小学数学奥数方法讲义之-列举法_通用版-word
小学数学奥数方法讲义之-列举法_通用版-word
第三讲列举法解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。
这种分析、解决问题的方法叫做列举法。
列举法也叫枚举法或穷举法。
用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
例1一本书共100页,在排页码时要用多少个数字是6的铅字?(适于三年级程度)解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)答:在排页码时要用20个数字是6的铅字。
*例2从A市到B市有3条路,从B市到C市有两条路。
从A市经过B市到C市有几种走法?(适于三年级程度)解:作图3-1,然后把每一种走法一一列举出来。
第一种走法:A ① B ④ C第二种走法:A ① B ⑤ C第三种走法:A ② B ④ C第四种走法:A ② B ⑤ C第五种走法:A ③ B ④ C第六种走法:A ③ B ⑤ C答:从A市经过B市到C市共有6种走法。
*例39○13○7=10014○2○5=□把+、-、×、÷四种运算符号分别填在适当的圆圈中(每种运算符号只能用一次),并在长方形中填上适当的整数,使上面的两个等式都成立。
这时长方形中的数是几?(适于四年级程度)解:把+、-、×、÷四种运算符号填在四个圆圈里,有许多不同的填法,要是逐一讨论怎样填会特别麻烦。
如果用些简单的推理,排除不可能的填法,就能使问题得到简捷的解答。
先看第一个式子:9○13○7=100如果在两个圆圈内填上“÷”号,等式右端就要出现小于100的分数;如果在两个圆圈内仅填“+”、“-”号,等式右端得出的数也小于100,所以在两个圆圈内不能同时填“÷”号,也不能同时填“+”、“-”号。
五年级 第5讲:列举法
(五年级)第5讲:列举法教学内容:讲解列举法的运用教学目的:列举法的运用方法列举法的实际运用教学过程:一:【例1】在所有的两位数中,十位数字比个位数字大的两位数有多少个?【例2】把37拆成若干个不同质数的和,有多少不同的拆法?将每一种拆法所拆出的那些质数相乘,得到的乘积中,哪个最小?37=3+5+2937=17+13+737=2+3+13+1937=23+7+5+237=19+13+537=19+11+5+2 37=19+11+737=17+13+5+237=23+11+337=17+7+11+2 3x5x29=435(乘积最小)【例3】将图中20张牌分成10对,每对红心和黑桃(A---10)各一张,问:你能分出几对这样的牌,两张牌上的数的乘积除以10的余数是1?(将A看成1)【例4】电梯在一座10层的楼房内上下进行,到二楼时,如果有人上或下,管理员就在盒内放一个小球;到三楼时,如果有人上或下,管理员就在盒内放入两个小球;到四楼……以此类推,并且这个规律不变,如果无人上或下,则不放小球。
一次,电梯从一楼开始运行到达顶层时,有3层楼无人上、下,管理员共放了25个小球,问:有哪几层楼无人上或下?(共有几种情况,都写出来)【例5】光明小学六年级甲、乙、丙三个班组织了一次文艺晚会,共演出14个节目。
如果每个班至少演出3个节目,那么,这三个班演出的节目数的不同情况共有多少种?【例6】一次知识竞赛共3道题,每题满分7分,给分时只能给出自然数1,2,…,7分。
已知参加竞赛后每人3道题得分的乘积都是36,而且任意两人各题得分不完全相同,那么参加竞赛最多有多少人?二;【练习】1、六份同样的礼物,全部分给四个小孩子,使得每个孩子至少获得一份礼物的不同分法共有多少种?2、有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分,问有多少种不同的支付方法?3、两个自然数的乘积是48,且这两个自然数的和除48的商也是自然数,求这个数。
列举法(精选)
8角
5角
2角
1角
8角
5角
2角
1角
1
0
0
0
0
0
3
2
0
1
1
1
0
0
2
4
8
0
1
0
3
0
0
1
6
0
0
4
0
00Biblioteka 08例3、小花从家到学校有两条路可走,从学校到琳琳家有三条 路可走,那么小花从家经过学校到琳琳家共有几种不同的走 法?
C A
D B
E
解:可以是AC、AD、AE、BC、BD、BE共有六条不同的走 法。
例4、在一次羽毛球比赛中: (1)5个队进行单循环赛,需比赛多少场?(每两个队之间比 赛1次称为1场) (2)40名运动员进行淘汰赛,最后决出冠军,共要打几场球?
• 根据题意,按范围和各种情况分类考虑,做到既 不重复又不遗漏。
• 排除不符合条件的情况,不断速效列举的范围。
1.有0,2,5,9四张数字卡片,现从中任意挑出三张排成一 个三位数,一共可以排成多少个不同的三位数? 18 2.小红有一些邮票,1张8角票,1张5角票,4张2角票, 10张1角票。她要从中拿出共8角的邮资寄信,共有几 种不同的选取方法?
