极化恒等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极化恒等式
.
两倍等于两条邻边平方和的平方和平行四边形的对角线的你能用向量方法证明:何模型。
示向量加法和减法的几引例:平行四边形是表,,b AD a AB ==证明:不妨设 ,,则b a DB b a A -=+=C ()222222C C b b a a b a A A +⋅+=+== (1)
()222222b b a a b a DB DB +⋅-=-== (2)
(1)(2)两式相加得:⎪⎭
⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+22222222C AD AB b a DB A 结论:平行四边形对角线的平方和等于两条邻边平方和的两倍.
思考1:如果将上面(1)(2)两式相减,能得到什么结论呢?
b a ⋅=()()
⎥⎦⎤⎢⎣⎡--+2241b a b a ————极化恒等式 对于上述恒等式,用向量运算显然容易证明。那么基于上面的引例,你觉得极化恒等式的几何意义是什么? 几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41. 即:[]
2241DB AC b a -=⋅(平行四边形模式) 思考:在图1的三角形ABD 中(M 为BD 的中点),此恒等式如何表示呢?
因为AM AC 2=,所以224
1DB AM b a -=⋅(三角形模式) 例1.(2012年浙江文15)在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则AB AC ⋅=____ .
目标检测
.______1)132012(的值为边上的动点,则是点,
的边长为已知正方形改编北京文DA DE AB E ABCD ⋅
.
________O O 2.2的取值范围是则上的一个动点,
是圆,点的圆内接于半径为(自编)已知正三角形例PB PA P ABC ⋅
A B C M
目标检测
8
.6.3.2.)
(13
4)112010(2
2D C B A FP OP P y x F O 的最大值为则为椭圆上的任意一点,的中心和左焦点,点分别为椭圆和点若点福建文⋅=+
例3.(2013浙江理7)在ABC ∆中,0P 是边AB 上一定点,满足014
P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅。则( )
A . 90ABC ∠=
B . 90BA
C ∠= C . AB AC =
D . AC BC =
例4. (2017全国2理科12)已知是边长为2的等边三角形,P 为平面ABC 内一点,则的最小是( )
A. B. C. D.
课后检测
1.在ABC ∆中,60BAC ∠=若2AB =
,BC =
,D 在线段AC 上运动,DA DB ⋅的最小值为
2.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于,A B 的一点,P 是圆O 所在平面上任意一点,则()PA PB PC +⋅的最小值为____________
3.在ABC ∆中,3AB =,4AC =,60BAC ∠=,若P 是ABC ∆所在平面内一点,且2AP =,则PB PC ⋅的最大值为
ABC ∆()PA PB PC ⋅+2-32-43
-1-
4. 若点O 和点(2,0)F -分别是双曲线2
221(0)x y a a
-=>的中心和左焦点,点P 为双曲线右支上任意一点则OP FP ⋅的取值范围是 .
5.在Rt ABC ∆,2AC BC ==,已知点P 是ABC ∆内一点,则)(PB PA PC +⋅的最小
值是 .
6.已知B A 、是单位圆上的两点,O 为圆心,且MN AOB o
,120=∠是圆O 的一条直径,点C 在圆内,且满足)10()1(<<-+=λλλOB OA OC ,则CN CM ⋅的取值范围是( )
A .⎪⎭⎫⎢⎣⎡-1,21
B .[)1,1-
C .⎪⎭
⎫⎢⎣⎡-0,43 D .[)0,1- 7. 正ABC ∆边长等于3,点P 在其外接圆上运动,则PB AP ⋅的取值范围是( ) A. ⎥⎦⎤⎢⎣⎡-
23,23 B. ⎥⎦⎤⎢⎣⎡-21,23 C. ⎥⎦⎤⎢⎣⎡-23,21 D. ⎥⎦⎤⎢⎣⎡-21,21
8.在锐角ABC ∆中,已知3B π=,2AB AC -=,则AB AC ⋅的取值范围是 .
9. 2
2.
2.2.1.)(,0)()(2,)92008(D C B A c b c a c b a 满足
,若向量个互相垂直的单位向量是平面内已知浙江理=-⋅-