超声诊断原理及诊断基础
超声诊断 PPT课件
超声与生物组织间的相互作用
热机制 机械机制 空化效应
LATER
(一)两个基本概念 ◆ 声特性阻抗
介质的密度(ρ)与声速(c)的乘积,不 同组织的声特性阻抗不一样。
◆ 界面
两种具有不同声阻抗的介质的接 触面。
大界面:界面尺寸大于超声波长 小界面:界面尺寸小于超声波长
反射与折射
◆
声束遇到大界面时,就会产生折射与反射
界面的反射信号是声像图的主要组成部 分
衍射和散射
超声遇到小界面时,发生衍射和散射 。 人体中的散射源是血液中的红细胞和脏器内 部的细微结构。
衍射和散射示意图
4.吸收衰减特性
超声波在介质内的传播过程中,随 着传播距离的增大,声波的能量逐 渐减少,这一现象称为超声波衰减。 声波衰减与介质对声波的吸收、散 射以及声束扩散等原因有关,其中 吸收是衰减的主要因素。
头 ) —— 发 出 超 声 和接收超声回波。
超声诊断仪基本原理
超声的发生通过逆压电效应发生声能
示波屏 产生图像
由主机 处理放大 换能器
(探头)
人体 组织
利用正压电效应接收超声转为电能
超声的传播
1.传播速度 (c)
由传播介质决定,不同人体组织器官的声速不同, 平均声速为1540米/秒,其中空气最小(350米 /秒),骨骼最大(3850米/秒)。
2.超声频率 (f)
由探头中压电材料决定,在2.2~10兆赫兹范围。
3.超声波长 (λ)
超声波长与声速和频率满足关系式:c = f ·λ
超声声束的空间分布
1.声束 在一个有限的立体角内传播的超声 。
2.声轴
声束的中线。
3.近程区
靠近探头区域,声束等宽
超声诊断的基础和原理
超声诊断的基础和原理计算机技术、电子技术高速发展背景下,超声成像技术取得了一定成果,由于其具有经济实用,快速,诊断效率高等优点,现已广泛应用于临床。
那么超声诊断基础与原理是什么呢,下面对超声诊断知识开展科普。
1.超声诊断原理是什么?超声诊断原理可总结为“脉冲-回波”原理,即利用超声探头发射出脉冲超声后,在组织器官界面生成反射、散射信号,在脉冲期间由探头接收回波信号,并利用特定仪器计算声束轴线各界面反射深度及回声强度,开展灰阶编码操作,生成超声信息线,收集多条信息线即可生成灰阶图像。
总结如下:①超声波为成像载体:超声波是指振动频率>20000Hz的机械波,存在直线传播性,且具有反射、散射、折射、绕射、衰减等特性。
②发射超声波:高频交变电场作用下,超声探头内压电晶体可出现振动,而振动频率>20000Hz即可生成超声波,探头发射超声波后,可以脉冲方式向人体内发射[1]。
③传播超声波:超声具有束射性,及进入人体后遇到不同器官、组织可发生反射、散射,出现回博信号,而回声强度与界面声阻抗差有关。
④接收超声波:回声信号作用于超声探头中压电晶体后,可在表面生成微弱电信号,而探头接收回声信号后,可转为电信号。
⑤处理信号及成像:收集电信号经超声仪放大、处理后,依据信号强弱进行编码,可在显示器内生成二维图像。
⑥分析声像图:基于临床资料观察声像图,有利于诊断疾病。
2.超声诊断基础是什么?2.1超声诊断仪目前临床应用超声诊断仪类型众多,构成基本类似,主要由控制电路、信号处理电路、换能器、图像处理器、发射或接收电路、图像输出器、电源等构成。
其中控制电路可生成各类时序信号,能够协调电路工作,还可监测系统运行情况;信号处理电路可对发射信号(如有序发射各类信号)与接收信号(如放大、降噪处理等)进行处理;换能器即人们常说的探头,可进行电/声转换,发现电脉冲驱动生成声波后向特定诊断位置进行发射,而人体反射回波又可经换能器作用转为电信号;图像处理器可依据成像算法重构人体图像;发射或接收电路能够控制换能器工作方案,动态聚集各类技术,以完成电路控制;图像输出器具有显示、打印、存储、记录、传输图文作用;电源可为超声诊断器械提供电能。
超声诊断的基础和原理
