极管。

2.熟练掌握用数字万用表测量普通二极管和三极管。

二、主要元件及仪器1、MF-47指针式万用表2、VC890D数字万用表3、1N4001~1N4007系列普通整流二极管4、1N4735(6.2V)、1N4738(8.2V)稳压二极管5、9011~9014小功率晶体三极管二、实验原理(一)指针式万用表测量二极管:二极管参数的测试可用晶体管图示仪,或其它仪器进行测试。

在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。

初学者在业余条件下可以使用万用表测试二极管性能的好坏。

测试前先把万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管,也不要用RX10K,该档电压太高,可能击穿管子),再将红、黑两根表笔短路,进行欧姆调零。

正向特性测试:把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。

若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般小功率锗管的正向电阻为1KΩ左右,硅二极管约为5KΩ左右。

一般正向电阻越小越好。

若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。

短路和断路的管子都不能使用。

反向特性测试:把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。

一般小功率锗管的反向电阻为几十KΩ,硅二极管约为500KΩ以上。

1.普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。

通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。

(1)极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。

光电子实验

光电子实验

目录实验一发光二极管、光电二极管和光电三极管的应用实例(光开关)实验二光电器件伏安特性测试实验实验三光电器件光照特性测试实验实验四制作简易光功率计和测量激光器的光功率实验五LED光源I —P特性曲线测试实验一发光二极管、光电二极管和光电三极管的应用实例(光开关)实验目的:1. 具体了解常用半导体光电器件的使用方法和电路,培养同学的动手能力。

2. 通过实验中的应用光电器件的电路的制作,提高分析和解决实际问题的能力。

实验器材:1. 半导体光电器件:发光二极管、光电二极管、光电三极管、反射型光电开关。

2. 电子器件:半导体三极管(NPN型:9013)、电阻3. 电路板(Light Switch Circuit )、导线、焊接材料、干电池(6V )。

4. 工具:万用电表、电烙铁、剪刀、镊子。

实验内容和步骤:1. 发光二极管(LED的研究1)按照图1-1连接电路板(Light Switch Circuit )中Fig.1所示的电路,发光二极管相对于电源处于正向连接。

观察发光二极管的发光情况,记录毫安表的电流及其方向;发光二极管引脚图图1-12)按照图1-2连接电路板(Light Switch Circuit )中Fig.1所示的电路,发光二极管相对于电源处于反向连接,观察发光二极管的发光情况,记录毫安表的电流及其方向;图1-22. 光电二极管(photodiode)的研究1)按照图1-3连接电路板(Light Switch Circuit对于电源处于正向连接。

测量并记录其电流及其方向;2)按照图1-4连接电路板(Light Switch Circuita)有光照时和b)无光照时时电流,并作记录(包括电流的方向);3. 光电三极管的研究1)按照图1-5连接电路板(Light Switch Circuit对于电源处于反向连接。

