模电第三章
模电第三章
.
[例3.3.1]
5.
Ausm
'
增益带宽积
| Ausm BW || Ausm f H |
fH 1 2R 'C '
.
.
rb 'e Ri g m RC Rs Ri rbe
C Cb 'e (1 g m RC )Cb'c
rb 'e Ri 1 | Ausm f H | g m RC RS Ri rbe 2R 'C '
(2) 特征频率fT |β|的值下降为1时的频率定义为三极管 的特征频率fT fT 0 f (3)共基截止频率fα |α|的值下降到0.707α0时的频率定义 为三极管的共基截止频率fα f (1 0 ) f 三者的关系: f fT f
3.3 单管共射放大电路的频率响应 定性分析: 在低频段,由于隔直电 容的电抗增大,信号在电 容上的压降也增大,电压 放大倍数将降低,并产生超 前的附加相位移. 在高频段,三极管的极 间电容并联在电路中,将 使电压放大倍数降低。并 产生滞后的附加相位移.
拓宽视野,在较小的坐标
范围内表示宽广频率范围的变化情况。
3.1.5 高通电路和低通电路 1、高通电路
Au
. .
Uo Ui
R 1 R j C
1 fL 1 j f
Au
.
1 fL 1 f
2
fL arctg f ( RS rb 'b )Cb 'e
3.3.3 直接耦合单管共射放大电路的频率响应 直接耦合放大电路的下限频率fL =0, 在 高频段其电压放大倍数仍将下降。
模电第三章课件
通常,Rb较小,且IBQ很小,故
IEQ
VEEUB 2Re
EQ
IBQ 1I E Q , U CE Q V CC ICR Q cU BEQ
差模信号作用时的动态分析(双端输入双端输出)
为什么?
差模放大倍数
Ad
uOd uId
Ad
( Rc
∥RL 2
)
Rb rbe
R i 2 (R b r b)e , R o 2 R c
1. 集成运放的特点
(1)直接耦合方式,充分利用管子性能良好的一致性采 用差分放大电路和电流源电路。 (2)用复杂电路实现高性能的放大电路,因为电路复杂 并不增加制作工序。 (3)用有源元件替代无源元件,如用晶体管取代难于制 作的大电阻。 (4)采用复合管。
集成运放电路的组成
两个 输入端
一个 输出端
RE1 RE2
IR
UCC
IR
R
2IB
IC2
T1
T2
IE1
IE2
RE
图3.6 微电流源电路
IR
UCC
UBE R
UBE 1UBE2 UTlnIIE E12
IC2IE2
UT RE
ln IR IC2
UCC
IR R
I C2
I C3
T5
IC1
T1
T2
T3
I C4
T4
UCC IR R
IC1
T1
IE1
RE1
I C2
差模输入电压和共模输入电压
如果差分放大电路两个输入端的输入电压大小相等, 极性相反,则称为差模输入电压(uId)。
如果差分放大电路两个输入端的输入电压大小相等, 极性相同,则称为共模输入电压(uIc)。
模拟电子第三章
13
(2)输入特性
iI/mA
-1.0 - 0.5
0.5
O
-0.5
1.0 1.5 2.0
1.4
uI/V
V
iI
mA
+
u_ I
Vcc
&
uO
-1.0
-1.5
40A
-2.0 (a)输入特性
(b)测试电路
①输入短路电流:IIS=-1.07mA
②输入漏电流:IIH= 1IB1( 1<0.01) 约为40 A
35
4.加电后,CMOS器件输入端不能悬空 ①输入电位不定(此时输入电位由保护二极管 的反向电阻比来决定),从而破坏了电路的正 常逻辑关系; ②由于输入阻抗高,易接受外界噪声干扰,使电 路产生误动作; ③极易使栅极感应静电,造成栅击穿。
36
二、其它类型的CMOS电路
1.CMOS与非门 (1)电路结构 两个反相器的负载管并联,驱动管串联。 (2)工作原理
图3.2.16 54LS/74LS系列与非门(54LS/74LS00)的电路结构
25
表3.2.1 不同系列TTL门电路的性能比较
参数名称
TTL门电路系列名称
54/74 54H/74H 54S/74S 54LS/74LS
tpd(ns) 10
6
4
10
功耗/每门 (mW)
10
22.5
20
2
pd(ns·mW) 100 135
IIH:负载门输入漏电流。
29
②只有一个OC门输出低电平:(uOUO(Lma)x)
V C C u O R L (I G (m m a IIx ) L)
