第三章 摩 擦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章摩擦
前面讨论物体平衡问题时,物体间的接触面都假设是绝对光滑的。事实上这种情况是不存在的,两物体之间一般都要有摩擦存在。只是有些问题中,摩擦不是主要因素,可以忽略不计。但在另外一些问题中,如重力坝与挡土墙的滑动称定问题中,带轮与摩擦轮的转动等等,摩擦是是重要的甚至是决定性的因素,必须加以考虑。按照接触物体之间的相对运动形式,摩擦可分为滑动摩擦和滚动摩擦。本节只讨论滑动摩擦,当物体之间仅出现相对滑动趋势而尚未发生运动时的摩擦称为静滑动摩擦,简称静摩擦;对已发生相对滑动的物体间的摩擦称为动滑动摩擦,简称动摩擦。
一、滑动摩擦
当两物体接触面间有相对滑动或有相对滑动趋势时,沿接触点的公切面彼此作用着阻碍相对滑动的力,称为滑动摩擦力,简称摩擦力。用F表示。
图3-1
如图3-1所示一重为G的物体放在粗糙水平面上,受水平力P的作用,当拉力P由零逐渐增大,只要不超过某一定值,物体仍处于平衡状态。这说明在接触面处除了有法向约束反力N外,必定还有一个阻碍重物沿水平方向滑动的摩擦力F,这时的摩擦力称为静摩擦力。静摩擦力可由平衡方程确定。ΣX=0 ,P-F=0。解得F=P。可见,静摩擦力F随主动力P的变化而变化。
但是静摩擦力F并不是随主动力的增大而无限制地增大,当水平力达到一定限度时,如果再继续增大,物体的平衡状态将被破坏而产生滑动。我们将物体即将滑动而未滑动的平衡状态称为临界平衡状态。在临界平衡状态下,静摩擦力达到最大值,称为最大静摩擦力,用F m表示。所以静摩擦力大小只能在零与最大静摩擦力F m之间取值。即0≤F≤F m
最大静摩擦力与许多因素有关。大量实验表明最大静摩擦力的大小可用如下近似关系:最大静摩擦力的大小与接触面之间的正压力(法向反力)成正比,即
F m=fN (3-1)
这就是库伦摩擦定律。式中f是无量纲的比例系数,称为静摩擦系数。其大小与接触体的材料以及接触面状况(如粗糙度、湿度、温度等)有关。一般可在一些工程手册中查到。式表示的关系只是近似的,对于一般的工程问题来说能够满足要求,但对于一些重要的工程,如采用上式必须通过现场测量与试验精确地测定静摩擦系数的值作为设计计算的依据。
物体间在相对滑动的摩擦力称为动摩擦力,用F′表示。实验表明,动摩擦力的方向与接触物体间的相对运动方向相反,大小与两物体间的法向反力成正比。即
F′=f′N (3-2)
这就是动滑动摩擦定律。式中无量纲的系数f′称为动摩擦系数。还与两物体的相对速度有关,但由于它们关系复杂,通常在一定速度范围内,可以不考虑这些变化,而认为只与
接触的材料以及接触面状况有关外。
二、摩擦角与自锁现象
如图3-2所示,当物体有相对运动趋势时,支承面对物体法向反力N和摩擦力F,这两个力的合力R,称为全约束反力。全约束反力R与接触面公法线的夹角为φ,如图3-2a。显然,它随摩擦力的变化而变化。当静摩擦力达到最大值F m时,夹角φ也达到最大值φm ,则称φm0为摩擦角。如图3-2b所示,可见
tanφm=F m/N=fN/N=f(3-3)
若过接触点在不同方向作出在临界平衡状态下的全约束反力的作用线,则这些直线将形成一个锥面,称摩擦锥。如图3-35c所示。
图3-2
图3-3
将作用在物体上的各主动力用合力Q表示,当物体处于平衡状态时,主动力合力Q与全约束反力R应共线、反向、等值,则有α=φ。
而物体平衡时,全约束反力作用线不可能超出摩擦锥,即φ≤φm(图3-3)。由此得到
α≤φm(3-4)
即作用于物体上的主动力的合力Q,不论其大小如何,只要其作用线与接触面公法线间的夹角α不大于摩擦角φm,物体必保持静止。这种现象称为自锁现象。
自锁现象在工程中有重要的应用。如千斤顶、压榨机等就利用发自锁原理。
三、考虑摩擦时的平衡问题
求解有摩擦时物体的平衡问题,其解题方法和步骤与不考虑摩擦时平衡问题基本相同。
例3-1物体重G=980N,放在一倾角α=30º的斜面上。已知接触面间的静摩擦系数为f=0.20。有一大小为Q=588N的力沿斜面推物体如图3-4a所示,问物体在斜面上处于静止还是处于滑动状态?若静止,此时摩擦力多大?
图3-4
解 可先假设物体处于静止状态,然后由平衡方程求出物体处于静止状态时所需的静摩擦力F ,并计算出可能产生的最大静摩擦力F m ,将两者进行比较,确定力F 是否满足F ≤F m ,从而断定物体是静止的还是滑动的。
设物体沿斜面有下滑的趋势;受力图及坐标系如图3-4所示。
由 ΣX =0 , Q -G sin α+F =0
解得 F =G sin α-Q =-98N
由 ΣY =0 , N -G cos α=0
解得 N =G cos α=848.7N
根据静定摩擦定律,可能产生的最大静摩擦力为,
F m =fN =169.7N
m F N N F =<=7.16998
结果说明物体在斜面上保持静止。而静摩擦力F 为-98N ,负号说明实际方向与假设方向相反,故物体沿斜面有上滑的趋势。
例3-2 重Q 的物体放在倾角α<φm 的斜面上(图3-5a ),求维持物体在斜面上静止时的水平推力P 的大小。
图3-5
解 因α>φm ,若力P 过小,则物体下滑;若力P 过大,又将使物体上滑;若力P 的数值必在某一范围内。
先求刚好维持物体不至于下所需力P 的最小值P min 。此时物体处于下滑的临界状态,其受力图及坐标系如图3-5b 所示。
由 ΣX =0 , P min cos α-Q sin α+F 1m =0 (a)
ΣY =0 , N 1-P min sin α-Q cos α=0 (b)
由式(b )有 N 1= P min sin α+Q cos α (c) 将F 1m =fN 1 、f =tan φm 和式(c )代入式(a ),得