图1-3图1-5光电三极管引脚图)中Fig.2所示的电路,光电二极管相)中Fig.2所示的电路,光电二极管相对于电源处于反向连接。

二极管与三极管的简单测试一、实验目的-中山火炬职业技术学院

二极管与三极管的简单测试一、实验目的-中山火炬职业技术学院
实验一 常用半导体器件—二极管与三极管的简单测试
一、实验目的: 1、常用二极管的类型及简单测试方法, 2、常用三极管的类型及简单测试方法, 3、指针万用表和数字万用表测试二极管及三极管的方法。
二、实验器材:二极管、三极管[实验箱提供]若干,指针万用表,数字万用表
三、预习要求: 1.PN 结的伏安特性曲线,外电压对耗尽层的宽窄的影响,耗尽层宽窄对电阻大小的影响 2.二极管的伏安特性曲线,网络搜索二极管资料 3.三极管的输入输出特性曲线,网络搜索三极管资料
四、实验内容及步骤 1、指针万用表测量二极管三极管的要点。 将刻度旋钮置于电阻×100 欧姆档,此时万用表等效为电压源与电阻串联,黑表笔为高电位,红表笔为
低电位,电流从黑表笔流出,流入红表笔,表头指针偏转的角度代表流过表笔电流的大小。 电阻量程值小,则内阻小,提供电流较大,量程值大,则内阻大,提供的电流较小。 指针万用表处于电阻档时会消耗电源,不用时旋钮处于 OFF 档或 AC 最高电压档。 2、数字万用表测试二极管及三极管的要点。 将刻度旋钮置于二极管档位,此时红表笔为高电位,黑表笔为低电位,连接正确情况下,屏幕显示值
为什么?
五、思考题 从外加电场对 PN 结耗尽层宽窄影响的角度分析实验现象? 如何用简单的方法判断常见半导体二极管、三极管的好坏?
-3-
向导通,角度小或者几乎观察不到,表明流过 PN 结的电流微弱。(注意:稳压管的测试现象)
万用表(电阻档等效为实际电压源)和二极管构成回路,根据表笔电流的流向及 PN 结电流的流向,判
别出二极管或三极管的 P 极和 N 极。
中山火炬职业技术学院电子工程系
测试小结:
模拟电子线路实践教程
(2)发光二极管的测试(指针万用表、发光二极管) A、测试依据:发光亮度与流过 PN 结的电流成正比。 B、指针万用表刻度指向×10 或 1 欧姆档,红黑表笔交换测试发光二极管,观察发光亮度与指针偏转角

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告实验目的:1.了解光电二三极管的工作原理和特性;2.掌握光电二三极管的测试方法;3.分析光电二三极管的特性曲线。

实验仪器和材料:1.光电二三极管;2.变阻器;3.直流电源;4.毫伏表;5.电压表。

实验原理:光电二三极管是一种能将光信号转换为电信号的器件。

它由有源区、无源区和带势垒(反向偏置的PN结)组成。

当光照射到光电二三极管的带势垒处时,光子的能量将被电荷转移到PN结区域,导致PN结电流的变化。

光电二三极管的特性曲线可以描述PN结电流与光照强度之间的关系。

实验步骤:1.搭建实验电路,将光电二三极管连接到直流电源上,并用变阻器调节电流;2.将毫伏表连接到光电二三极管的输出端,用电压表测量电流;3.依次将电流调节到0.1mA、0.2mA、0.3mA、0.4mA、0.5mA等不同电流数值,记录每个电流对应的电压;4.将光照射到光电二三极管上,重复步骤3,记录每个电流对应的电压;5.绘制光电二三极管的特性曲线。

实验结果:根据实验步骤记录的电流和电压数值,绘制出以下曲线图:(插入特性曲线图)实验分析:1.从特性曲线图可以看出,当光电二三极管的电流增大时,其输出电压也随之增大,但增幅逐渐减小;2.光电二三极管在一定电流范围内,输出电压与电流呈线性关系;3.随着光照强度的增加,光电二三极管的输出电压也增加,但增幅有限。

误差分析:1.实验过程中可能存在电路连接不良导致的测量误差;2.光照强度难以控制,可能会影响实验结果的准确性;3.仪器的精度限制也可能引入一定的误差。

实验结论:通过光电二三极管的特性测试实验,我们了解到光电二三极管的工作原理和特性。

光电二三极管可以将光信号转换为电信号,并且输出电压与电流呈线性关系。

光照强度的增加会导致光电二三极管的输出电压增加,但增幅有限。

实验结果可能存在一定误差,但总体上符合光电二三极管的特性。

实验一光电二极管、光电三极管光照特性的测试

实验一光电二极管、光电三极管光照特性的测试
G IA IK

G
SA SK

暗电流
当光电倍增管在完全黑暗的情况下工作时,阳极电路里 仍然会出现输出电流,称为暗电流。引起暗电流的因素 有:热电子发射、场致发射、放射性同位素的核辐射、 光反馈、离子反馈和极间漏电等。
三、实验装置