分析:按照面值从小到大进行排列,排列如下:
1)2+1+1+1+1+1+1+1=9 2)2+2+1+1+1+1+1=9 3)2+2+2+1+1+1=9 4)2+2+2+2+1=9 5)5+1+1+1+1=9 6)5+2+1+1=9 7)5+2+2=9
小学数学解题方法解题技巧之列举法
小学数学解题方法解题技巧之列举法解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。
这种分析、解决问题的方法叫做列举法。
列举法也叫枚举法或穷举法。
用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
例1 一本书共100页,在排页码时要用多少个数字是6的铅字?(适于三年级程度)解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)答:在排页码时要用20个数字是6的铅字。
*例2从A市到B市有3条路,从B市到C市有两条路。
从A市经过B市到C市有几种走法?(适于三年级程度)解:作图3-1,然后把每一种走法一一列举出来。
第一种走法:A ① B ④ C第二种走法:A ① B ⑤ C第三种走法:A ② B ④ C第四种走法:A ② B ⑤ C第五种走法:A ③ B ④ C第六种走法:A ③ B ⑤ C答:从A市经过B市到C市共有6种走法。
*例3 9○13○7=10014○2○5=□把+、-、×、÷四种运算符号分别填在适当的圆圈中(每种运算符号只能用一次),并在长方形中填上适当的整数,使上面的两个等式都成立。
这时长方形中的数是几?(适于四年级程度)解:把+、-、×、÷四种运算符号填在四个圆圈里,有许多不同的填法,要是逐一讨论怎样填会特别麻烦。
如果用些简单的推理,排除不可能的填法,就能使问题得到简捷的解答。
先看第一个式子:9○13○7=100如果在两个圆圈内填上“÷”号,等式右端就要出现小于100的分数;如果在两个圆圈内仅填“+”、“-”号,等式右端得出的数也小于100,所以在两个圆圈内不能同时填“÷”号,也不能同时填“+”、“-”号。
四年级奥数讲义-第12讲 简单列举 通用版
四年级奥数重点常考题第12讲简单列举
专题简析
有些题目.因其所求问题的答案有多种.直接列式解答比较困难.在这种情况下.我们不妨采用一一列举的方法解决。
这种根据题目的要求.通过一一列举各种情况最终达到解答整个问题的方法叫做列举法。
王牌例题1
从南通到上海有两条路可走.从上海到南京有3条路可走。
王叔叔从南通经过上海到南京去.有几种走法
【思路导航】为了帮助理解.先画一个线路示意图.并用①②③④⑤表示其中的5条路。
我们把王叔叔的各种走法一一列举如下:
根据以上列举可以发现.从南通经过?到
上海再到南京有3种方法.从南通经过?到上
海再到南京也有3种方法.共有两个3种方法.
即3×2=6(种)。
举一反三1:
1.小明从家到学校有3条路可走.从学校到少年宫有两条路.小明从家经过学校到少年宫有几种走法
根据分析可得:
3×2=6(种)。
四年级数学奥数讲义+练习-第12讲 简单列举(全国通用版,含答案)
奥数已经成为现在孩子学习的加强工具。
一种思维方式的训练,一种让孩子学以致用,举一反三的法宝,一种可以扩宽孩子思维的奥秘兵器。
老师经常对学生们说,养成好的学习品质,拥有好的学习方法比学习知识自己重要得多,它是学好知识的前提。
学习奥数更是如此。
奥数题对学生们的要求是非常严格的,你既要注意到思维有广度有深度,在做题时还要加倍小心。
有些题往往是一字之差,谬之千里。
习惯的养成不是一朝一夕之功。
要养成好的学习习惯,首先,需要学生对这个问题有个正确的认识,有些家长往往错误地认为。
只要是标题问题理解了,出点小错不妨。
这样做的结果,往往助长了学生粗心大意之习气。
而在奥数题中,一点小错,往往是致命的。
学生做题出错了,我们应把它做为一个好的教育学生的契机,引导学生找出错误原因并不停积累,是知识方面的,要牢记。
是习惯方面的,要改正。
相信久而久之,好的习惯必能养成。
第12讲简单列举一、知识要点有些题目,因其所求问题的答案有多种,直接列式解答比较困难,在这种情况下,我们不妨采用一一列举的方法解决。
这种根据题目的要求,通过一一列举各种情况最终达到解答整个问题的方法叫做列举法。
二、精讲精练【例题1】从南通到上海有两条路可走,从上海到南京有3条路可走。
王叔叔从南通经过上海到南京去,有几种走法?【思路导航】为了帮助理解,先画一个线路示意图,并用①、②、③、④、⑤表示其中的5条路。
我们把王叔叔的各种走法一一列举如下:根据以上列举可以发现,从南通经过①到上海再到南京有3种方法,从南通经过②到上海再到南京也有3种方法,共有两个3种方法,即3×2=6(种)。