RL
VC CuO IG(max)mIIL
模电课件第三章(模拟电子技术基础第四版童诗白华成英)
Ri Ri1 R1 // R2 // rbe1 1.52k
直接耦合电路的特殊问题
R1 RC1 R2 T1 RC2
+UCC
T2
RE2
ui
uo
问题 1 :前后级Q点相互影响。
增加R2 、RE2 : 用于设置合适的Q点。
R1 RC1
RC2 T1 T2
+UCC
uo
R2
ui
有时会将 信号淹没
d
(2)共模( common mode) 输入
ui1 = ui2 = uC
U oc 共模电压 Ac 放大倍数: Uc
(一) 差模输入
RC RB T1 均压器 ui R
+UCC uo T2 RE
RC RB
R
–UEE
1 u i1 u i u d 2 1 u i 2 u i u d 2
T2
C11
C12
C22 uo
uo u i
CE
RE2
Ri
放大电路一
放大电路二
+VCC
R1 RC T1 ui R2 RE1 CE
+VCC RB C21 uo u i C22 T2 RE2 uo
C11
C12
Ri 1. 求直接采用放大电路一的放大倍数Au和Aus。
2. 若信号经放大电路一放大后,再经射极输出 器输出,求放大倍数Au、Ri和Ro 。
RB ib1
RC
RB rbe1
Ad1 Ad 2
B1 C1 rbe1 E
ui1
ib1
RC
uod1
差模电压放大倍数:
RC RB R ib1
uod Ad ui
模电课件第三章
VR IZ
VO
当VCC或RL变化时,能自动调整IZ的大小
使VR=IR· R改变,从而使VO基本不变。 例如: 当VCC变大,RL不变时的调节过程如下:
VCC VO IZ IR VR
VO ———————|
精品课件!
精品课件!
3.5.2 变容二极管
(二极管的 PN结在外电场的作用下,电子/空穴扩散量的变化)。 用于超高频段某范围频率的电子调谐。 3.5.4 光电子器件
3.4
基本电路及其分析方法
二极管正向V-I特性的建模在电子电路中应用广泛。如在整流、 检波、开关控制、稳压、限幅、变容、发光指示等电路中的应用。
3.4.1 简单二极管电路的图解分析方法
R VDD iD iD(mA)
二极管V—I 特性曲线
VDD/R
D ID Q
斜率为-1/R的负载线
由KVL得:
O
VD
1)P型半导体 掺入多出空穴元素的半导体;导电以空穴为主。 掺入少量3价元素——硼。 硼原子外层有3个电子,与硅组成 共价键后,因缺1个电子而形成空穴。
硼原子在硅晶体中能接受电子,称硼为“受主杂质”,或 P 型 杂质。除硼外,镓、铝、铅、铟外层也是3个电子。 在P型半导体中,多子——空穴;少子——自由电子。
3、 PN结的反向击穿 反向击穿有两种:电击穿和热击穿。 1)电击穿
当反向电压增加到一定程度时,可能产生电击穿。强电场→自
由电子、空穴数↑ →反向电流↑(陡增) 。有两种:
雪崩击穿:VF↑→内电场↑→自由电子、空穴获得的能量↑→ 碰撞电离→载流子的倍增效应→电流急剧放大 。
齐纳击穿: 强电场可直接破坏共价键结构,分离电子空穴对,形成较大的 反向电流,这是杂质浓度大的PN结而具有的特性。 利用这一特点,可制成 稳压二极管。 注:反向电流不超过一定值,不会使结温过高,电击穿是可逆的。
模拟电路第三章 多级放大电路
1. 双端输入单端输出:共模信号作用下的分析
Ad
1(Rc∥RL)
2 Rbrbe
AcRbrb(R ec2 ∥ (1R L))Re
KCMRA Ad c Rb2 rb(R eb2(1rbe))Re
整理ppt
2. 单端输入双端输出
共模输入电压 差模输入电压 输入差模信号的同时总是伴随着共模信号输入:
3.3.2 差分放大电路
一、电路的组成
零点 漂移
参数理想对称: Rb1= Rb2,Rc1= Rc2, Re1= Re2;T1、T2在任何温度下特性均相同。 uI1与uI2所加信号大小相等、极性相同——共模信号
整理ppt
二、长尾式差分放大电路
典型电路
信号特点? uI1与uI2所加信号大小相等、极性相反——差模信号
在实际应用时,信号源需要有“ 接地”点,以避免干扰; 或负载需要有“ 接地”点,以安全工作。
根据信号源和负载的接地情况,差分放大电路有四种接法: 双端输入双端输出、双端输入单端输出、单端输入双端输出、 单端输入单端输出。