实验装置如图3。
测试室 光源室
白炽灯 倍增管
检流计
倍增管电源
白炽灯电源
+1
如图4所示,
可以作鉴相 器使用。
-180°
-90°
90°
180°
φ
-1
图4 相关器输入为与参考信号同频的 方波时它的输出直流电压与两者 的相位差成线性关系
⑤ 等效噪声带宽
基波噪声带宽: f N 1
1 1 2 R0C0 2T
总等效噪声带宽:f N 1
2
8
f N 1
2
16T
四、实验仪器及装置
1.
2.
实验仪器:光电二极管、钨丝灯、调压变压器、照度 表、毫安表、直流稳压电源等。
实验装置如图4。
照度计
μA
直流稳压电源
光电探测器
调压变压器
图4
光电二极管光照特性测试装置
实 验 二 硅光电池负载特性的测试
一、实验目的
1. 掌握硅光电池的正确使用方法。 2. 了解光电池零负载,以及不同负载时光电流
1.43 f ( R1 R2 )C1

3端为输出端,R3是限流电阻,避免由于电流过大
而烧坏红外发光管D,其输出信号为方波,占空比 为
R1 。 R1 R2
② 接收电路由光电三极管、放大驱动电路和负载组成。 由于外接负载的不同,所采用的放大电路的形式也很 多。 如果负载电流较小,可采用晶体管作放大器,输出端 直接带负载(如图2)。 V

光电二极管实验报告

光电二极管实验报告

光电二极管摘要:光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。

但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。

通过实验的方法测量出光电二极管的主要的特性和技术参数,最高反向工作电压、暗电流、光电流、光谱特性等。

分析其特性及技术参数。

关键词:光电二极管特性技术参数分析一光电二极管的工作原理:光电二极管是将光信号变成电信号的半导体器件。

它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN 结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。

光电二极管是在反向电压作用之下工作的。

没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。

当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。

它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。

这种特性称为“光电导”。

光电二极管在一般照度的光线照射下,所产生的电流叫光电流。

如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。

光电二极管、光电三极管是电子电路中广泛采用的光敏器件。

光电二极管和普通二极管一样具有一个PN结,不同之处是在光电二极管的外壳上有一个透明的窗口以接收光线照射,实现光电转换,在电路图中文字符号一般为VD。

光电三极管除具有光电转换的功能外,还具有放大功能,在电路图中文字符号一般为VT。

光电三极管因输入信号为光信号,所以通常只有集电极和发射极两个引脚线。

同光电二极管一样,光电三极管外壳也有一个透明窗口,以接收光线照射。

二光电二极管的种类、特性与用途:1 PN型特性:优点是暗电流小,一般情况下,响应速度较低。

用途:照度计、彩色传感器、光电三极管、线性图像传感器、分光光度计、照相机曝光计。

实验二极管和三极管的识别与检测实验报告

实验二极管和三极管的识别与检测实验报告

实验二极管和三极管的识别与检测实验报告实验二极管和三极管的识别与检测一、实验目的1.熟悉晶体二极管、三极管的外形及引脚识别方法。

2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。

3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。

二、实验仪器1.万用表2.不同规格、类型的半导体二极管和三极管若干。

三、实验步骤及内容1.利用万用表测试晶体二极管(1)鉴别正负极性机械万用表及其欧姆档的内部等效电路如图所示。

图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。

由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。

将万用表欧姆档的量程拨到R?100或R?1K档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。

反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。

(2)测试性能将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。

通常要求二极管的正向电阻愈小愈好。

将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。

一般要求二极管的反向电阻应大于二百千欧以上。

若反向电阻太小,则二极管失去单向导电作用。

如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。

2.利用万用表测试小功率晶体三极管(1)判定基极和管子类型由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的R?100或R?1K档进行测试。