苏州大学附属第一医院 杨俊华
超声声的应用 超声诊断与解剖学、生理学、病理学、 临床医学及比较影像学的关系
超声诊断的特点和优点
有多种显示方法,如A型、B型、M型、多普勒等; 无放射性损伤,为无创性检查技术; 具有灰阶的切面图像,层次清楚,接近于解剖真实结构; 能作动态的实时显示; 无需任何造影剂即可显示管腔结构(充液); 有很好的分辨力,对小病灶有良好的显示能力; 能取得各种方位的切面图像,准确定位和测量病灶大小; 可检测心脏、血流量、胆囊等脏器的功能; 能及时取得结果,并可反复多次进行动态随访观察,对危 重病人可在床边检查。 缺点:由于超声的特性,不能透过气体、骨组织,有衰减 和图像伪差现象。
声场
近场与远场:声束各处宽度不等。在邻近探头的一段距 离内,束宽几乎相等,称为近场区(near field),近场 区为一复瓣区(由一个大的主瓣和一些小的旁瓣组成), 此区内声强高低起伏;远方为远场区(far field),声束 开始扩散,远场区内声强分布均匀。 近场区和远场区者有严格的物理定义,它随探头工作频 率及探头发射时的有效面积而变化。
聚焦 (convergence)
声束的聚焦(convergence):平 面型声源无论在近场区或在远场区 中声束束宽均嫌过大,使图像质量 下降。声束聚焦技术可使聚焦区超 声束变细,减少远场声束扩散,改 善图像的横向和/或侧向分辨力。 单片型探头一般在其表面加置声 透镜聚焦; 多阵元型探头需两种聚焦方法: 加置半圆柱形声透镜使声束在探头 的短轴方向聚焦(横向分辩力) ; 使用多阵元的相控发射及相控接收 使声束在探头的长轴方向聚焦 (侧向分辩力) 。
分辨力(resolution power)
超声诊断的基础和原理
多无症状,体检发现;大血管瘤可有继 发症状,继发于肿块内出血,压迫或罕见的 破裂所致的腹腔内出血。
★声像图表现
好发部位:肝边缘、临近血管处 病变形态:类圆形、不规则形 病变边界:境界清晰、边缘裂开征(血管出入) 病变回声:高回声(筛网状结构)
→
2、低回声型
回声低于正常肝实质,如肾髓质,小肝癌。 组织成分单一均匀,声学界面少,回声少。
3. 等回声型
与肝实质回声相等,如肝脏、子宫。组 织成分稍多,声学界面多,回声多。
4、高回ቤተ መጻሕፍቲ ባይዱ型
回声高于肝实质但不伴声影,如肾窦、肝血管 瘤。组织成分杂乱,声学界面多,回声多。
高回声型
5、强回声型
三维超声
声束在互相垂直的3个方向进行扫描, 电脑技术合成组织的立体三维图像
胎儿三维超声
胎儿三维超声 唇裂
超声造影-革命性进步
可以反映组织的微循环灌注过程 反映病理形态学改变--病理生理过程迈进
人体组织的声学分型
无回声、低回声、等回声、高回声、强回声
1、无回声型 均匀的液性物质,如尿液、胆汁、血液等。这些 物质内部不存在声学界面,不产生回声。
低回声、混合回声
病变血流:血流信号少见,部分见静脉血流 特殊表现:低回声型者内强回声分隔;
靠近腹壁较大肿块受压变形
边缘裂开征
高回声 筛网样结构
血流信号少
肝巨大血管瘤
★原发性肝细胞肝癌
病因:病毒性肝炎和肝硬化、化学致癌物质、 肝血吸虫病
临床:肝区痛,腹胀、腹痛、食欲减退、体 重减轻、血AFP ↑
M型超声和B型超声
超声诊断原理及诊断基础
超声组织定征的临床应用
超声组织定征是指探讨组织声学特性与超声表 现 之 间 相 互 关 系 的 基 础 与 临 床 研 究. 研 究 方 法 有: 1). 声 速: 主 要 用 作 实 验 研 究. 2). 声 衰 减: 实 用 阶 段. 3). 声 散 射: 研 究 应 用 阶 段. 4). 超 声 估 计 组 织 弹 性: 临 床 研 究. 5). 回 声 强 度: 临 床 研 究 应 用 阶 段. 6). 声 学 参 数 测 量 与 组 织 成 分 对 照: 实 验 研 究.