练习1:1.小明从家到学校有3条路可走,从学校到少年宫有两条路,小明从家经过学校到少年宫有几种走法?2.从甲地到乙地,有两条走达铁路和4条直达公路,那么从甲地到乙地有多少种不同走法?3.从甲地到乙地,有两条直达铁路,从乙地到丙地,有4条直达公路。
那么,从甲地到丙地有多少种不同的走法?【答案】1.6种走法 2.6种走法 3.8种走法【例题2】用红、黄、蓝三种信号灯组成一种信号,可以组成多少种不同的信号?【思路导航】要使信号不同,就要求每一种信号颜色的顺序不同,我们把这些不同的信号一一列举如下:从上面的排列中可以发现,红色信号灯排在第一位置时,有两种不同的信号,黄色信号灯排在第一位置时,也有两种不同的信号,蓝色信号灯排在第一位置时,也有两种不同的信号。
小学数学奥数方法讲义之-列举法-通用版
第三讲列举法解应用题时,为了解题得方便,把问题分为不重复、不遗漏得有限情况,一一列举出来加以分析、解决,最终达到解决整个问题得目得。
这种分析、解决问题得方法叫做列举法。
列举法也叫枚举法或穷举法。
用列举法解应用题时,往往把题中得条件以列表得形式排列起来,有时也要画图。
例1 一本书共100页,在排页码时要用多少个数字就是6得铅字?(适于三年级程度)解:把个位就是6与十位就是6得数一个一个地列举出来,数一数。
个位就是6得数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位就是6得数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)答:在排页码时要用20个数字就是6得铅字。
*例2从A市到B市有3条路,从B市到C市有两条路。
从A市经过B市到C 市有几种走法?(适于三年级程度)解:作图3-1,然后把每一种走法一一列举出来。
第一种走法:A ① B ④ C第二种走法:A ① B ⑤ C第三种走法:A ② B ④ C第四种走法:A ② B ⑤ C第五种走法:A ③ B ④ C第六种走法:A ③ B ⑤ C答:从A市经过B市到C市共有6种走法。
*例3 9○13○7=10014○2○5=□把+、-、×、÷四种运算符号分别填在适当得圆圈中(每种运算符号只能用一次),并在长方形中填上适当得整数,使上面得两个等式都成立。
这时长方形中得数就是几?(适于四年级程度)解:把+、-、×、÷四种运算符号填在四个圆圈里,有许多不同得填法,要就是逐一讨论怎样填会特别麻烦。
如果用些简单得推理,排除不可能得填法,就能使问题得到简捷得解答。
先瞧第一个式子:9○13○7=100如果在两个圆圈内填上“÷”号,等式右端就要出现小于100得分数;如果在两个圆圈内仅填“+”、“-”号,等式右端得出得数也小于100,所以在两个圆圈内不能同时填“÷”号,也不能同时填“+”、“-”号。
数学讲义(五年级奥数)
2 因数和倍数(2) 【题型概述】 今天, 我们学习因数的运用, 解决这种问题主要是根据问题的要求, 寻找因数的个数。 【典型例题】 29÷( )=( )· · · · · ·5,在括号内填上适当的数,使等式成立,共有多少种 不同的填法? 思路点拨 根据有余数除法各部分之间的关系,可以知道除数与商的积是 29-5=24. 两个自然数相乘的积是 24 的有四种情况:1×24,2×12,3×8,4×6,再根据“除 数比余数大”可以知道除数只能是 24,12,8,6. 所以,共有 4 种不同的填法。 【举一反三】 1.37÷( )=( ) · · · · · ·5,在括号内填上适当的数,使等式成立,共有多少 种不同的填法?
6. 有 50 张卡片,分别写着 1~50 这 50 个数,正反两面写的数字相同,卡片一面是 红,一面是蓝,某班有 50 名学生,老师把 50 张卡片中蓝色的一面都朝上摆在桌 子上,对同学说: “请你们按学号顺序逐个到前面来翻卡片,规则是:凡是卡片上 的数是自己学号的倍数,就把它翻过来,蓝翻成红,红翻成蓝。 ”那么当每个学生 都翻完以后,红色朝上的卡片有几张?
4. 五个连续奇数的和是 35,这 5 个奇数中最大的一个是多少?
5. 有三个不同的自然数组成一个等式: ■+△+○=■×△-○ 这三个数中最多有多少个奇数?
4,奇数和偶数(2) 【题型概述】 奇数和偶数有一些有趣而常用的性质: 1. 奇数≠偶数,连续自然数中的奇数和偶数时相间排列的。 2. 偶数个奇数相加的和是偶数,奇数个奇数相加的和是奇数,任意个偶数相加的 和是偶数。 3. 奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数 偶数±奇数=奇数 4. 奇数×偶数=偶数,奇数×奇数=奇数,偶数×偶数=偶数 运用这些性质可以解决很多问题。 【典型例题】
03列举法
练习 用列举法表示下列集合
(1)大于1小于5的正整数 (2)x2-3x-4=0的解集 (3)相反数等于本身的数 (4)绝对值是3的数 (5)大于0且小于20的6的倍数 (6)12的正因数 (7)平方等于-1的实数
讨论:
0,{0},φ 的区别和联系.