先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。

若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

实验二、光敏二(三)极管特性实验报告

实验二、光敏二(三)极管特性实验报告

光敏二(三)极管特性试验一、实验目的了解光敏二极管的光照特性和光敏三极管的光谱特性及伏安特性等基本特性。

二、实验原理略三、需用器件与单元主机箱、安装架、普通光源、各种滤光镜、光电器件实验(一)模板、0~12V可调直流电压源、-12V~+12V可调直流电压源、光敏二极管和光敏三极管四、实验步骤1、光敏二极管光照特性的测试光敏二极管工作电压为5V(某定值)时,它的光电流I随光照度E变化而变化。

按图正确连接实验装置后,根据表4-1测量数据并作I—E曲线图4-1。

分析:在一般加了反向偏压的情况下,只要偏置电压达到某值,扩散电流被抑制,输出电流为光电流和反向饱和电流之和。

当光照度E达到一定大小时,反向饱和电流远小于光电流可忽略不计。

因此,可认为光电流与光照度成线性关系。

由图4-1可知,当E大于或等于50Lx时,I—E曲线可近似认为成线性。

2、光敏三极管的光谱特性测试光敏三极管在一定偏置电压下,对等能量但波长不同的光源所产生的光电流大小不同。

本实验易某功率为基准,更换光源前端盖的滤光片获得不同波长的光源。

按图正确连线后,测量不同波长的光源以相同功率照射光敏三极管时的电流值,填入表5-1并作曲线图5-1。

分析:光敏三(二)极管的光谱特性主要取决于所采用材料的禁带宽度,同时也与结构工艺密切相关。

对不同材料构成的器件一般有特定一个光谱响应峰值,在此峰值外的波段区光电流迅速衰减。

由图5-1可知,本实验所用光敏三极管的光谱响应峰值应大于600nm,位于长波段区。

3、光敏三极管的伏安特性测试分析:在理论上,光敏三极管的伏安特性有两个特点:(1)、在光照度低时,伏安特性比较均匀,而随着光照度增加,曲线变密。

这是因为电流放大倍数与光照度有关,随着照度的增加,放大倍数下降,导致光电流下降;在强光照度下,光电流与照度不呈线性。

虽然本实验所取照度差值不大,但观察表5-2在相同电压下,将10Lx与20Lx的光电流差值跟20Lx与30Lx的作比较,会发现随着光照度从10Lx增大倒30Lx过程中,电流增大差值减小,即电流放大倍数下降。

实验一用万用表测量二极管三极管

实验一用万用表测量二极管三极管
如二个阻值均为小数值,则管子为NPN管, 则黑表棒接触旳为B极, 假定正确。
如一种阻值均为无穷大,另一种为小数值, 则黑表棒假定旳B极错误,需重新假定直致找 到为止(如图6—49所示)。
33
文档仅供参考,如有不当之处,请联系改正。
② 辨认集电极c和发射极e 常利用测量三极管旳电流放大系数β来鉴别。
1
文档仅供参考,如有不当之处,请联系改正。
怎样读色环电阻阻值
ABC D
第 第第 第 一 二三 四 色 色色 色 环 环环 环
读法: AB×10C
(误差为D)
对照“色环电阻颜色相 应表”,读得此电阻阻 值为:
色环电阻 22.3KΩ 、1/4W
红 红 橙 金 22×103=22023=22.3KΩ
误差精度:5%
无色
20%
3
文档仅供参考,如有不当之处,请联系改正。
电阻旳表达措施
符号 R(Resistance旳缩写)
单位 Ω (欧姆)
电路符号
常规表达
国际原则
1MΩ =1000KΩ 1KΩ =1000Ω
4
文档仅供参考,如有不当之处,请联系改正。
色环电阻旳有关概念
标称阻值 电阻功率
电阻上本身标示电阻阻值大小,称为电阻 旳标称阻值。如常用到旳1K、2K、4.7K 电阻,实际上旳阻值与标示值会有偏差, 此偏差即为电阻旳误差。
电解电容。
■电解电容有极性。