7). 体 腔 内 照 影 剂: 微 泡 照 影 剂 在 心 肌 血 流 灌 注 显 像 方 面 取 得 突 破.
8). 超 声 引 导 穿 刺. 9). 术 中 超 声.
• 超声治疗 • 超 声 医 学 工 程.
心脏基础知识
心脏的内部结构及血流
• 正 常 心 脏 有 四 个 腔 室, 即 右 心 房 和 右 心 室(RA & RV), 左 心 房 和 左 心 室(LA & LV). 房 室 之 间 有 房 室 口 相 通. 房 与 房 之 间 及 室 与 室 之 间 分 别 有 房 间 隔 和 室 间 隔 相 隔.
• 它 显 示 的 信 号 不 受 探 测 角 度 影 响, 可 显 示 平 均 速 度 为 零 的 灌 注 区, 显 示 的 信 号 动 态 范 围 广, 能 显 示 低 流 量, 低 流 速 的 血 流. 不 受 混 叠 现 象 的 影 响.
彩色多普勒能量图的临床应用
• 肿 瘤 血 管 的 检 测. • 实 质 性 脏 器 血 流 灌 注 的 检 测, 可 了 解 有 无 梗 死 所 致 的
• 脉冲多普勒的最大不足是因脉冲重复频率的 影 响 而 使 所 测 血 流 速 度 受 到 限 制.
超声诊断的基础和原理
超声诊断的基础和原理超声是物体的机械振动波,它的频率高于20000赫兹。
而超声诊断则是以超声为基础,将超声检测技术应用于人体,通过超声诊断仪器检测生理或组织结构的数据和形态,从而侦测人体疾病一种诊断方法。
超声诊断频率一般为1-40兆赫兹,常用频率为2.2-10兆赫兹。
本文即就超声诊断的基础和原理进行相关介绍。
一、声源、声束、声场、分辨力1.1声源声源是指能产生超声的物体,一般组成成分为压电物质。
其中,超声的放射是逆压电效应,即电能转变为机械能,而接收的过程则与放射相反。
1.2声束声束是指自声源放射出的超声波,它的传播区域通常在小立体角中。
实际操作中,可使用声束聚焦的方法将声束变细,从而使最终成像更加清晰。
1.3声场声场可分为近场和远场两种。
近场是指声束宽度均匀,但声强不均匀的声场,而远场是指声束扩散,声强均匀的声场。
1.4分辨力分辨力可分为基本分辨力与图像分辨力两种。
前者是指在测量结果中,辨别同一声束线上两个细微之处间差异的能力,根据实际测量的方向关系可继续划分为轴向、侧向与横向分辨力。
后者是指组成最终成像的分辨力,可继续划分为细微分辨力与对比度分辨力,其中,细微分辨力针对的是图像上呈现散射点的大小,对比度分辨力则是指呈现不同回声信号间细小差异的能力。
二、人体组织的声学参数1.1密度(ρ)人体内不同组织的密度是声阻抗的重要构成之一,单位是g/cm3。
需要注意的是,实际密度测定需要在活体组织血供正常时进行,否则会导致测量值缺乏真实意义。
1.2声速(c)声速是指声波在介质中的传播速度,单位是m/s或mm/us。
人体内不同组织中的声速存在差异,通常情况下,由于组成成分及含量的差别,不同组织的声速可按逐渐降低的次序呈以下排布:固体物含量高、纤维组织含量高、含水量高、体液、含气脏器中的气体。
1.3声特性阻抗(Z)声特性阻抗是密度与声速的乘积,单位是g/( cm3·s)。
该参数可简称为声阻抗,在仪器生成的图像中,不同回声的形态变化主要是受声阻抗差异的影响。
超声诊断基础
重庆医科大学附属第一医院
一、医学超声发展简史
起源于20世纪40年代,1942年德国精神科医 师用A型超声探查颅脑,1949年二维超声用于 检诊疾病;
80年代彩色多谱勒超声问世并用于临床; 90年代以后,三维超声、超声造影、能量多
普勒、腔内超声、超声组织定征及弹性成像 等新技术相继出现并用于临床; 20世纪末,我校王智彪教授等成功研制出高 强度超声(HIFU)肿瘤治疗系统,并在临床 得到广泛应用。
