光电耦合器的电路符号及图片识别
光电耦合器(光耦)的应用电路集
光电耦合器(光耦)的应用电路集光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强.无触点且输入与输出在电气上完全隔离等特点,因而在各种电子设备上得到广泛的应用.光电耦合器可用于隔离电路、负载接口及各种家用电器等电路中.下面介绍最常见的应用电路.1.光耦组成的开关电路图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态.2.光耦组成的逻辑电路图3电路为“与门”逻辑电路。
其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路.3.光耦组成隔离耦合电路电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。
4.光耦组成高压稳压电路电略如图5所示.驱动管需采用耐压较高的晶体管(图中驱动管为3DG27)。
当输出电压增大时,V55的偏压增加,B5中发光二极管的正向电流增大,使光敏管极间电压减小,调整管be结偏压降低而内阻增大,使输出电压降低,而保持输出电压的稳定.5.光耦组成的门厅照明灯自动控制电路电路如图6所示。
A是四组模拟电子开关(S1~S4):S1,S2,S3并联(可增加驱动功率及抗干扰能力)用于延时电路,当其接通电源后经R4,B6驱动双向可控硅VT,VT直接控制门厅照明灯H;S4与外接光敏电阻Rl等构成环境光线检测电路。
当门关闭时,安装在门框上的常闭型干簧管KD受到门上磁铁作用,其触点断开,S1,S2,S3处于数据开状态。
光电三极管和光电耦合器资料
c 受光器件 光电二极管
e 光电三极管
实现 电 - 光 - 电 传输和转换
二、主要参数
+
c
1. 2.
输入参数。即LED的参数 输出参数。与光电管同,其中:
–
e
〔1〕光电流
指输入肯定电流〔10 mA〕,输出接肯定负载〔约 500
〕和肯定电压〔10 V〕时输出端产生的电流。
〔2〕饱和压降
有3AU、3DU系列
峰值波长 900 nm
二、应用举例 泄流二极管,在继电器脱电
1. 开关电路
时,使线圈自感电动势形成 放电回路且限幅为0.7V,从
Байду номын сангаас
而使三极管免受过大的uCE。
直接驱动式,能提 供 3 mA的光电流。
三极管 T 用于放大 驱动电流。
2. 测速电路
2.7.2 光电耦合器
一、根本原理
指输入肯定电流〔20 mA〕,输出接肯定电压〔10 V〕,
调整负载使输出达肯定值( 2 mA )时时输出端的电压( 通常 为3. 传0.3输V参)。数 〔1〕电流比CTR
指直流状态下,输出电流与输入电流之比。一般 < 1。
〔2〕隔离电阻 RISO。指输入输出间绝缘电阻。
〔3〕极间耐压 UISO。
指发光管光电管间的绝缘耐压,一般在500 V以上。
三、类型、特点和用途
分类: 一般光电耦合器 ,用作光电开关。 线性光电耦合器 ,输出随输入成线性比例变化。
特点: 抗干扰性能好、隔噪声、响应快、寿命长。 用作线性传输时失真小、工作频率高; 用作光电开关时无机械触点疲惫,牢靠性高。
用途:实现电平转换、电信号电气隔离。
光电耦合器基础知识
光电耦合器基础知识基本资料光电耦合器接口电路图1显示了一个典型的光电耦合器驱动电路。
在该例中,右边的5V副边输出将会被左边原边电路的脉宽调制器控制。
比较器A1将ZDl(结点A)的参考电压和通过分压电路R7和R8的输出电压进行比较,因而控制Q2的导通状态,可以定义发光二极管D1的电流和通过光耦合在光敏晶体管Q1的集电极电流。
然后Q1定义脉冲宽度和输出电压,补偿任何使输出电压改变的倾向。
随着光电耦合器的使用时间增加和传输比即增益的下降,为了防止控制失灵,给Q2提供充足的驱动电流裕量是很有必要的。
光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。
它由发光源和受光器两部分组成。
把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。
发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。
光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。
如下图1(外形有金属圆壳封装,塑封双列直插等)。
工作原理工作原理在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。
基本工作特性(以光敏三极管为例)1、共模抑制比很高在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。
2、输出特性光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。
当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。
IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。
(整理)光电耦合器件.