整理ppt
三、差分放大电路的四种接法 1. 双端输入单端输出:Q点分析
由于输入回路没有变化,所以
共模放大倍数 Ac
uO c uIc
参数理想对称A时 c 0
Re的共模负反馈作用:温度变化所引起的变化等效为共模信号
如 T(℃)↑→IC1↑ IC2 ↑→UE↑→ IB1 ↓IB2 ↓→ IC1 ↓ IC2 ↓
Re负反馈作用抑制了每只差分管集电极电流、电位的变化。
整理ppt
3. 放大差模信号 差模信号:数值相等,极性相反的输入信号,即
uI1uI2uId/2
i B 1 i B2 i C 1 i C2 u C 1 u C2 u O 2 u C1
模电第三章习题答案
模电第三章习题答案模电第三章习题答案模拟电子技术(模电)是电子工程中的重要学科,它研究的是模拟电路的设计与分析。
模电的第三章主要涉及放大器的基本概念和特性,包括放大器的分类、放大器的增益计算、放大器的频率响应等内容。
在学习模电的过程中,习题是巩固知识和提高解题能力的有效工具。
下面将给出模电第三章习题的详细解答。
1. 问题:计算电压放大倍数Av。
解答:电压放大倍数Av的计算公式为Av = Vout / Vin,其中Vout为输出电压,Vin为输入电压。
根据题目中给出的电路图和元件参数,可以通过欧姆定律和基尔霍夫定律来计算。
2. 问题:计算共模抑制比CMRR。
解答:共模抑制比CMRR的计算公式为CMRR = 20log10(Ad / Ac),其中Ad为差模增益,Ac为共模增益。
根据题目中给出的电路图和元件参数,可以通过电路分析方法来计算。
3. 问题:计算输入阻抗Zin。
解答:输入阻抗Zin的计算公式为Zin = Vin / Iin,其中Vin为输入电压,Iin为输入电流。
根据题目中给出的电路图和元件参数,可以通过电路分析方法来计算。
4. 问题:计算输出阻抗Zout。
解答:输出阻抗Zout的计算公式为Zout = Vout / Iout,其中Vout为输出电压,Iout为输出电流。
根据题目中给出的电路图和元件参数,可以通过电路分析方法来计算。
5. 问题:计算最大输出功率Pmax。
解答:最大输出功率Pmax的计算公式为Pmax = Vout^2 / (4Rl),其中Vout为输出电压,Rl为负载电阻。
根据题目中给出的电路图和元件参数,可以通过电路分析方法来计算。
通过以上习题的解答,我们可以加深对模电第三章内容的理解。
在实际应用中,我们需要熟练掌握放大器的基本概念和特性,以便能够正确设计和分析模拟电路。
同时,通过解题过程,我们也可以培养自己的逻辑思维和问题解决能力。
模电作为电子工程的重要学科,对于电子工程师的培养具有重要意义。
【2024版】模拟电子技术课件第三章
60A
此区域中 : 2
40A
IB=0 , IC=ICEO ,
1
20A
VBE<死区电
IB=0
压,称为截止 3 6 9 12 VCE(V)
区。
输出特性三个区域的特点: (1) 放大区: BE结正偏,BC结反偏, IC=IB , 且 IC = IB
(2) 饱和区: BE结正偏,BC结正偏 , 即VCEVBE , IB>IC,VCE0.3V
1、晶体管必须偏置在放大区。发射结正 偏,集电结反偏。
2、正确设置静态工作点,使整个波形处 于放大区。
3、输入回路将变化的电压转化成变化的 基极电流。
4、输出回路将变化的集电极电流转化成 变化的集电极电压,经电容滤波只输 出交流信号。
放大 电路 分析
放大电路的分析方法
静态分析
估算法 图解法
小信号模型分析法
vi=0时
入时
RL IE=IB+IC
基本放大电路的工作原理
静态工作点
RB
RC
C1
IB
(IB,VBE)
VBE
+VCC
IC C2
T VCERL
( IC,VCE )
(IB,VBE) 和( IC,VCE )分别对应于输入输 出特性曲线上的一个点称为静态工作点。
IB
IC
IB
Q
IC
VBE VBE
Q IB
VCE VCE
共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号
是叠加在直流上的交流信号。基极
电流的变化量为IB,相应的集电 极电流变化为IC,则交流电流放 大倍数为:
模电课件:第三章三极管可编辑全文
1. 内部载流子的传输过程