8/6/2021
镜像伪像(镜面折返虚像)
超声束在体内传播,遇到较深的平滑 大界面时,其浅面与之接近的结构或病灶在 声像图上会在该界面的两侧对称显示,即镜 面伪像,近侧者为实像,远侧者为虚像,为 入射声束按入射径路反射折回探头所致。
8/6/2021
声影
在常规深度增益补偿正补偿调节后,在组织 或病灶后方所显示的回声减弱,甚或接近无回声 的平直条状区。系声通道上较强衰减体所致。
传统X线成像 现
代
X线电子计算机断层扫描(CT)
医
学
核磁共振成像(MRI)
影
像
放射性核素扫描
学
超声成像(ultrasound ging,USI)
二、超声诊断学定义
借助超声诊断仪,利用超声波的物 理特性和人体组织器官的声学特性相互 作用而产生的信息,经处理后形成图像、 曲线或其他数据,通过分析这些资料进 而对人体疾病进行诊断的一门学科即超 声诊断学。
它是指声源与接收器之间发生相对运动时, 接收体接收到的超声波频率发生改变的现象。 这种现象即为多普勒效应(Doppler effect)。 频率的变化值称为频移fd。
频率改变的差叫频移,频移与速度和角
度成正比。利用这个技术可以检测人体血
超声诊断学
超声诊断学绪论2
第二节 超声诊断仪器与探头 的选择
一、超声诊断仪器的类别:B型,彩超 二、探头的种类与功能
超声诊断学绪论2
超声诊断学绪论1
超声诊断学绪论1
第三节 超声探测方法
(实验课)
超声诊断学绪论2
第四节 超声回声描述与 图像分析内容
超声诊断学绪论2
一、回声描述与命名
(Posterial Wall Enhancement Effect)
与深度增益补偿有关,在整体图 形正补偿,但其中某一小区衰减 特别小时,在此区的补偿过大, 成“过补偿区”,其后壁因补偿 过高而较同等深度的周围组织亮 得多,称为后壁增强效应。
六、声 影(Acoustic shadow)
在常规DGC正补偿调节后, 在组织或病灶后方所显示的 回声低弱甚或接近无回声的 平直条状区。声影系声路中 具较强衰减体所造成。结石、 骨骼。
2·f ·v ·cosθ fd =
c
fd ·c v=
2 ·f ·cos θ
fd: frequency shift
v: velocity of target
θ: angle
c: velocity of ultrasound
f: transmitting frequency
3.超声多普勒血流频谱
①可求心动周期上任一时刻的血流 速度,如收缩期峰值血流速度或舒 张末期血流速度。
(四)人体组织对入射超声的作用
1、散射:小界面对入射超声产生散射,显示细 小结构
2、反射:大界面对入射超声产生反射 3、折射:声束在不同声速组织中传播方向发生
改变
4、全反射:入射角大于临界角时(折射声 影)
超声知识归纳总结
超声知识归纳总结超声技术是一种基于声波传播和反射原理的医学成像方法,它可用于诊断、评估以及监测疾病的发展。
本文将对超声知识进行归纳总结,包括超声原理、超声检查、超声诊断以及超声应用的领域等内容。
一、超声原理超声波是一种频率大于20kHz的声波,其传播速度和方向可以通过声速和入射角度来测量。
超声波经过物体后发生折射、反射、散射等现象,这些现象可用于形成超声图像,并提供有关被检查组织或器官的信息。
二、超声检查超声检查可以分为二维超声和三维超声。
二维超声是通过探头在患者体表上移动,获取不同角度的断层图像,并以此来观察和评估被检查部位的结构和功能情况。
三维超声则是通过使用探头进行快速扫描,获得更多角度的图像信息,从而生成真实三维图像。
在超声检查中,探头是承载超声波源和接收器的关键部件,其频率和形状的选择会根据被检查对象的不同而有所变化。
同时,患者和操作者的位置和姿势也会对超声图像的质量产生影响,因此操作者需要在检查过程中注意调整和优化。