光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装矢量控制矢量控制实现的基本原理矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
2异步电动机的矢量控制过程2.1矢量变换控制的基本思路l)矢量变换控制的基本思路:是以产生同样的旋转磁场为准则,建立三相交流绕组电流、两组交流绕组电流和在旋转坐标上的正交绕组直流电流之间的等效关系。
2)它首先通过电机的等效电路来得出一些磁链方程,包括定子磁链,气隙磁链,转子磁链。
3)把三相静止坐标系下的定子交流电流,通过3/2变换,等效成两相静止坐标系下的交流电流。
然后,再把两相静止电流,通过转子磁场定向的旋转变换VR,等效成两相旋转坐标系下的电流即类似于直流机的转矩电流分量和磁场电流分量,这样就实现了解祸控制,加快了系统的响应速度。
4)最后再经过2乃变换,产生三相交流电去控制电机,这样就获得了良好的性能。
光电耦合器课件
2、反射型
LED和光电接收器件封装在一个壳体内,两者的 发射光轴与接收光轴夹一锐角,若有被测物体存 在于器件前方, LED发光后将被被测物体反射至 接收器,构成测量近距离是否有物体存在的光电 开关。
如:产品自动计数
感应式水龙头
三、器件特性参数
1.隔离性:
(1)光耦电路的输入和输出之间完全没有电路联系。 (2)耦合电容<2pf
(3)击穿电压在100~250v之间
(4)输入输出绝缘电阻10^9~10^13 Ω (5)信号单向传递
2、电流传输比β β=接收器输出电流/发光器件的注入电流
四、光耦基本电路 1、输入端
设计输入电路时,关键点在于确定限流电 阻,而限流电阻的大小由LED的额定电流决 定。
Rf
VBB VF IF
Rf
计数电路
译码显示电路
报警电路
与门电路,如果在输入端Ui1和 Ui2同时输入高电平"1",则两
个发光二极管GD1和GD2都发光, 两个光敏三极管TD1和TD2都导 通,输出端就呈现高电平“1”。
3、电平转换
工业控制系统所用集成 电路的电源电压和信号脉 冲的幅度常不尽相同,如 TTL的电源为5V,HTL为12V, PMOS为-22V,CMOS则为 5~20V。如果在系统中必 须采用二种集成电路芯片, 就必需对电平进行转换, 以便逻辑控制的实现。
4、高压稳压电路
设计题
1、目的 了解光电测量系统工作原理,学习光电耦合器知
识;掌握数字电路计数、译码、显示系统的工作 原理及设计方法。
2、设计要求及技术指标
❖LED数码管显示计数值 ❖能在计数结果达到设定值时报警
3、要求完成的任务
❖计算参数,画出完整原理图
光电耦合器
光电耦合器光电耦合器光耦光耦的定义耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦,是开关电源电路中常用的器件。
光耦的工作原理耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。
目前它已成为种类最多、用途最广的光电器件之一。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。
由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。
又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。
所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。
在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。
光耦的优点光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
光耦的种类光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。
常用的4N系列光耦属于非线性光耦。
线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。
光电耦合器的电路符号及图片识别
光电耦合器的电路符号及图片识别
光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。
光耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,。
由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。
又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。
所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。
在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。
一、光耦的电路符号
二、光耦的应用
三、光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
四、光耦的图片。
光电耦合器组成的开关电路及光电耦合器检测电路
光电耦合器组成的开关电路及光电耦合器检测电路光电耦合器组成的开关电路光电耦合器检测电路光电耦合器 , 检测法XC2C64A-7VQ44I其电路符号如图1. 5.1所示。
光电耦合器是把发光二极管和光电三极管封装在一个管壳内构成的前面已介绍过,发光二极管是一种能将电能直接转换成光能的特殊二极管,加正向电压可发光;与发光二极管相反,光电管是一种能把光能转换成电能的半导体器件。
它包括光电二极管和光电三极管两大类。
光电二极管是由PN结和有聚光作用的透镜组成。
通常情况下,给PN结加反向偏置电压时,产生的反向饱和电流是很小的,但如果有光照射时,半导体电阻率会显著减小(光敏性),将激发产生光生载流子(电子空穴对),在反向电压作用下,光生载流子漂移通过PN结,使PN结由反向截止转换为反向导通。
光电三极管是具有两个PN结的光电器件。
它的工作原理与光咆二极管类似,只是它还利用了三极管的放大作用,因此灵敏度更高。
光电耦合器以发光二极管为输入端,光电三极管为输出端。
当输入端有电信号输入时(发光二极管加正向电压),发光二极管发光,光电三极管因受光照产生光电流,输出端就有电信号输出。
因此,光电耦合器是以光为媒介传输电信号的。
其特点是输入和输出之间实现了电绝缘。
使用光电耦合器时应注意以下几个参数:①隔离电阻:即发光二极管与光电三极管之间的绝缘电阻,一般在10~10Q之间。
②极间耐压:即发光二极管与光电三极管之间的耐压,一般在500V以上。
③最高工作频率:一般不超过lOOkHz。
光电耦合器主要用来实现微型计算机接口与各类控制对象之间的电气隔离,以增强抗干扰能力,提高系统工作的可靠性。
图1·5.2电路是用于耦合脉冲信号的应用电路。
当输入信号u,为低电平时,三极管VT截止,光电耦合器输入端的发光二极管无电流通过不发光,输出端光电三极管截止,输出电压口。
为低电平;当输入信号Vi为高电平时,三极管VT饱和导通,发光二极管发光,光电三极管产生光电流,输出电压u。
光电耦合器
1.光电耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
其具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,因此在数字电路上获得广泛的应用。
2. 光电开关即光电传感器,是光电接近开关的简称,利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
光电开关是传感器的一种,它把发射端和接收端之间光的强弱变化转化为电流的变化以达到探测的目的。
由于光电开关输出回路和输入回路是电隔离的(即电缘绝),所以它可以在许多场合得到应用。
光电开关采用集成电路技术和SMT表面安装工艺而制造的新一代光电开关器件,具有延时、展宽、外同步、抗相互干扰、可靠性高、工作区域稳定和自诊断等智能化功能。
光电开关已被用作物位检测、液位控制、产品计数、宽度判别、速度检测、定长剪切、孔洞识别、信号延时、自动门传感、色标检出、冲床和剪切机以及安全防护等诸多领域。
3.逻辑门电路符号图(与门或门非门同或门异或门)上表包括与门,或门,非门,同或门,异或门,还有这些门电路的逻辑表达式,1.与逻辑电能控制装置。
可分为交——交变频器,交——直——交变频器。
交——交变频器可直接把交流电变成频率和电压都可变的交流电;交——直——交变频器则是先把交流电经整流器先整流成直流电,再经过逆变器把这个直流电流变成频率和电压都可变的交流电。