发射区:发射载流子 集电区:收集载流子 基区:传送和控制载流子
(以NPN为例)
载流子的传输过程
3.1.2 BJT的电流分配与放大原理
以上看出,三极管内有两种载流子 (自由电子和空穴)参与导电,故称为双极 型三极管。或BJT (Bipolar Junction Transistor)。
vce= -ic (Rc //RL) 因R为'L交= 流RL负∥载R线c,必过是Q点, 即交v流ce=负vC载E -电VC阻EQ。
ic= iC - ICQ
同时,交令流R负L =载Rc线//R是L 则有交交流流负输载入线为信号时
vQC点E -的V运CE动Q=轨-(迹iC -。ICQ ) RL
iC VCC Rc
3.1.3 BJT的特性曲线
1. 输入特性曲线
(以共射极放大电路为例)
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
截止失真
注意:对于PNP管,由于是负电源供 电,失真的表现形式,与NPN管正好相反。
# 放大区是否为绝对线性区?
3.3 图解 分析法
3.3.2 动态工作情况分析
3. BJT的三个工作区
②放大电路 的动态范围
放大电路要想 获得大的不失真输 出幅度,要求:
管的输入输出特性曲线。
共射极放大电路
• 首先,画出直流通路
IB
+ VBE-
模电课件-第三章多级放大电路
T2
IB
IE RE
IB
U EE U BE
RB 2(1 )RE
–UEE
+UCC
RB
IB
ui2
IC1= IC2= IC= IB
UE1= UE2 =-IBRB-UBE
UC1= UC2= UCC-ICRC UCE1= UCE2 = UC1-UE1
三、 动态分析
输入信号分类 (1)差模输入
ui1 = -ui2= ud
单端
输出端 双端 接法 单端
四种组合
前面所讲的是双端输入双端输出电路
双端输入单端输出电路
单端输入双端输出电路
单端输入单端输出电路
恒流源式差放电路
电路结构:
RC ic1 uoic2 RC
RB T1
T2
ui1 R ib1
E
+UCC RB ib2 R ui2
IC3
R1
T3
为什么要改进原
R3
R2
有的差动放大电
第三章 多级放大电路
§3.1 多级放大电路的耦合方式 §3.2 多级放大电路的动态分析 §3.3 直接耦合放大电路
§3.1 多级放大电路的耦合方式
输
第一级
入
放大电路
第二级 放大电路
……
输
第n级
出
放大电路
第 n-1 级 放大电路
单级——多级,必然存在耦合 耦合:即信号的传送。
功放级
耦合方式:级与级之间的连接方式。
差模信号通路
ui1
RC ic1 uoic2 RC
RB R ib1
T1
uod1 uod2
T2
RB ib2 R
ui2
模电课件第三章
例3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD 和电阻R,求二极管两端电压vD和流过二极管的电流iD 。
解:即由iD电路 的R1 KvDVL方R1 程VD,D 可是得一条iD 斜 V率D为DR-v1D/R的直线,称为负载线 Q的坐标值(VD,ID)即为所求。Q点称为电路的工作点
例: 理想模型 输入电压为0V或5V 求输入值的不同组合下,输出电压值。
直流通路、交流通路、静态、动态等
(5)小信号工作情况分析 概念,在放大电路的分析中非常重要。
(4) 正向压降VF
在规定的正向电流下,二极管的正向电压 降。小电流硅二极管的正向压降在中等电流水 平下,约0.5~0.8V;锗二极管约0.1~0.3V。
(5) 动态电阻rd
反映了二极管正向特性曲线斜率的倒数。
显然, rd与工作电流的大小有关,即 rd =VF /IF
半导体二极管图片
半导体二极管图片
电流电的压平VB均R。值。
为安全计,在实际
(2) 反向击穿电压VBR——— 工作时,最大反向工作电压
和最大反向工作电压VRM
VRM一般只按反向击穿电压 VBR的一半计算。
(3) 反向电流IR
在室温下,在规定的反向电压下,一般是最大 反向工作电压下的反向电流值。硅二极管的反向 电流一般在纳安(nA)级;锗二极管在微安(A)级。
这一现象称为本征激发,也称热激发。
自由电子产生的同时,在其原来的共价 键中就出现了一个空位,原子的电中性被破 坏,呈现出正电性,其正电量与电子的负电 量相等,人们常称呈现正电性的这个空位为 空穴。