■怎样判断其正负极:
﹡引脚短旳一端为“负”极
﹡电容表面有标“ ”相应
一端为“负”极
2.2 µF、50V
■如图片所示,“2.2 µF表达电容之 电解电容

容值;50V表达此电容之耐压值。

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告实验报告:光电二三极管特性测试一、实验目的1.了解光电二三极管的结构和工作原理;2.学习光电二三极管的特性参数测试方法;3.分析实验数据,探究光电二三极管的特性。

二、实验原理1.光电二三极管的结构和工作原理:光电二三极管是一种能将光能转换成电信号的器件,由光敏材料制成。

它的结构包括一个P-N结或P-I-N结,并通过两个电极引出。

当光照射到光电二三极管的光敏材料上时,光子会激发光敏材料的电子从价带跃迁到导带,从而形成光电流。

光电二三极管的工作原理主要有内光电效应和外光电效应。

2.光电二三极管的特性参数:(1)I-V特性曲线:通过改变光电二三极管的电压,测量其端电流,绘制I-V特性曲线,在不同电压下观察光电二三极管的工作情况。

(2)光电流-光照强度特性曲线:将光电二三极管暴露在不同的光照强度下,通过测量端电流随光照强度的变化,绘制光电流-光照强度特性曲线,以了解光电二三极管的灵敏度。

三、实验仪器和器件1.示波器2.恒流源和恒压源3.光强度计4.光电二三极管四、实验步骤及数据处理1.连接电路:将光电二三极管的正极和负极分别连接到恒流源和示波器上,调节电流源,使得光电二三极管的电流稳定在其中一数值。

2.测量I-V特性曲线:改变光电二三极管的电压,测量其端电流,记录下不同电压下的电流数值,绘制I-V特性曲线。

3.测量光电流-光照强度特性曲线:将光电二三极管放在光强度计的光照下,调节光照强度,测量光电二三极管的端电流,记录下不同光照强度下的电流数值,绘制光电流-光照强度特性曲线。

4.数据处理:根据实验数据绘制曲线图,并分析曲线的特点和规律。

五、实验结果和分析1.I-V特性曲线结果分析:(插入I-V特性曲线图)从曲线图上可以明显看出,光电二三极管的电流与电压成正比。

当电压增加时,光电流也随之增加。

可以据此推测,光电二三极管的电流特性可能是线性的。

2.光电流-光照强度特性曲线结果分析:(插入光电流-光照强度特性曲线图)从曲线图上可以看出,光电流与光照强度成正比。

实验4:光敏三极管特性实验

实验4:光敏三极管特性实验

实验4:光敏三极管特性实验光敏三极管特性实验(一)实验目的(1)了解光敏三极管结构与工作原理。

(2)掌握光敏三极管性能、特性的测试方法。

(二)实验器件与单元CSY2000G光电传感器实验台、光电器件实验(一)模板、光敏三极管、光源、滤色镜、照度计模板、光照度计探头(三)基本原理在光敏二极管的基础上,为了获得内增益,就利用晶体三极管的电流放大作用,用Ge或Si单晶体制造NPN或PNP型光敏三极管。

其结构使用电路及等效电路如图1所示。

图1 光敏三极管结构及等效电路光敏三极管可以等效一个光电二极管与另一个一般晶体管基极集电极并联:集电极-基极产生的电流,输入到共发三极管的基极在放大。

不同之处是,集电极电流(光电流)有集电结上产生的iφ控制。

集电极起双重作用;把光信号变成电信号起光电二极管作用;使光电流再放大起一般三极管的集电结作用。

一般光敏三极管只引出E、C两个电极,体积小,光电特性是非线性的,广泛应用于光电自动控制作光电开关应用。

(四)实验步骤1.光敏三极管伏安特性光敏三极管在不同的照度下的伏安特性就象一般晶体管在不同的基极电流输出特性一样。

光敏三极管把光信号变成电信号。

(1)将图3-1中的光敏二极管换成光敏三极管,按图接线,(注意接线孔颜色相接主机箱电压表Vcc光敏器件光敏接收器件或光源光电器件实验(一)接主机箱可调0-5v+0-5V可调光敏器件输入光敏接收器件硅光电池接主机箱电流表光敏二极管主机箱遮光筒光源+0-12V可调升降杆升降固定螺钉移块图3-1光敏二极管实验对应)主机箱的电流表的量程在实验过程需要进行切换,从μA到mA 档,电压表的量程为20v档。