5. npn三极管的基本作用:半导体三极管也称为晶体三极管,npn三极管可以说它是电子电路中最重要的器件。
它最主要的功能是电流放大和开关作用。
npn三极管顾名思义具有三个电极。
二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母B表示)。
光电耦合器组成的脉冲电路
光电耦合器组成的脉冲电路这里介绍的光电耦合器是由发光二极管和光敏三极管组合起来的器件,发光二极管是把输入边的电信号变换成相同规律变化的光,而光脉敏三极管是把光又重新变换成变化规律相同的电信号,因此,光起着媒介的作用。
由于光电耦合器抗干扰能力强,容易完成电平匹配和转移,又不受信号源是否接地的限制。
所以应用日益广泛。
一、用光电耦合器组成的多谐振荡电路用光电耦合器组成的多谐振荡电路见图1。
当图1(a)刚接通电源Ec时,由于UF随C充电而增加,直到UF≈1伏时,发光二极管达到饱和,接着三极管也饱和,输出Uo≈Ec。
三极管饱和后,C放电(由C→F→E1→Er和由C→R F→+Ec→Re两条路径放电),uo减小,二极管在C放电到一定程度后就截止,而三极管把储存电荷全部移走后,接着也截止,uo为零。
三极管截止后,电源Ec又对C充电,重复上述过程,得出图示的尖峰输出波形,其周期,为(当RF》Re时):T=C(RF+Re)In2图1(b)是原理相同的另一种形式电路。
图1、用光电耦合的多谐振荡器二、用光电耦合器组成的双稳态电路精品用光电耦合器组砀双稳态电路如图2所示。
电路接通电源后的稳态是BG截止,输出高电位。
在触发正脉冲作用下,ib 增加使BG进入放大状态,形成ib↑→i f↑→i b↑↑,结果BG截止,这种电路比普通的触发顺具有更高的抗干扰能力。
若设BG的极限电流Ic=6毫安,则R2=取为:R2≥(13-1)/(6×10)=24欧限流电阻R1可按下式计算R1≥(E-IbmRce2min)/Ibm式中:Ibm是晶体管的最大基极电流,Rce2min是光敏三极管集射间的最小电阻值。
图2、用光电耦合的双稳态电路三、用光电耦合器组成的整形电路由于用光电耦合器组成的脉冲耦合电路,其前后沿时间都比较大,因此在耦合器后面接一级晶体管的整形放大电路。
见表一列出几种整形电路的应用实例。
表一用光电耦合器组成的整形电路光电耦合-晶体管整形电路光电耦合-固定组件整形反相整形快速整形电路说明这是一种施密特整形电路,因为不管输入是失真方波、正弦波还是锯齿波,在输出端均得到方波光电耦合顺的输出接一与非门时行整形光电耦合器的输出端后面连接两级与非门,构成反相整形光电耦合器的输出端后面连接两只晶体管,构成同相整形电路四、用光电耦合器组成的斩波电路用光电耦合器组成的斩皮电路见表二表二用光电耦合器组成的斩波电路直接斩波电路隔离式斩波电路(I)隔离式斩波电路(II)精品电路说明输出Ei被测电压,经斩波取样后送到编码器里进行编码测量,当A点是低电位,B点为高电位时,GD1导通,GD2截止,被测电压Ei直接送到输出端,反之,A点高电位,B点低电位,GD1截止,GD2导通,C经GD2放电,输出端回到零。
光电耦合器 (2)
光电隔离元件里面包含两个基本元件:光发射元件(发光管)和光接收元件(一般采用光敏二极管或光敏三极管),光发射管通电后能发出较强的光束,这光束照射到光接收元件时,其电阻会急剧下降,利用光接收元件的这个特性可以用来控制或调整下一级(一般为三极管)的导通程度或形状开关状态,因光电隔离元件中的光发射元件和光接收元件中间是以光的形式相互联系的,在电气上没有直接相连,从而达到了在电气上的隔离作用。
光电隔离元件的应用,可以使彩色电视机的主板大部分不带电,给使用者带了安全。
光电隔离元件也叫光偶(即常说的光电偶合器),型号一般为2N33、2N35等。
双排4脚卧式封装。
光电耦合器工光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装图二光电耦合器之内部结构图三极管接收型6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装图四光电耦合器之内部结构图可控硅接收型6脚封装图五光电耦合器之内部结构图双二极管接收型6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
电气自动化技术《2.7.2》
根本原理
光电耦合器是将发光器件和受光器件封装在同一个管壳内组成的电-光-电器件,其电路符号和实物外形图如下图。