空穴的移动——空穴的运动是靠相邻共价
键中的价电子依次填充空穴来实现的。
3.1.4 杂质半导体
模电课件第三章场效应管及其基本电路
iD
I
D
0
(1
uGS U GSoff
)2
ID0表示uGS=0时所对应的漏极电流。
式中:
ID0
unCox 2
W L
(U
2 GSoff
)
2024年9月17日星期二
模拟电子线路
37
iD
ID0
UGSoff
0
uGS
(a) 图3―10N沟道耗尽型MOS管的特性及符号 (a)转移特性;(b)输出特性;(c)表示符号
2024年9月17日星期二
模拟电子线路
13
3―1―2 结型场效应管的特性曲线
一、转移特性曲线
uGS≤0, iD≥0
iD f (uGS ) uDS C
恒流区中:
iD
IDSS (1
uGS UGSoff
)2
式中: IDSS——饱和电流,表示uGS=0时的iD值;
UGSoff——夹断电压,表示uGS=UGSoff时iD为
2024年9月17日星期二
模拟电子线路
9
D
P
P
UGS
横向电场作用: ︱UGS︱↑→ PN结耗尽层宽度↑ →沟道宽度↓
S
(b) UGS负压增大, 沟道变窄 图3―2栅源电压UGS对沟道的控制作用示意图
2024年9月17日星期二
模拟电子线路
10
D
P
P
UGSoff——夹断电压
UGS
S
(c) UGS负压进一步增大, 沟道夹断 图3―2栅源电压UGS对沟道的控制作用示意图
(2) uGS固定, uDS增大, iD增大极小。
2024年9月17日星期二
模拟电子线路
21
模电第三章课后题答案
模电第三章课后题答案模拟电路第三章课后题答案1. 什么是直流偏置?有哪些方法可以实现直流偏置?直流偏置是指在放大器电路中为信号输入提供一个基准电压或偏置电压的方法。
常用的直流偏置方法有四种:固定偏置、可调偏置、恒流源偏置和共射极稳压偏置。
2. 什么是共模反馈?可以用来做什么?共模反馈是指将输出信号的一部分通过反馈电路送回放大器输入端并与输入信号相加的一种反馈方式。
它可以用来降低输出的共模干扰、提高放大器的直流稳定性和增大输出阻抗等。
3. 论述共源放大器输入电阻的大小与管子的参数关系。
共源放大器输入电阻Ri与管子的参数关系为Ri=rd//rds。
其中rd和rds 分别为管子的内阻和漏极电阻,它们与管子的型号有关,可以通过数据手册或参数表找到。
4. 怎样理解源极负载共源放大器的“驱动能力”?源极负载共源放大器的“驱动能力”是指它可以驱动的负载电阻的大小。
它与放大器的工作状态有关,当放大器处于饱和状态时,它的驱动能力较强;当放大器处于截止状态时,它的驱动能力较弱。
5. 什么是运放的输入失调?有什么影响?运放的输入失调是指运放输入端的两路信号不对称,产生一个微小的偏置电压,从而影响运放的放大能力和输出的准确性。
其影响包括:增大输出的偏置电压、降低放大增益和导致失真等。
6. 什么是偏压稳定度?如何提高?偏压稳定度是指放大器直流工作点的稳定性,通常用温度系数来表示。
它可以通过采用合适的偏压电路设计、选用稳定性好的元器件、合理布局和散热等方式来提高。
7. 什么是负反馈?有哪些优点?如何设计?负反馈是指将部分输出信号送回放大器输入端,并与输入信号相减的一种反馈方式。
它的优点包括提高放大器的稳定性、降低失真、增加带宽和减小输出阻抗等。
负反馈的设计需要明确设计目标和反馈网络的参数,通过计算和仿真实现。
模电第三章
3.高频电压放大倍数 A ush
U i
第3章 放大电路的频率响应
R U' s
b'
U be
rbe Ri U rbe U U i s s rbe rbe Rs Ri
. Au RL . Uo
+
1 U U U U rbe jC Ri o s b e o Aush ) ( g m RL U s U s U s U be Rs Ri rbe R 1 jC r R 1 b e i ) ( g m RL A ush Rs Ri rbe 1 jRC
令 fL
1 2RC
1 fL 1 f
A u
fL
A u
2
90 ac tan
f fL
2.低通电路:信号频率越低,输出电压越接近输入电压。
. I . Ui . Uo
1 U 1 Au o jC U 1 1 jRC i R jC
令
A usl
r Ri ) be ( g m RL Rs Ri rbe 1