三、超声诊断超声诊断是基于超声图像来分析和评估疾病情况的过程。
医生通过观察超声图像上的结构形态、血流情况、组织回声等特征来判断是否存在异常。
一般来说,正常组织通常呈现高回声,异常组织则可能呈现低回声、无回声或混合回声等。
超声诊断在很多领域中具有广泛的应用,如妇产科、心脏病学、消化系统、泌尿系统、肝胆胰脾等。
例如,超声在妇产科中可以用于孕妇孕期检查、胎儿发育评估、宫颈、子宫和卵巢病变的检查等。
四、超声应用领域1. 妇产科:超声在妇产科中被广泛应用,如孕妇常规检查、卵巢与宫颈病变检查等。
2. 心脏病学:超声心动图可以通过超声波图像来评估心脏结构和功能,用于检测心脏瓣膜疾病等。
3. 消化系统:超声可用于胆囊、肝胆胰脾等器官的检查和评估,例如胆囊结石、肝动脉瘤等。
4. 泌尿系统:超声在泌尿系统疾病的诊断和评估中有重要作用,如肾结石、前列腺增生等。
5. 乳腺病学:超声在乳腺疾病的检查中被广泛使用,如乳腺肿块的鉴别、乳腺纤维腺瘤的诊断等。
超声诊断学基础和原理
1
第二章 超声诊断的基础和原理
教学要求:
1 掌握超声基础知识一些基本概念 2 掌握超声基本物理特性 3 掌握超声成像原理 4 掌握超声诊断方法及不同显示方式 5 掌握识别常见超声效应与图像伪差 意义及判 断
2
超声诊断学
超声诊断的基础和原理
MRI
现代三大医学影像诊断技术之一
US首选
CT
优势:无创 精确 方便
24
超声诊断学
超声诊断的基础和原理
第一节 诊断超声的物理特性
二 声源 声束 声场与分辨力
3 多普勒超声分辨力:
指多普勒超声系统测定流向 流速及与 之有关方面的分辨力
25
超声诊断学
超声诊断的基础和原理
第一节 诊断超声的物理特性
二 声源 声束 声场与分辨力
3 多普勒超声分辨力:
1多普勒侧向分辨力 2多普勒流速分布分辨力 3多普勒流向分辨力 4多普勒最低流速分辨力
第一节 诊断超声的物理特性
四 人体组织对入射超声的作用
在人体组织中对超声敏感者有中枢神经系统 视网膜 视神经 生殖腺 早孕期胚芽及3个月内早孕 孕期胎儿颅脑 胎心等 对这些脏器的超声检查;每 一受检切面上其固定持续观察时间不应超过1分钟
52
超声诊断学
超声诊断的基础和原理
第一节 诊断超声的物理特性
四 人体组织对入射超声的作用
二 声源 声束 声场与分辨力
22
超声诊断学
超声诊断的基础和原理
第一节 诊断超声的物理特性
二 声源 声束 声场与分辨力
横向分辨力对超声图像的影响
23
超声诊断学
超声诊断的基础和原理
第一节 诊断超声的物理特性
超声诊断原理与诊断基础
---------------------------------------------------------------最新资料推荐------------------------------------------------------超声诊断原理与诊断基础超声诊断原理与诊断基础第一章超声诊断概述一、超声诊断学现代科技(电子技术、计算机科学等)与声学原理相结合应用于临床医学诊断即为超声诊断学。
二、超声发展史 A 型:超声示波诊断法幅度调制型,以波形显示界面回波。
纵轴为回波幅度,横轴为超声波传播深度。
属一维显示,反应不同深度界面的反射强度,于 1958 年应用于临床。
M 型:超声光点扫描法M 型超声心动图。
纵轴为界面运动幅度,横轴为时间,曲线灰度代表界面反射强度。
属一维显示,反应界面随时间的运动曲线, 1961 年应用于临床。
B 型:超声显像诊断法辉度调制型。
即以光点的形式显示二维切面图形。
仪器结构复杂,主要部件有探头、发射电路、接收电路、扫描电路、主控电路、显示器。