图中左边是发光二极管,右边是光电三极管。
当在光电耦合器的输入端加电信号时,发光二极管发光,光电管受到光照后产生光电流,由输出端引出,于是实现了电-光-电的传输和转换。
光电耦合器以光为媒介实现电信号传输,输出端与输入端之间在电气上是绝缘的,因此抗干扰性能好,能隔噪声,而且具有响应快、寿命长等优点,用作线性传输时失真小、工作频率高;用作开关时,无机械触点疲劳,具有很高的可靠性;它还能实现电平转换、电信号电气隔离等功能。
因此,它在电子技术等领域中已得到广泛的应用。
光电耦合器件PPT演示课件
•18
图6-41所示典型应用电路中左侧的输入电路电源为13.5V的HTL 逻辑电路,中间的中央运算器、处理器等电路为+5V电源,后边的 输出部分依然为抗干扰特性高的HTL电路。 将这些电源与逻 辑电平不同的部 分耦合起来需要 采用光电耦合器。
因此该点的电流传输比为
βQ=ICQ/ IFQ╳100%
(6-19)
如果工作点选在靠近截止区的Q1点时,虽然发光电流IF变化了ΔIF,
但相应的ΔIC1,变化量却很小。这样,β值很明显地要变小。同理, 当工作点选在接近饱和区Q3点时,β值也要变小。这说明工作点选 择在输出特性的不同位置时,就具有不同的β值。
•1
光电耦合器件的电路符号
如图6-29所示,图中的发光二
极管泛指一切发光器件,图中
的光电二极管也泛指一切光电
接收器件。
图6-30所示为几种不同封装
的光电耦合器,图中(a)、
(b)、(c)分别为三种不同安
装方式光电发射器件与光电接收
器件分别安装器件的两臂上,分
离尺寸一般在4~12mm,分开的
目的是要检测两臂间是否存在物
(6-21)
由上式可以看出,其的直流分量为 A ,交流分量的幅度随频率的
升高逐级减弱。
2
可以用一次分量来近似地表示整个的交流分量 而不会带来太大的
误差。
Uf(t)= 2 A/π cos2πFt
(6-22)
如图6-38所示,继电器开关干
扰常由绕组与接触点间的寄生
电容Cs窜入光电耦合器件的输
入端。图6-38(b)所示为它的交
过光电耦合器件反馈到输入系统。
•13
(2)光电耦合器件抑制干扰噪声电平的估算
光电耦合器
光电耦合器百科名片编辑本段3、光电耦合器可作为线性耦合器使用。
在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。
光电耦合器也可工作于开关状态,传输脉冲信号。
在传输脉冲信号时,输入信号和输出信号之间存在一定的延迟时间,不同结构的光电耦合器输入、输出延迟时间相差很大。
编辑本段仪器测试光电耦合器的测试1、用万用表判断好坏,如图3,断开输入端电源,用R×1k档测1、2脚电阻,正向电阻为几百欧,反向电阻几十千欧,3、4脚间电阻应为无限大。
1、2脚与3、4脚间任意一组,阻值为无限大,输入端接通电源后,3、4脚的电阻很小。
调节RP,3、4间脚电阻发生变化,说明该器件是好的。
注:不能用R×10k档,否则导致发射管击穿。
2、简易测试电路,如图(4),当接通电源后,LED不发光,按下SB,LED会发光,调节RP、LED的发光强度会发生变化,说明被测光电耦合器是好的。
编辑本段光电耦合器常见应用电路1.开关电路图1对于开关电路,往往要求控制电路和开关电路之间要有很好的电隔离,这对于一般的电子开关来说是很难做到的,但采用光电耦合器就很容易实现了。
图1中(a)所示电路就是用光电耦合器组成的简单开关电路。
在图1中,当无脉冲信号输入时,三极管BG处于截止状态,发光二极管无电流流过不发光,则a、b两端电阻非常大,相当于开关“断开”。
当输入端加有脉冲信号时,BG导通,发光二极管发光,则a、b两端电阻变得很小,相当于开关“接通”。
故称无信号时开关不通,为常开状态。
图1中(b)所示电路则为“带闭”状态,因为无信号输入时,虽BG 截止,但发光二极管有电流通过而发光,使a、b两端处于导通状态,相当于开关“接通”。
当有信号输入时,BG导通,由于BG的集电结压降在0.3V 以下,远小于发光二极管的正向导通电压,所以发光二极管无电流流过不发光,则a、b两端电阻极大,相当于开关“断开”,故称“常闭”式。
光耦的符号,及工作原理
光耦的符号,及工作原理
嘿,朋友们!今天咱来聊聊光耦呀!你知道光耦的符号长啥样不?就像一个小箭头指着另一个小箭头!嘿,就像两个小伙伴手牵手一样!这就是光耦的符号啦!那光耦到底是咋工作的呢?哇,这可神奇了!