1 fL 2 ( Rc RL )C
jf fL 1 Ausm Ausl Ausm jf f 1 1 L fL jf
第3章 放大电路的频率响应
A Ausl usm f 1 L jf
-20dB/十倍频
5.71
注意折线化曲线的误差
f 20 lg 20 lg 0 20 lg 1 f f arctan f ,单位 采用对数坐标系,横轴为lg f,可开阔视野;纵轴为 20 lg 为“分贝” (dB),将 “ 乘除 ” 运算转换成 “ 加减 ” 运算。
模电课件第三章集成逻辑门电路
R1
R2
4k 1.6k
A
uI
T1
T2
D1
R3 1k
输入级 中间级
+VCC(5V) R4
130 T4
DY T5 uo
输出级
26
2. 工作原理
(1)输入为低电平(0.0V)时: uI UIL 0 V
不足以让 T2、T5导通
0.7V
三个PN结
导通需2.1V
T2、T5截止
27
(1) uI UIL 0 V
RC+(1+)Re
17
[例2]下图电路中 = 50,UBE(on) = 0.7 V,UIH = 3.6 V,UIL = 0.3 V,为
使三极管开关工作,试选择 RB 值,并对应输入波形画出输出波形。
+5 V
uI
1 k
UIH
UIL O
t
解:(1)根据开关工作条件确定 RB 取值
uI = UIL = 0.3 V 时,三极管满足截止条件
按电路结构不同分 是构成数字电路的基本单元之一
TTL 集成门电路
输入端和输出端都用 三极管的逻辑门电路。
CMOS 集成门电路
用互补对称 MT特rCa点nomsi不sptlo同erm-分TernatnasriystMoreLtaolg-Oicxide-Semiconductor
Ucc =5V
1k uo
T
β =30
iB
I BS
Ucc Uces RC
Ucc RC
, Uces 0.7V
8
三极管的开关特性
3V
0V RB ui
+UCC
RC
3V
uO T
截饱止和 0V
模拟电子技术 第三章
输入电阻
.
Au
A n .
j1 uj
R1=Ri1
输出电阻 R0=Ron
uo RL
解: (1)求解Q点,第一级为共射放大电路
U BQ1
Rb 2 Rb1 Rb2
VCC
I BQ1
U BQ1 U BEQ1
(1 )Re1
I CQ1 I BQ1
U CQ1 VCC (I CQ1 I BQ2 )Rc1 VCC I R CQ1 c1
共模信号:大小相等,极性相同。
差模信号:大小相等,极性相反.
典型电路:长尾式差分放大电路
一.结构: 对称性结构
+VCC
即:1=2=
Rc
Rc
UBE1=UBE2= UBE rbe1= rbe2= rbe RC1=RC2= RC Rb1=Rb2= Rb
I BQ1 I BQ2 I BQ ICQ1 ICQ2 ICQ I EQ1 I EQ2 I EQ U CQ1 U CQ2 U CQ uO U CQ1 U CQ2 0
• 1979年:Intel推出5MHz 8088微处理器,之 后,IBM基于8088推出全球第一台PC。折 合25560.8元人民币
• 1988年:16M DRAM问世,1平方厘米大小 的硅片上集成有3500万个晶体管,标志着 进入超大规模集成电路(VLSI)阶段
• 。我国集成电路发展历史
• 我国集成电路产业诞生于六十年代,共经历了三个发展 阶段:
• 1965年-1978年:以计算机和军工配套为目标,以开发 逻辑电路为主要产 品,初步建立集成电路工业基础及 相关设备、仪器、材料的配套条件
• 1978年-1990年:主要引进美国二手设备,改善集成电 路装备水平,在“治散治乱”的同时,以消费类整机作 为配套重点,较好地解决了彩电集成电路的国产化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
3.4.1 简单二极管电路的图解分析方法
二极管是一种非线性器件,因而其电路一般要采 用非线性电路的分析方法,相对来说比较复杂,而图
解分析法则较简单,但前提条件是已知二极管的V -I
特性曲线。
25
例3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD 和电阻R,求二极管两端电压vD和流过二极管的电流iD 。
IZmin ≤ IZ ≤ IZmax # 不加R可以吗?