20 世纪 70 年代初应用于临床, 70 年代中后期采用了灰阶及1/ 22DSC 技术,实时超声图像质量大大改善,于 80 年代迅速发展并普及, 90 年代后期进入全数字化时代。
DSC:数字扫描转换器,主体是图像存储器, 使数字信号转变成标准电视扫描制式的模拟信号,显示为稳定的二维图像。
D 型:超声频移诊断法Doppler 频谱、 CDFI、 CDE、 DTI 等, 1983 年日本 Aloka 公司研制出世界上第一台彩超,并首先规定朝向探头与背向探头的血流分别以红色及蓝色显示。
20 世纪 90 年代彩超迅速普及, 90 年代后期进入全数字化时代。
三维超声:20 世纪 90 年代开始应用于临床。
三、超声诊断的优点、局限性及临床应用 1、超声与普通X-CT 等影像技术相比有以下优点:(1)无放射性,无创伤,价廉,方便快捷,可反复检查。
超声诊断ppt课件完整版
操作后处理与报告书写
图像保存与处理
报告书写
将检查过程中的超声图像进行保存,并根据 需要进行处理,如放大、测量等。
根据检查结果,认真书写超声诊断报告,包 括患者信息、检查部位、超声表现、诊断意 见等。
结果解读与沟通
仪器维护与保养
向患者解释超声诊断结果,告知其病情及后 续治疗建议,同时与患者家属进行沟通,解 答其疑问。
弹性成像技术分类
包括静态/准静态弹性成像、声辐射力脉冲成像 (ARFI)、剪切波弹性成像(SWE)等。
临床应用
在乳腺、甲状腺、肝脏等器官的良恶性病变鉴别中有重要价值。
超声造影技术
超声造影剂
由微气泡构成,能增强血液的背向散射,提 高超声图像的对比度和分辨率。
超声造影技术分类
包括二次谐波成像、能量多普勒成像、反向 脉冲谐波成像等。
心脏血流动力学监测
通过多普勒超声技术,可以实时监测心脏内血流速度、血流量以及 血流方向等参数。
心血管疾病诊断
超声心动图对于冠心病、心肌病、心脏瓣膜病等心血管疾病的诊断具 有重要价值。
腹部脏器超声诊断
肝脏疾病诊断
超声可以检测肝脏大小、形态、 回声等异常表现,辅助诊断肝炎、
肝硬化、肝肿瘤等疾病。
胆道系统疾病诊断
临床应用
在心血管、腹部、妇产等领域有广泛应用, 如心肌灌注评估、肝肿瘤检测等。
其他新技术与新进展
超声内镜技术
将超声探头与内镜结合,可在直视下对消化道壁 及邻近脏器进行超声检查。
无线超声技术
利用无线通信技术,实现超声图像的实时传输和 远程会诊。
ABCD
血管内超声技术
使用微型超声探头置入血管内进行成像,用于评 估血管狭窄、斑块等病变。
超声诊断的基础和原理【2】
凸阵一种多阵元探头,其 阵元排列成凸弧形。工作 时依次发射和接收超声, 所获得图像为方形和扇形 的结合。
环阵 就是环形相控阵探头。由 一系列同心圆环形晶体组 成,可使声束变窄,从而 提高了全程的横向分辨力 。
多频探头 可发射和接收多种不同中 心频率的超声探头。其中 心频率的频带较宽,有2.5
~6MHz和5~10MHz。
混响 声源停止后,声波的多次 反射或散射使回声延续的 现象
超声诊断仪的相关知识
换能器(探头)换能器或探头 ,是发射并回收超声的装置。 它将电能转换成声能,再将声 能转换成电能,由晶片、吸收 (声)背块、匹配层及导线四 个部分组成
聚焦
在超声场内,将声束中的超声能量会聚成一点的方法称为 聚焦。它有利于减小声束,提高横向分辨力,又可分为几 何(机械)聚焦和电子聚焦。
旁瓣
由超声探头各阵元边缘所产生的,不在超声 主声束方向内的外加声束。
侧壁声影 又称边缘声影或边缘折射声影。 在圆形病灶中,如第二介质声速大于 第一介质,或第二介质声速虽小于第 一介质,但其周围有一薄层纤维包膜 ,而它的声速大于第一介质。此时, 入射声束发生折射或全反射,造成其 侧壁或边缘下方组织无声束照射而产 生声影。囊性病灶的侧壁声影多内收 ,而实性包块多扩展。
频谱
