栈的定义及基本运算

合集下载

数据结构-栈与队列

数据结构-栈与队列

栈 1.6栈的应用
运算符的优先级关系表在运算过程中非常重要,它是判定进栈、出栈的重要依据。
θ1
θ2
+
-
+
>
>
-
>
>
*
>
>
/
>
>
(
<
<
)
>
>
#
<
<
*
/
(
)
#
<
<
<
>
>
<
<
<
>
>
>
>
<
>
>
>
>
<
>
>
<
<
<
=
>
>
>
>
<
<
<
=

1.6栈的应用
下面以分析表达式 4+2*3-12/(7-5)为例来说明求解过程,从而总结出表达式求值的算 法。求解中设置两个栈:操作数栈和运算符栈。从左至右扫描表达式:# 4+2*3-12/(7-5) #, 最左边是开始符,最右边是结束符。表达式求值的过程如下表所示:
1.4栈的顺序存储结构
设计进栈算法——Push 函数。首先,判断栈是否已满,如果栈已满,就运用 realloc 函 数重新开辟更大的栈空间。如果 realloc 函数返回值为空,提示溢出,则更新栈的地址以及栈 的当前空间大小。最终,新元素入栈,栈顶标识 top 加 1。

数据结构课件第3章

数据结构课件第3章

0
1
2
3
4
5
6
7
a1
a2
a3
a4
a5
a6
a7
队头 F=0
队尾 R=7
a3 2 1 3 0 4 7 a3 5 6 3 a2 2 1 a1 0 F=0 a4 4 a5 5 6 a6 7 a7 R=0 R=7 3 a2 2 1 a1 0
a4 4 a5 5 6 a6 7
a8
F=0
a7
R=0
F=0
删除所有元素
top X W … B top
top=0 空栈
top
W

B A
top=m-1 元素X出栈
top
A
A
top=m 满栈
top=1 元素A入栈
例:堆栈的插入、删除操作。 出栈操作程序如下: # define m 1000; /*最大栈空间*/ 出栈操作算法: 1)栈顶指针top是否为0: typedef struct stack_stru 若是,则返回;若不是, { int s[m]; int top; }; 则执行2。 void pop (stack, y) 2)将栈顶元素送给y, struct stack_stru stack; 栈顶指针减1。 int *y; { if (stack.top = = 0) printf (“The stack is empty ! \n”); top Y Y else { top B B *y=stack.s[stack.top]; A A stack.top - -; } 出栈操作 }
top=p;
} 栈的入栈、出栈操作的时间复杂度都为O(1)。
栈的应用
一、 表达式求值 表达式由操作数、运算符和界限符组成。 运算符可包括算术运算符、关系运算符、逻辑运算符。

大学数据结构课件--第3章 栈和队列

大学数据结构课件--第3章 栈和队列
top top 栈空 F E D C B A
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0

栈(free-pascal)

栈(free-pascal)

栈3.1 栈的概念(逻辑结构)及运算3.2 栈的存储与实现3.3栈的应用3.1 栈的概念及运算栈的定义:栈是一种特殊的表这种表只在表头进行插入和删除操作。

因此,表头对于栈来说具有特殊的意义,称为栈顶。

相应地,表尾称为栈底。

不含任何元素的栈称为空栈。

栈的逻辑结构:假设一个栈S中的元素为a n,a n-1,..,a1,则称a1为栈底元素,a n为栈顶元素。

栈中的元素按a1,a2,..,a n-1,a n的次序进栈。

在任何时候,出栈的元素都是栈顶元素。

换句话说,栈的修改是按后进先出的原则进行的,如图1所示。

因此,栈又称为后进先出(Last In First Out)表,简称为LIFO表。

所以,只要问题满足LIFO原则,就可以使用栈。

图1栈的运算:为一种抽象数据类型,常用的栈运算有:运算含义inistack(S) 使S成为一个空栈。

getTop(S) 这是一个函数,函数值为S中的栈顶元素。

Pop(S) 从栈S中删除栈顶元素,简称为抛栈。

Push(S,x) 在S的栈顶插入元素x,简称为将元素x入栈。

Empty(S) 这是一个函数。

当S为空栈时,函数值为true,否则函数值为false。

3.2 栈的存储与实现栈的数组实现:由于栈是一个特殊的表,我们可以用数组来实现栈。

考虑到栈运算的特殊性,我们用一个数组elements[1..maxlength]来表示一个栈时,将栈底固定在数组的底部,即elements[1]为最早入栈的元素,并让栈向数组上方(下标增大的方向)扩展。

同时,我们用一个游标top来指示当前栈顶元素所在的单元。

当top=0时,表示这个栈为一个空栈。

在一般情况下,elements中的元素序列elements[top],elements[top-1],..,elements[1]就构成了一个栈。

这种结构如图2所示。

图 2利用上述结构,我们可以形式地定义栈类型TStack如下:TypeTStack=Recordtop:integer;element:array[1..maxlength] of TElement;End;在这种表示法下,栈的5种基本运算可实现如下。