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电子 和带正电的空穴均参与导电,且 运动方向相反。由于载流子数目 很少,故导电性很差。
温度升高,热运动加剧,载流 子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
为什么要将半导体变成导电性很差的本征半导体?
6
3.1.4 杂质半导体
当PN结的反向电压增加 到一定数值时,反向电流突 然快速增加,此现象称为PN 结的反向击穿。 雪崩击穿 齐纳击穿
电击穿——可逆
热击穿——不可逆
17
3.2.5 PN结的电容效应
(1)势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
(a)N 型半导体
(b) P 型半导体
9
杂质半导体的简化表示法
3.2 PN结的形成及特性
3.2.1 载流子的漂移与扩散
3.2.2 PN结的形成
3.2.3 PN结的单向导电性
3.2.4 PN结的反向击穿
3.2.5 PN结的电容效应
10
3.2.1 载流子的漂移与扩散
物质因浓度差而产生的运动称为扩散运动。气体、液 体、固体均有之。
在本征半导体中掺入某些微量元素作为杂质,可 使半导体的导电性发生显著变化。掺入的杂质主 要是三价或五价元素。掺入杂质的本征半导体称 为杂质半导体。 多数载流子 1. N型半导体
空穴比未加杂质时的数目多了? 少了?为什么?
5
杂质半导体主要靠多数载流子 导电。掺入杂质越多,多子浓 度越高,导电性越强,实现导 电性可控。
特别注意: 小信号模型中的微变电阻rd与静态工作点Q有关。 该模型用于二极管处于正向偏置条件下,且vD>>VT 。
31
3.4.2 二极管电路的简化模型分析方法
2.模型分析法应用举例
(1)整流电路
32
(2)静态工作情况分析
当VDD=10V 时, (R=10k) 理想模型
VD 0 V
恒压模型
N区自由电 子浓度远高 于P区。
扩散运动
扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面N 区的自由电子浓度降低,产生内电场。
11
由于扩散运动使P区与N区的交界面缺少多数载流子,形 成内电场,从而阻止扩散运动的进行。内电场使空穴从N区向 P区、自由电子从P区向N 区运动。
漂移运动 因电场作用所产 生的运动称为漂移 运动。
3.1 半导体的基本知识 3.2 PN结的形成及特性
3.3 半导体二极管
3.4 二极管基本电路及其分析方法
3.5 特殊二极管
1
3.1 半导体的基本知识
3.1.1 半导体材料
3.1.2 半导体的共价键结构 3.1.3 本征半导体
3.1.4 杂质半导体
2
3.1.1 半导体材料
1、什么是半导体?
导电性介于导体与绝缘体之间的物质称为半导体。 导体--铁、铝、铜等金属元素等低价元素,其最外层电 子在外电场作用下很容易产生定向移动,形成电流。 绝缘体--惰性气体、橡胶等,其原子的最外层电子受 原子核的束缚力很强,只有在外电场强到一定程度时才可能 导电。 半导体--硅(Si)、锗(Ge),均为四价元素,它们 原子的最外层电子受原子核的束缚力介于导体与绝缘体之间
30
即 rd 根据
v D i D
iD IS (evD /VT 1)
diD dv D I S vD / VT e VT
i D VT ID VT
得Q点处的微变电导
gd
Q
Q
Q
则 rd
VT 1 ID gd
常温下(T=300K) r VT 26(mV ) d
ID
I D (mA )
3.3.3 二极管的主要参数
19
3.3.1 半导体二极管的结构
在PN结上加上引线和封装,就成为一个二极 管。二极管按结构分有点接触型、面接触型两大 类。 (1) 点接触型二极管
PN结面积小,结电容小, 用于检波和变频等高频电路。
二极管的结构示意图
(a)点接触型
20
(2) 面接触型二极管
PN结面积大,用于工频大 电流整流电路。
反向特性
60 40 20
15 10 5 0 10 20 30
30 20 10 0 0.2 0.4 0.6 0.8 10 死区 20 30 40
VBR
0.2 0.4 0.6
D/V
②
Vth
反向击穿特性
③
40
iD/ A
iD/ A
硅二极管2CP10的V-I 特性
电路模型
28
(3)折线模型 等效的电池为:门坎电压 硅管约为0.5V
V-I特性
等效的电阻为:当二极管导 通电流为1毫安,管子压降 为0.7V时,电阻rD大约为 200欧姆
电路模型
29
(4)小信号模型
vs =0 时, Q点称为静态工作点 ,反映直流时的工作状态。 vs =Vmsint 时(Vm<<VDD), 将Q点附近小范围内的V-I 特性线性化,得到 小信号模型,即以Q点为切点的一条直线。
• 低电阻 • 大的正向扩散电流
必要吗?