作:用列举法表示
• 课本P16.3
1.1.3 集合的表示方法
1.列举法
1.列举法
• 把某一集合中的所有元素逐一列举 出来 ,写在大括号内,这种表示集 合的方法叫做列举法。
{ 逐,一,列,举,… } 逐,一,列,举,…
例3 用列举法表示下列集合
(1)所有小于6的正整数组成的集合 的正整数组成的集合为A 解:设所有小于6的正整数组成的集合为 设所有小于 的正整数组成的集合为 则A={1,2,3,4,5} (2)抛掷一枚均匀的硬币,所有可能出现 的结果组成的集合 解:设抛掷一枚均匀的硬币,所有可能出 设抛掷一枚均匀的硬币, 现的结果组成的集合为B 现的结果组成的集合为 正面向上, 则B={正面向上,反面向上 正面向上 反面向上}
小学奥数解题方法系列之3列举法共18页文档
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。
小学数学奥数方法讲义之-列表法_通用版
小学数学奥数方法讲义之-列表法_通用版第十五讲列表法把应用题中的条件简要地摘录下来,列表分类整理、排列,并借助这个表格分析、解答应用题的方法叫做列表法。
在用列表法解题时,要仔细判断题中哪些数量是同一件事中直接相关联的,哪些数量是同一类的。
排列数量时,要尽量做到“同事横对”,“同名竖对”。
这就是说,要使同一件事中直接相关联的数量横向排列,使同一类的、单位名称相同的数量竖着排列,还要使它们的数位上、下对齐。
这样就可以在读题、列表的过程中正确识别数量,选择数量,理解数量之间的联系、区别,理清思路,为下一步的分析、推理作好准备。
(一)通过列表突出题目的解法特点有些应用题的解法具有一定的特点,如果把题中的条件按一定的格式排列,整理成表,则表格会起到突出题目解法特点的作用。
例1 桌子上放着黄、红、绿三种颜色的塑料碗。
3只黄碗里放着51个玻璃球,5只红碗里放着75个玻璃球,2只绿碗里放着24个玻璃球。
要使每只碗里玻璃球的个数相同,每只碗里应放多少个玻璃球?(适于四年级程度)解:摘录题中条件,排列成表15-1。
表15-1求每只碗里应放多少个球,要先求出一共有多少个碗,和在这些碗中一共放了多少个球。
由于表15-1中把碗的只数排列在前一竖行,把球的个数排列在另一竖行,所以只要看着表15-1中竖着排列的碗的只数和球的个数,便可算出碗的总数和玻璃球的总数,从而使问题得以解决。
(51+75+24)÷(3+5+2)=150÷10=15(只)答:平均每只碗里应放15个玻璃球。
例2 荒地村砂场用3辆汽车往火车站运送砂子,5天运了180吨。
照这样计算,用4辆同样的汽车15天可以运送多少吨砂子?(适于四年级程度)解:摘录题中条件,排列成表15-2。
表15-2要使卖主与买主都不吃亏,就要使红辣椒损失的钱数与青辣椒多收入的钱数一样多。
由表15-4可看出,当红辣椒损失18分,青辣椒多收入18分时,恰好达到要求。
因为每500克红辣椒与青辣椒混合时,红辣椒要少卖9分钱,当损失18分时,则有500×2克红辣椒;同理,青辣椒与红辣椒混合时,每500克青辣椒要多卖6分钱,要多卖18分时,就要有3个500克才行,即500×3克青辣椒。
小学数学奥数方法讲义之-列表法_通用版-精选教学文档
第十五讲列表法把应用题中的条件简要地摘录下来,列表分类整理、排列,并借助这个表格分析、解答应用题的方法叫做列表法。
在用列表法解题时,要仔细判断题中哪些数量是同一件事中直接相关联的,哪些数量是同一类的。
排列数量时,要尽量做到“同事横对”,“同名竖对”。
这就是说,要使同一件事中直接相关联的数量横向排列,使同一类的、单位名称相同的数量竖着排列,还要使它们的数位上、下对齐。
这样就可以在读题、列表的过程中正确识别数量,选择数量,理解数量之间的联系、区别,理清思路,为下一步的分析、推理作好准备。
(一)通过列表突出题目的解法特点有些应用题的解法具有一定的特点,如果把题中的条件按一定的格式排列,整理成表,则表格会起到突出题目解法特点的作用。
例1桌子上放着黄、红、绿三种颜色的塑料碗。
3只黄碗里放着51个玻璃球,5只红碗里放着75个玻璃球,2只绿碗里放着24个玻璃球。
要使每只碗里玻璃球的个数相同,每只碗里应放多少个玻璃球?(适于四年级程度)解:摘录题中条件,排列成表15-1。
表15-1求每只碗里应放多少个球,要先求出一共有多少个碗,和在这些碗中一共放了多少个球。
由于表15-1中把碗的只数排列在前一竖行,把球的个数排列在另一竖行,所以只要看着表15-1中竖着排列的碗的只数和球的个数,便可算出碗的总数和玻璃球的总数,从而使问题得以解决。