(2)首先慢慢调节0~12V光源电压,使光源的光照度在某一照度值(2、4、6、8 lX),再调节主机箱0-5v电源改变光敏三极管的电压,测量光敏三极管的输出电流和电压。

填入表1~表4,并作出一定光照度下的光敏三极管的伏安特性曲线(可多做几组族线)表1 在2lX照度下U1(V) I1(mA) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 表2 在4lX照度下U1(V) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 I1(mA) 表3 在6lX照度下U1(V) I1(mA) 0 0.5 1.0 1.5` 2.0 2.5 3.0 3.5 4.0 4.5 5.0 表4 在8lX 照度下U1(V) I1(mA) 0 I(mA)外加电压(V)图2 光敏三极管伏安特性实验曲线 2.光敏三极管的光照特性测量将图3-1中的光敏二极管换成光敏三极管接线(注意接线孔的颜色相对应),测量光敏三极管的暗电流和亮电流。

实验一二极管电路仿真和三极管输出特性仿真实验

实验一二极管电路仿真和三极管输出特性仿真实验

实验一、二极管电路仿真和三极管输出特性仿真实验
一、实验目的:
1) 熟悉Multisim10.0软件的使用方法 2) 掌握半导体二极管的伏安特性及主要参数 3) 掌握半导体三极管的输出特性 4) 观察和分析一阶RC 电路的暂态过程
二、实验内容: 1、 二极管仿真实验
任务一:二极管参数测试仿真 (1) 二极管正向伏安特性测量及分析
W
(2)二极管反向伏安特性测量及分析
W
任务二:二极管双向限幅电路分析仿真
2、晶体三极管输出特性仿真
任务一:点测法绘制晶体管的输出特性曲线(根据所测数据在方格纸上画出晶体管的输出特性曲线,并在曲线上求出晶体管的工作点Q处的直流放大倍数)。

任务二:用虚拟伏安特性仪观察晶体管的输出特性曲线族
3、一阶RC电路的充、放电以及全响应。

光电式传感器实验报告

光电式传感器实验报告

一、实验目的1. 了解光电式传感器的工作原理及特点;2. 掌握光电式传感器的应用领域;3. 学习光电式传感器的测试方法;4. 通过实验验证光电式传感器的性能。

二、实验原理光电式传感器是利用光电效应将光信号转换为电信号的传感器。

它具有非接触、响应速度快、抗干扰能力强等特点,广泛应用于工业自动化、智能交通、医疗等领域。

光电式传感器的工作原理:当光线照射到光电元件上时,光电元件内部会发生光电效应,产生光电子,从而产生电流。

光电流的大小与光强成正比,通过测量光电流的大小,可以实现对光强的检测。

三、实验仪器与设备1. 光电式传感器:光电二极管、光电三极管、光电耦合器等;2. 光源:白炽灯、激光笔等;3. 测量电路:电流表、电阻、电源等;4. 数据采集与处理系统:电脑、数据采集卡、数据采集软件等。