14
(2) PN结加反向电压时 PN结加反向电压截止: 耗尽层变宽,阻止扩 散运动,有利于漂移运 动,形成漂移电流。由 于电流很小,故可近似 认为其截止。
在一定的温度条件下,由本征激 发决定的少子浓度是一定的,故少子 形成的漂移电流是恒定的,基本上与 所加反向电压的大小无关,这个电流 也称为反向饱和电流。 • 高电阻 • 很小的反向漂移电流
管特性的等效模型。 (1)理想模型 应用条件:电源电压远比二极管的管压降大。
正向偏置时的电路模型
反向偏置时的电路模型
V-I特性
代表符号
27
(2)恒压降模型
导通压降: Von硅 0.7 V
(硅二极管典型值) (锗 二极管典型值)
Von锗 0.2 V
V-I特性
应用条件:二极管的电流近似等于或 大于1mA。
I D VDD / R 1 mA
(a)简单二极管电路 (b)习惯画法
VD 0.7 V (硅二极管典型值) I D (VDD VD ) / R 0.93 mA
折线模型
Vth 0.5 V(硅二极管典型值)
设 rD 0.2 k
VDD Vth ID 0.931 mA R rD
最后,多子的扩散和少子的漂移达到动态平衡。
13
3.2.3 PN结的单向导电性
当外加电压使PN结中P区的电位高于N区的电位,称为加 正向电压,简称正偏;反之称为加反向电压,简称反偏。 (1) PN结加正向电压时 PN结加正向电压导通: 耗尽层变窄,扩散运 动加剧,由于外电源的 作用,形成扩散电流, PN结处于导通状态。
解:由电路的KVL方程,可得 iD VDD vD
即 iD
1 1 vD VDD 是一条斜率为-1/R的直线,称为负载线 R R
26
R
Q的坐标值(VD,ID)即为所求。Q点称为电路的工作点
3.4.2 二极管电路的简化模型分析方法
1.二极管V-I 特性的建模 将指数模型 iD IS (e vD VT 1) 分段线性化,得到二极
35
(5)小信号工作情况分析
图示电路中,VDD = 5V,R = 5k,恒压降模型的VD=0.7V,vs = 0.1sint V。(1)求输出电压vO的交流量和总量;(2)绘出vO的波形。
36
3.5 特殊二极管
3.5.1 齐纳二极管(稳压二极管)
1.符号及稳压特性
利用二极管反向击穿特性实现稳压。稳压二极管稳压时工作在反向 电击穿状态。Байду номын сангаас
(2)扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。 结电容: C j Cb Cd 结电容不是常量!若PN结外加电压频率高到一定程 度,则失去单向导电性!
18
3.3 半导体二极管
3.3.1 半导体二极管的结构 3.3.2 二极管的伏安特性
VBR
D/V
②
若反向电压vD VT,则i IS
反向特性为横轴的平行线
材料 硅Si 开启电压 0.5V 导通电压 0.5~0.8V
Vth
iD/ A
反向饱和电流 1µA以下
锗Ge
0.1V
0.1~0.3V
几十µA
23
3.4 二极管基本电路及其分析方法
3.4.1 简单二极管电路的图解分析方法
锗二极管2AP15的V-I 特性
22
从二极管的伏安特性可以反映出:单向导电性
i IS (e
vD VT
1)
正向特性为 指数曲线
vD VT
60 40
iD/mA
20 15 10 20 5 0 10 20 30 ③ 40 0.2 0.4 0.6 ①
若正向电压 vD VT,则i ISe