(51+75+24)÷(3+5+2)=150÷10=15(只)答:平均每只碗里应放15个玻璃球。
例2荒地村砂场用3辆汽车往火车站运送砂子,5天运了180吨。
照这样计算,用4辆同样的汽车15天可以运送多少吨砂子?(适于四年级程度)解:摘录题中条件,排列成表15-2。
表15-2解此题的要点是先求出单位数量。
表15-2中,由于汽车的辆数、运送的天数和吨数这三个直接相关联的数量排在同一横行,因此便于想到,180÷5得到3辆车1天运多少吨,180÷5÷3就得到一辆车一天运多少吨;接着便可想到求出4辆车1天运多少吨,15天运多少吨。
小学奥数列举法知识点+例题+练习(分类全面)
1教学内容 解决问题的策略-----列举教学目标 掌握列举法,会用列举法解决问题 重点 用列举法解决问题 难点 用列举法解决问题教学过程列举法:列举法:1、要按一定的顺序列举,做到不重复、不遗漏、要按一定的顺序列举,做到不重复、不遗漏2、要对列举的结果进行比较,做出选择、要对列举的结果进行比较,做出选择 一、面积问题一、面积问题1.王大叔用20根1米长的木条围成一个长方形(或正方形)羊圈,有多少种不同的围法?怎样围面积最大怎样围面积最大?(?(?(先填表先填表先填表,,再回答。
)长/米长/米宽/米宽/米 面积/平方米面积/平方米2、用36个1平方厘米的正方形拼成长方形平方厘米的正方形拼成长方形(或正方形)(或正方形),有多少种不同的拼法?它们的周长各是多少?算出结果填在表中。
各是多少?算出结果填在表中。
长/厘米厘米宽/厘米厘米周长周长//厘米厘米3.3.李大爷用李大爷用28根1米长的木条围成一个长方形菜园,有多少种不同的围法?面积最小是多少?你有什么发现?少?你有什么发现? 长/米 宽/米面积面积//平方米平方米4.4.两个自然数相乘,积是两个自然数相乘,积是48的乘法算式有(的乘法算式有( )个。
)个。
5.5.两个自然数的和是两个自然数的和是1212,那么这两个自然数的积可能是多少?,那么这两个自然数的积可能是多少?,那么这两个自然数的积可能是多少?二、时间问题二、时间问题1、一个音乐钟、一个音乐钟,,每隔一段相等的时间就发出铃声。
已经知道上午8:0000、、8:4040、、9:2020、、1010::00发出铃声,那么下面哪些时刻也发出铃声?发出铃声,那么下面哪些时刻也发出铃声? 1111::00 12:00 13:20 14:202、公交公司是1路和2路公交车的起始站。
早上6时整1路车开始发车,以后每隔15分钟发一辆车,发一辆车,66时10分2路车开始发车,以后每隔20分钟发一辆车。
这两路车第二次同时发车的时间是几时?车的时间是几时?1路车路车 6:00 6:15 6:30 2路车路车 6:10 6:303、101路公交车,每隔15分钟发一辆。
(尖子生培优)专题02用“列举法”解决问题-三年级数学思维拓展培优讲义(通用版)
(尖子生培优)专题02用“列举法”解决问题三班级数学思维拓展培优讲义(通用版)列举法是一种常见的分析问题、解决问题的方法,一般要依据问题的要求一一列举问题答案。
运用列举法解决问题时,要不重复、不遗漏、有挨次、有规律地进行列举。
运用列举法解决问题的关键是要正确分类,要留意以下两点:一是分类要全,不能造成遗漏;二是分类要清,不能重复。
1.妈妈为小红预备的早餐是:一块面包、一盒牛奶、一个鸡蛋,小红要把它们吃完,可以有多少种不同挨次的吃法?2.如图,小敏从家到学校,假如只向北或向西走,一共有多少种不同的走法?3.李大爷要用20米长的栅栏围一个一边靠墙的长方形菜地,假如每条边的长都取整米数,那么一共有多少种围法?4.一种小彩灯,由红、黄、绿三种颜色组成。
用灯的亮灭表示不同的信号。
一共可以表示多少种不同的信号?5.甜甜蛋糕店的面包师制作了30个蛋挞,预备装入盒中售卖。
现有两种包装盒(如图),假如正好全部装完,一共有多少种装法?完成下面表格并回答。
4个装/盒06个装/盒有的放矢力量巩固提升6.游玩结束,小丁丁组长开头算账了,他手里既有5元的门票也有2元的门票,合起来总共32元,他手里可能有几张5元和几张2元的门票呢?(找出全部答案,并尽可能清楚地写出你的思考过程,可借助表格来思考哟)7.(1)用下面4张数字卡片能组成多少个不同的两位数?7394(2)假如用下面4张卡片,能组成多少个不同的四位数呢?03948.邮局门口有甲、乙两个邮筒。
小明打算把手中的4封信投入邮筒,可以只投其中一个邮筒,也可以两个邮筒都投。