想象一下哈,光耦就像是一个小小的信号传递员。
一边是发光的部分,就像是一个闪闪发光的小太阳,能发出亮光!另一边呢,是接收光的部分,就像一个特别敏感的小眼睛,能敏锐地捕捉到光。
比如说,在一个电路里,这边的信号过来啦,发光部分“唰”地亮起来,那光一下子就被接收部分“看”到了哟!然后,接收部分就根据接收到的光做出反应,信号不就传递过去啦!
“哎呀,这有啥了不起的呀?”也许你会这么问。
嘿,这可了不起啦!光耦可是在很多电路中都起着至关重要的作用呢!比如说在一些控制电路里,它能把高压部分和低压部分隔开,这样就安全多啦!就像给电路穿上了一层保护衣!
再想想看,如果没有光耦这个神奇的小玩意儿,那好多电子设备可能都没法正常工作啦!比如我们每天都离不开的手机、电脑呀!哎呀呀,那可咋办哟!
所以呀,光耦真的很重要呢!它就像一个默默工作的小英雄,虽然不起眼,但是却发挥着大大的作用呀!我觉得呀,我们真应该好好了解了解光耦,尊敬尊敬这个小小的电子元件!它可真是太厉害啦!。
光电耦合器件.ppt
—电子(或空穴)迁移率 —材料的电阻率。
返回
上页
下页
3.10.2 霍尔元件
(1)霍尔元件的结构 ▪ 霍尔元件的结构很简单,它由霍尔片、引线
和壳体三部分构成(如图3.89所示)。霍尔 片是一块矩形半导体薄片,在它的四个端面 引出四根引线,其中引线1和3为激励电压或 电流引线,称为激励电极。引线2和4为霍尔 电势输出引线,称为霍尔电极。
被测非电量
光量
光学通路
光电传感元件
位移、转速、 振动等
△U 或△I 测量/显示
图 3.84 光电式传感器原理图
返回
上页
下页
3.9.5 光电式传感器
(1)光电传感器的分类 按光电传感器输出量的性质,可以分为模拟 式和开关式二大类。
返回
上页
下页
3.9.5 光电式传感器
2)开关式光电传感器 ▪ 该类传感器的输出信号对应于光电元件
返回
上页
下页
3.9.4 电荷耦合器件(CCD)
▪ 2)读出移位寄存器
a) 势阱耦合与电荷转移
b) 控制时钟波形图
返回
上页
下页
3.9.4 电荷耦合器件(CCD)
(2)CCD传感器的应用 ▪ CCD传感器利用光敏元件的光电转换功能将
透射到光敏元件上的光学图像转换为电信号 “图像”,即光强的空间分布转换为与光强 成比例的、大小不等的电荷包空间分布,然 后经读出移位寄存器的移位功能将电信号 “图像”转送,并输出放大器输出。依照其 光敏元件排列方式的不同,CCD传感器主要 分为线阵、面阵两种。
体长度方向通以电流I,将其置于的磁感应强度为B 的磁场中(磁场强度方向垂直于半导体平面),则
半导体中的载流子电子将会受到洛仑兹力的作用, 根据物理学知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电耦合器的电路符号及图片识别
光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。
光耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,。
由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。
又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。
所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。
在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。
一、光耦的电路符号
二、光耦的应用
三、光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
四、光耦的图片。