四、实验内容及步骤1. 光电二极管特性测试(1)连接电路:将光电二极管、电阻、电流表连接成测试电路。

(2)调整光源:将光源照射到光电二极管上,调节电阻值,使电流表读数在1~10mA范围内。

(3)测试不同光照强度下的电流值:分别用白炽灯、激光笔照射光电二极管,记录电流表读数。

(4)绘制电流-光照强度曲线,分析光电二极管的特性。

2. 光电三极管特性测试(1)连接电路:将光电三极管、电阻、电流表连接成测试电路。

(2)调整光源:将光源照射到光电三极管上,调节电阻值,使电流表读数在1~10mA范围内。

(3)测试不同光照强度下的电流值:分别用白炽灯、激光笔照射光电三极管,记录电流表读数。

(4)绘制电流-光照强度曲线,分析光电三极管的特性。

3. 光电耦合器特性测试(1)连接电路:将光电耦合器、电阻、电流表连接成测试电路。

(2)调整光源:将光源照射到光电耦合器上,调节电阻值,使电流表读数在1~10mA范围内。

(3)测试不同光照强度下的电流值:分别用白炽灯、激光笔照射光电耦合器,记录电流表读数。

(4)绘制电流-光照强度曲线,分析光电耦合器的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、实验内容
1. 测量光电二极管的光电流和照度特性曲线。 2. 测量光电二极管不同照度下的伏安特性曲线。
四、实验仪器及装置
1. 实验仪器:光电二极管、钨丝灯、调压变压器、照度 表、毫安表、直流稳压电源等。
2. 实验装置如图4。
照度计
直流稳压电源
μA
调压变压器
光电探测器
图4 光电二极管光照特性测试装置
3. 光电倍增管的特性和参数
① 阴极光照灵敏度

阴极光照灵敏度定义为光电阴极的光电流IK除
以入射光通量φ所得的商:
SK
IK
(A
Lm)
国际照明委员会的标准光照相应于分布温度为
2859K的绝对黑体的辐射。
② 阳极光照灵敏度
阳极光照灵敏度定义为阳极输出电流IA除以入射光
通量φ所得的商:
SA
IA
(A
Im)
② 当开路时,(RL=∞),(1)式外电流I=0则开路电压为:
Voc
VT
ln(1
Ip ISC
)
开路电压Voc与照度E几乎无关;所有照度下的开路电压Voc趋 于光电池正向开启电压V=0.6伏,并小于这个电压值。
③ 最佳负载,负载在RL=0~∞之间变化按经验公式求出最佳
负载:
R o p tV Im m(0 .6~ Is 0 c.8 )V o c(0 .6~0 .8 )V S o E c
当RL≤Ropt时,并忽略光电池结电流,负载电流近似等于恒
定短路电流。
当RL>Ropt时,光电池结电流按指数增加,负载电流近似于指
数形式减小。
三、实验内容
1. 测定电池零负载下Ip和E的关系。
2. 测定光Βιβλιοθήκη 池不同负载情况下特性数据。四、实验仪表和器材
硅光电池、照度计、钨丝灯、调压变压器、直流 稳压电源、毫伏电压表、微安表、电阻和电位计 等。
实验一 光电二极管、光电三极管
光照特性的测试
-、目的要求
1. 掌握光电二极管的工作原理和使用方法。 2. 进一步了解光电二极管的光照特性和伏安特
性,为设计光电系统前置放大器打下基础。
二、工作原理
1. 光电二极管是结型半导体光伏探测器件。当入射光子 能量大于材料禁带宽度时,半导体吸收光子能量将产 生电子空穴对。产生在PN结内的电子空穴对在内建电
场(光电二极管工作时加反向偏压Vb)作用下被分离,
形成光生电势,产生光电流,如图1所示
图1 光电二极管工作原理图
2. 光电三极管的原理性结构如图2所示。正常运用时,集电 极加正电压。因此,集电结为反偏置,发射结为正偏置, 集电结为光电结。当光照到集电结上时,集电结即产生光
电流Ip向基区注入,同时在集电极电路产生了一个被放大
2. 供电分压器和输出电路
光电倍增管的极间电压的分配一般是由图2所示的串联 电阻分压器执行。
最佳的极间电压分配取决于三个因素:阳极峰值电流、 允许的电压波动以及允许的非线性偏离。
K
A
D1 D2 D3 D4 D5 D6 D7 D8
11
IK
IA
12 3 4 5 6 7 8 9
-HV
10
图2 光电倍增管供电电路
1. 了解光电倍增管的基本特性。 2. 学习光电倍增管基本参数的测量方法。 3. 学会正确使用光电倍增管。
二、实验原理
1. 工作原理
光电倍增管是由半透明的光电发射阴极、倍增极和阳 极所组成的,由图1所示。
a) 侧窗式
b) 端窗式
c) 原理示意图
图1 光电倍增管外形与结果原理示意图
当入射光子照射到半透明的光电阴极K上时,将发射出光 电子,被第一倍增极D1与阴极K之间的电场所聚焦并加速 后与倍增极D2碰撞,一个光电子从D1撞击出3个以上的新电 子,这种新电子叫做二次电子。这些二次电子又被D1~D2 之间的电场所加速,打到第二个倍增极D2上。并从D2上撞 击出更多的新的二次电子。如此继续下去,使电子流迅速 倍增。最后被阳极A收集。收集的阳极电子流比阴极发射 的电子流一般大105~104倍。这就是真空光电倍增管的电 子内倍增原理。
I
A
图1 光电池工作原理图
2. I为通过负载的外电流:
IIIDIIsc(ev/vT 1)
其中ISC为光电流反向饱和电流。当 V T
KT q
为温度电压当量
时,负载RL上的电压V=IRL 给光电池正向偏压。
① 当零负载时(RL=0),(1)式外电流为短路电流:

Isc Ip SE

S为光电流灵敏度,短路电流ISC和照度E成正比。
促使毫伏电压表G1指示为零。此时,表示A点和B点 电位相同。相当于光电池在A、B二点外电路为零状 态下工作,根据电路平衡条件:
I2R 3(I1I2)R40
则光电流为:
I2(R 4R 4R 3)I1(1 0 0 1 0 0 1 0 0 )I11 2I1
实验三 光电倍增管特性和参数的
测试
一、实验目的
③ 电流增益
电流增益定义为在一定的入射光通量和阳极电压下,阳
极电流与阴极电流的比值,也可以用阳极光照灵敏度与
阴极光照灵敏度的比值来确定,即:
G IA IK
或 G SA
SK
• 暗电流
当光电倍增管在完全黑暗的情况下工作时,阳极电路里 仍然会出现输出电流,称为暗电流。引起暗电流的因素 有:热电子发射、场致发射、放射性同位素的核辐射、 光反馈、离子反馈和极间漏电等。
实验二 硅光电池负载特性的测试
一、实验目的
1. 掌握硅光电池的正确使用方法。 2. 了解光电池零负载,以及不同负载时光电流
与照度的关系。
二、工作原理
1. 光电池具有半导体结型器件无源直接负载下的工作特
性,工作原理如图1所示。 RL外接负载为,Ip为光电
流,ID为二极管结电流。


N
P
ID
RL
3. 的电流: IC(1)IpIp
4. β为电流放大倍数。
图2 光电三极管工作原理图
3. 光电二极管和光电三极管的伏安特性曲线
I
E4>E3>E2>E1>E0
E4
E3 E2
E1 E0
0
U
图3(a)光电二极管伏安特性曲线
I
E4>E3>E2>E1>E0
E4
E3 E2 E1
E0
0
U
(b)光电三极管伏安特性曲线
五、实验线路装置
光电池负载实验线路装置如图2所示。
照度计 调压变压器
RL
A R3
R5
R6
C
100Ω
mv
G1
I2 R4 I1 100Ω
B
图2 光电池负载实验装置
μA
VE
G
光电池受光照后,产生光电流I2。在A、B两点的毫 伏电压会产生偏转。调节稳压电源VE后,产生补偿 电流I1,I1和光电流I2方向相反。调节电位计R5(粗 调)和R6(细调)使补偿电流I1与光电流I2相减,并
相关文档
最新文档