一共有多少种不同的投法?(只考虑每个邮筒投放的信的数量)9.选其中的一个或几个砝码在天平上能称出多少种不同质量的物体?10.用0,1,3,4,7这五个数字,一共可以组成多少个没有重复数字的三位数?11.王宁从家到学校,假如只允许向南或向东走,一共有多少种不同的路线?12.“六一”儿童节那天,四(3)班的50名同学去野营。
小学数学奥数解题方法讲义40讲(二)之欧阳家百创编
(一)(二)第十一讲份数法————————————————姚老师数学乐园广安岳池姚文国把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。
(一)以份数法解和倍应用题已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。
例1某林厂有杨树和槐树共320棵,其中杨树的棵数是槐树棵数的3倍。
求杨树、槐树各有多少棵?(适于四年级程度)解:把槐树的棵数看作1份数,则杨树的棵数就是3份数,320棵树就是(3+1)份数。
因此,得:320÷(3+1)=80(棵)…………………槐树80×3=240(棵)…………………杨树答略。
例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
甲、乙两个煤场各存煤多少吨?(适于四年级程度)解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。
所以乙场存煤:(490+10)÷(1+4)=500÷5=100(吨)甲场存煤:490-100=390(吨)答略。
例3 妈妈给了李平10.80元钱,正好可买4瓶啤酒,3瓶香槟酒。
李平错买成3瓶啤酒,4瓶香槟酒,剩下0.60元。
求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)解:因为李平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下0.60元,这说明每瓶啤酒比每瓶香槟酒贵0.60元。
把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的10.80元钱就是(4+3)份数多(0.60×4)元,(10.80-0.60×4)元就正好是(4+3)份数。
五级上册数学解决问题的策略有序列举讲课文档
A
B
E
第十页,共28页。
C
D
例5
旅游团有28人到旅馆住宿, 住3人间或2人间(每个房间不能 有空床位),有多少种不同的安 排?
第十一页,共28页。
3X+2Y=28人
第十二页,共28页。
例6
5号电池是电池种类之一,其一 般尺寸为直径14mm,高度49mm。因 其体积小、容量适中,因此在很多 小电器和数码产品中广泛使用。一 种5号电池有4节和6节两种不同规格 的包装。张师傅要购买40节电池, 可以分别购买4节和6节装的各几盒?
一样: ②2A1C:11分 ④2B1C:13分
⑤2C1A:13分 ⑥2C1B:14分
可能得9~15分
3次不一样:①1A1B1C:12分
例9
小童想把3个相同的小球放入 A、B、C三个盒子中。共有多少种 不同的放法?
第十九页,共28页。
ABC
30 0
3=3+0+0 0 3 0 00 3
3=2+1+0
900×3=2700个数字。
723-9-180=534(个)
534÷3=178(页)
178+100-1=277(页)
第二十六页,共28页。
拓展延伸3
有10个果盘从左到右依次排列, 每个果盘都盛有水果,共盛放64个, 其中第4个果盘中有10个,并且每
相邻的三个果盘中水果数量的总和
都相等。你知道第5个果盘中可能 有水果多少个吗?
第二十七页,共28页。
10
每相邻的三个果盘中水果数量的总和都相等
每三个果盘中的水果数量是一样的,即 ①=④=⑦=⑩,②=⑤=⑧,③=⑥=⑨。
第二十八页,共28页。
奥数列举法
把+、-、×、÷四种运算符号分别填在适当的圆圈中(每种运算符号只能用一次),并在长方形中填上适当的整数,使上面的两个等式都成立。这时长方形中的数是几?
要是在等式的一个圆圈中填入“×”号,另一个圆圈中填入适当的符号就容易使等式右端得出10
*例4用一根80厘米长的铁丝围成一个长方形,长和宽要是5的倍数。长和宽可以为多少?
第三讲列举法
用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
例1一本书共100页,在排页码时要用多少个数字是6的铅字?
*例2从A市到B市有3条路,从B市到C市有两条路。从A市经过B市到C市有几种走法?