即多普勒频谱。它以谱图的形式显示回声 源(红细胞)的速度和方向。在频谱图中,零 基线将图分为上、下两个部分,分别代表血流 的正、负方向。纵坐标为差频值(KHz)或流 速值(cm/s),横坐标为时间值。在红细胞以 相同速度运动时,呈狭谱(速度范围窄);在 红细胞以不同速度运动时呈宽谱(速度范围宽)
增益 将超声波信号加以放大的 方法称为增益。一般取对 数放大,增益调节通过射 频放大器的放大倍数实现 ,前提是必须有适当的输 出能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彩色多普勒血流显像 (Color Doppler flow imaging , CDFI )
正常肾彩色多普勒血流显示 (CDFI)
彩色Doppler能量图
血管平滑脂肪瘤 (angiomyolipoma)
超声医学发展
• 超声诊断 – 提高组织鉴别力方面 – Doppler诊断方面 – 介入超声方面 – 新的超声诊断法的研究 • 超声治疗 • 超声医学工程
B型超声诊断是通过对一系列切面声像图的分析而 作出的。
分析内容:
外形 边界回声 内部回声 后方回声 比邻关系 活动度和活动规律 硬度 排空功能
临床应用
M型诊断法
原理
类似B型诊断法原理。M型仪是在水平偏转 板上加入一对慢扫描锯齿波,使回声光点沿水平 方向扫描,代表时间。保留原来垂直方向的深度 扫描线。
诊断基础
由于人体脏器、组织其正常与异常的物理 性质及结构不同,形成相应的超声界面,认识 这些界面回声规律,即A型诊断法的诊断基础
临床应用
• • • • • • 脑中线探测 眼球探测 胸膜腔探测 心包积液探测 肝脓肿探测 测量脏器大小、厚度及判定其内部结 构的物理性质
B型诊断法
原理
超声造影
超声诊断种类
• • • • • • 三维超声诊断法 超声显微镜诊断法 超声组织定征诊断法 C型超声诊断法 P型超声诊断法 F型超声诊断法
超声诊断原理及诊断基础
A型诊断法
原理
当声束在人体组织中传播遇到不同声阻抗的 临近介质介面时,在该界面上就产生反射(回 声),当遇到一个界面,产生一个回声,该回声 在示波器的屏幕上以波的形式显示出来。
• 与A型诊断法基本相同,都是应用回声原 理进行诊断。 • 与A型不同之处 – 幅度调制显示改进为辉度调制显示 – 探头发射的声束必须进行扫查 – 得到的是一系列人体切面声像图
A型 (Amplituห้องสมุดไป่ตู้e mode)
B型 (Brightness mode)
线形扫描(linear scan)
诊断基础
诊断基础
血流相对于声源的运动。即脉冲超声波在 人体中以恒定的速度c向血流运动,而血流又以 某一速度V相对于超声波运动(相向或同相)从 而由探头接受回声信息,接受回波的频率与发 射超声频率有一偏移,经星号处理可以检出 Doppler频移。
D型 (Doppler mode)
临床应用
彩色Doppler血流成像法
M型 (Motion mode)
诊断基础
探头位置的固定,心脏有规律地收缩和舒 张,心脏各层组织和探头的距离便产生节律性 的改变。随着水平方向的慢扫描,便把心脏各 层组织的回声展开成曲线。
临床应用
M型 (Motion mode)
Doppler超声诊断法
原理
Doppler效应,产生频移。 V=c(±fd)/2f0cosθ
穿刺探头及穿刺附加器
穿刺探头及穿刺附加器
超声检查的主要用途
超声诊断种类
超声示波法(A型,Amplitude mode) 二维超声显像法(B型,Brightness mode) 超声光点扫描法(M型,Motion type) 超声频移诊断法(D型,Doppler type)
Doppler 超声诊断法(PW CW) 彩色Doppler超声 (CDFI ) 彩色Doppler能量图 (CDE)