解:作图3-1,然后把每一种走法一一列举出来。
*例39○13○7=100
14○2○5=□
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲列举法解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。
这种分析、解决问题的方法叫做列举法。
列举法也叫枚举法或穷举法。
用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
例1 一本书共100页,在排页码时要用多少个数字是6的铅字?(适于三年级程度)解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)答:在排页码时要用20个数字是6的铅字。
*例2从A市到B市有3条路,从B市到C市有两条路。
从A市经过B市到C市有几种走法?(适于三年级程度)解:作图3-1,然后把每一种走法一一列举出来。
第一种走法:A ① B ④ C第二种走法:A ① B ⑤ C第三种走法:A ② B ④ C第四种走法:A ② B ⑤ C第五种走法:A ③ B ④ C第六种走法:A ③ B ⑤ C答:从A市经过B市到C市共有6种走法。
*例3 9○13○7=10014○2○5=□把+、-、×、÷四种运算符号分别填在适当的圆圈中(每种运算符号只能用一次),并在长方形中填上适当的整数,使上面的两个等式都成立。
这时长方形中的数是几?(适于四年级程度)解:把+、-、×、÷四种运算符号填在四个圆圈里,有许多不同的填法,要是逐一讨论怎样填会特别麻烦。
如果用些简单的推理,排除不可能的填法,就能使问题得到简捷的解答。
先看第一个式子:9○13○7=100如果在两个圆圈内填上“÷”号,等式右端就要出现小于100的分数;如果在两个圆圈内仅填“+”、“-”号,等式右端得出的数也小于100,所以在两个圆圈内不能同时填“÷”号,也不能同时填“+”、“-”号。
要是在等式的一个圆圈中填入“×”号,另一个圆圈中填入适当的符号就容易使等式右端得出100。
9×13-7=117-7=110,未凑出100。
如果在两个圈中分别填入“+”和“×”号,就会凑出100了。
9+13×7=100再看第二个式子:14○2○5=□上面已经用过四个运算符号中的两个,只剩下“÷”号和“-”号了。
如果在第一个圆圈内填上“÷”号,14÷2得到整数,所以:14÷2-5=2即长方形中的数是2。
*例4印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?(适于四年级程度)解:(1)数码一共有10个:0、1、2……8、9。
0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。
(2)页码是两位数的从第10页到第99页。
因为99-9=90,所以,页码是两位数的页有90页,用数码:2×90=180(个)(3)还剩下的数码:1890-9-180=1701(个)(4)因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。
所以页码最高是3位数,不必考虑是4位数了。
往下要看1701个数码可以排多少页。
1701÷3=567(页)(5)这本书的页数:9+90+567=666(页)答略。
*例5用一根80厘米长的铁丝围成一个长方形,长和宽都要是5的倍数。
哪一种方法围成的长方形面积最大?(适于四年级程度)解:要知道哪种方法所围成的面积最大,应将符合条件的围法一一列举出来,然后加以比较。
因为长方形的周长是80厘米,所以长与宽的和是40厘米。
列表3-1:表3-1表3-1中,长、宽的数字都是5的倍数。
因为题目要求的是哪一种围法的长方形面积最大,第四种围法围出的是正方形,所以第四种围法应舍去。
前三种围法的长方形面积分别是:35×5=175(平方厘米)30×10=300(平方厘米)25×15=375(平方厘米)答:当长方形的长是25厘米,宽是15厘米时,长方形的面积最大。
例6如图3-2,有三张卡片,每一张上写有一个数字1、2、3,从中抽出一张、两张、三张,按任意次序排列起来,可以得到不同的一位数、两位数、三位数。
请将其中的质数都写出来。
(适于五年级程度)解:任意抽一张,可得到三个一位数:1、2、3,其中2和3是质数;任意抽两张排列,一共可得到六个不同的两位数:12、13、21、23、31、32,其中 13、23和 31是质数;三张卡片可排列成六个不同的三位数,但每个三位数数码的和都是1+2+3=6,即它们都是3的倍数,所以都不是质数。
综上所说,所能得到的质数是2、3、13、23、31,共五个。
*例7在一条笔直的公路上,每隔10千米建有一个粮站。
一号粮站存有10吨粮食,2号粮站存有20吨粮食,3号粮站存有30吨粮食,4号粮站是空的,5号粮站存有40吨粮食。
现在要把全部粮食集中放在一个粮站里,如果每吨1千米的运费是0.5元,那么粮食集中到第几号粮站所用的运费最少(图3-3)?(适于五年级程度)解:看图3-3,可以断定粮食不能集中在1号和2号粮站。
下面将运到3号、4号、5号粮站时所用的运费一一列举,并比较。
(1)如果运到3号粮站,所用运费是:0.5×10×(10+10)+0.5×20×10+0.5×40×(10+10)=100+100+400=600(元)(2)如果运到4号粮站,所用运费是:0.5×10×(10+10+10)+0.5×20×(10+10)+0.5×30×10+0.5×40×10=150+200+150+200=700(元)(3)如果运到5号粮站,所用费用是:0.5×10×(10+10+10+10)+0.5×20×(10+10+10)+0.5×30×(10+10)=200+300+300=800(元)800>700>600答:集中到第三号粮站所用运费最少。
*例8小明有10个1分硬币,5个2分硬币,2个5分硬币。
要拿出1角钱买1支铅笔,问可以有几种拿法?用算式表达出来。
(适于五年级程度)解:(1)只拿出一种硬币的方法:①全拿1分的:1+1+1+1+1+1+1+1+1+1=1(角)②全拿2分的:2+2+2+2+2=1(角)③全拿5分的:5+5=1(角)只拿出一种硬币,有3种方法。
(2)只拿两种硬币的方法:①拿8枚1分的,1枚2分的:1+1+1+1+1+1+1+1+2=1(角)②拿6枚1分的,2枚2分的:1+1+1+1+1+1+2+2=1(角)③拿4枚1分的,3枚2分的:1+1+1+1+2+2+2=1(角)④拿2枚1分的,4枚2分的:1+1+2+2+2+2=1(角)⑤拿5枚1分的,1枚5分的:1+1+1+1+1+5=1(角)只拿出两种硬币,有5种方法。
(3)拿三种硬币的方法:①拿3枚1分,1枚2分,1枚5分的:1+1+1+2+5=1(角)②拿1枚1分,2枚2分,1枚5分的:1+2+2+5=1(角)拿出三种硬币,有2种方法。
共有:3+5+2=10(种)答:共有10种拿法。
*例9甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘。
到现在为止,甲赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。
问小强赛了几盘?(适于五年级程度)解:作表3-2。
表3-2甲已经赛了4盘,就是甲与乙、丙、丁、小强各赛了一盘,在甲与乙、丙、丁、小强相交的那些格里都打上√;乙赛的盘数,就是除了与甲赛的那一盘,又与丙和小强各赛一盘,在乙与丙、小强相交的那两个格中都打上√;丙赛了两盘,就是丙与甲、乙各赛一盘,打上√;丁与甲赛的那一盘也打上√。
丁未与乙、丙、小强赛过,在丁与乙、丙与小强相交的格中都画上圈。
根据条件分析,填完表格以后,可明显地看出,小强与甲、乙各赛一盘,未与丙、丁赛,共赛2盘。
答:小强赛了2盘。
*例10商店出售饼干,现存10箱5千克重的,4箱2千克重的,8箱1千克重的,一位顾客要买9千克饼干,为了便于携带要求不开箱。
营业员有多少种发货方式?(适于五年级程度)解:作表3-3列举发货方式。
表3-3答:不开箱有7种发货方式。
*例11运输队有30辆汽车,按1~30的编号顺序横排停在院子里。
第一次陆续开走的全部是单号车,以后几次都由余下的第一辆车开始隔一辆开走一辆。
到第几次时汽车全部开走?最后开走的是第几号车?(适于五年级程度)解:按题意画出表3-4列举各次哪些车开走。
表3-4从表3-4中看得出,第三次开走后剩下的是第8号、16号、24号车。
按题意,第四次8号、24号车开走。
到第五次时汽车全部开走,最后开走的是第16号车。
答:到第五次时汽车全部开走,最后开走的是第16号车。
*例12在甲、乙两个仓库存放大米,甲仓存90袋,乙仓存50袋,甲仓每次运出12袋,乙仓每次运出4袋。
运出几次后,两仓库剩下大米的袋数相等?(适于五年级程度)解:根据题意列表3-5。
表3-5从表3-5可以看出,原来甲乙两仓库所存大米相差40袋;第一次运走后,两仓剩下的大米相差78-46=32(袋);第二次运走后,两仓剩下的大米相差66-42=24(袋);第三次运走后,两仓剩下的大米相差54-38=16(袋);第四次运走后,两仓剩下的大米相差42-34=8(袋);第五次运走后,两仓剩下的大米袋数相等。
40-32=832-24=824-16=8从这里可以看出,每运走一次,两仓库剩下大米袋数的相差数就减少8袋。
由此可以看出,两仓库原存大米袋数的差,除以每次运出的袋数差就得出运几次后两个仓库剩下大米的袋数相等。
(90-50)÷(12-4)=5(次)答:运出5次后两个仓库剩下大米的袋数相等。
*例13有三组小朋友共72人,第一次从第一组里把与第二组同样多的人数并入第二组;第二次从第二组里把与第三组同样多的人数并入第三组;第三次从第三组里把与第一组同样多的人数并入第一组。
这时,三组的人数一样多。
问原来各组有多少个小朋友?(适于五年级程度)解:三个小组共72人,第三次并入后三个小组人数相等,都是72÷3=24(人)。
在这以前,即第三组未把与第一组同样多的人数并入第一组时,第一组应是24÷2=12(人),第三组应是(24+12)=36(人),第二组人数仍为24人;在第二次第二组未把与第三组同样多的人数并入第三组之前,第三组应为36÷2=18(人),第二组应为(24+18)=42(人),第一组人数仍是12人;在第一次第一组未把与第二组同样多的人数并入第二组之前,第二组的人数应为42÷2=21(人),第一组人数应为12+21=33(人),第三组应为18人。