数据结构栈和队列ppt课件

数据结构栈和队列ppt课件

栈的运用 例3.1 将一个十进制正整数N转换成r进制的数
N 〕
1835
229
28
3
N / 8 〔整除〕 N % 8〔求余
229
3

28
5
3
4
0
3

❖例3.2 算术表达式中括号匹配的检查
❖用栈来实现括号匹配检查的原那么是,对表达式从左 到右扫描。
❖〔1〕当遇到左括号时,左括号入栈;
❖〔2〕当遇到右括号时,首先检查栈能否空,假设栈 空,那么阐明该“右括弧〞多余;否那么比较栈顶左 括号能否与当前右括号匹配,假设匹配,将栈顶左括 号出栈,继续操作;否那么,阐明不匹配,停顿操作 。
❖在顺序栈上实现五种根本运算的C函数 ❖〔3〕入栈 ❖int push (SeqStack *s, DataType x) ❖{ if (s->top==MAXSIZE-1) /*栈满不能入栈*/ ❖{ printf("overflow"); ❖return 0; ❖} ❖ s->top++; ❖ s->data[s->top]=x; ❖ return 1; ❖}
链队列及运算的实现
采用链接方法存储的队列称为链队列〔Linked Queue〕
采用带头结点的单链表来实现链队列,链队列中 的t结ype点de类f st型ruc与t N单od链e 表一样。将头指针front和尾指针 re{arD封at装aTy在pe一da个ta;构造体中,链队列用C言语描画如 下:struct Node *next;
❖只设了一个尾指针r ❖头结点的指针,即r->next ❖队头元素的指针为r->next->next ❖队空的断定条件是r->next==r

《数据结构(C语言)》第3章 栈和队列

《数据结构(C语言)》第3章 栈和队列
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(1) 栈的静态分配顺序存储结构描述 ② top为整数且指向栈顶元素 当top为整数且指向栈顶元素时,栈空、入栈、栈满 及出栈的情况如图3.2所示。初始化条件为 S.top=-1。
(a) 栈空S.top==-1 (b) 元素入栈S.stack[++S.top]=e (c) 栈满S.top>=StackSize-1 (d) 元素出栈e=S.stack[S.top--]
/*栈顶指针,可以指向栈顶
元素的下一个位置或者指向栈顶元素*/
int StackSize; /*当前分配的栈可使用的以 元素为单位的最大存储容量*/
}SqStack;
/*顺序栈*/
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(2) 栈的动态分配顺序存储结构描述 ① top为指针且指向栈顶元素的下一个位置 当top为指针且指向栈顶元素的下一个位置时,栈空 、入栈、栈满及出栈的情况如图3.3所示。初始化条 件为S.top=S.base。
…,n-1,n≥0} 数据关系:R={< ai-1,ai>| ai-1,ai∈D,i=1,2
,…,n-1 } 约定an-1端为栈顶,a0端为栈底 基本操作:
(1) 初始化操作:InitStack(&S) 需要条件:栈S没有被创建过 操作结果:构建一个空的栈S (2) 销毁栈:DestroyStack(&S) 需要条件:栈S已经被创建 操作结果:清空栈S的所有值,释放栈S占用的内存空间
return 1;
}
Data structures

java栈的用法

java栈的用法

java栈的用法Java栈的用法Java栈是一种非常重要的数据结构,它在Java语言中广泛应用于各种场景,例如方法调用、异常处理、表达式求值等。

本文将介绍Java栈的基本概念、常见操作以及实现方式等内容。

一、基本概念1. 栈的定义栈是一种线性数据结构,它具有后进先出(Last In First Out,LIFO)的特点。

栈可以看作是一个容器,只能在容器的一端进行插入和删除操作。

插入操作称为“进栈”或“压栈”,删除操作称为“出栈”。

2. 栈的实现方式Java中可以使用数组或链表来实现栈。

使用数组实现时,需要定义一个固定大小的数组,并记录当前栈顶元素位置;使用链表实现时,则需要定义一个头节点和一个指向当前节点的指针。

3. 栈的应用场景Java栈在很多场景下都有着重要的应用,例如:- 方法调用:每当调用一个方法时,都会创建一个新的栈帧并压入当前线程对应的虚拟机栈中。

- 异常处理:当抛出异常时,JVM会创建一个异常对象,并将其压入当前线程对应的虚拟机栈中。

- 表达式求值:通过使用两个栈,一个存放操作数,一个存放运算符,可以实现表达式的求值。

二、常见操作1. 压栈(push)将一个元素压入栈顶。

Java代码示例:```public void push(E item) {ensureCapacity(size + 1);elements[size++] = item;}```2. 出栈(pop)弹出栈顶元素,并返回该元素。

Java代码示例:```public E pop() {if (size == 0)throw new EmptyStackException();E result = elements[--size];elements[size] = null; // 避免内存泄漏 return result;}```3. 查看栈顶元素(peek)返回当前栈顶元素,但不弹出该元素。

Java代码示例:```public E peek() {if (size == 0)throw new EmptyStackException(); return elements[size - 1];}```4. 判断是否为空(isEmpty)判断当前栈是否为空。

C语言数据结构_第04讲 栈

C语言数据结构_第04讲 栈

while(n); printf("转换后的二进制数值为:"); while(s.top) // 余数出栈处理 { printf("%d",s.top->data); // 输出栈顶的余数 stacknode* p=s.top; // 修改栈顶指针 s.top=s.top->next; delete p; // 回收一个结点,C语言中用free p } }
3-3-2 表达式求值
表达式是由运算对象、运算符、括号等组成的有意义的式子。 1.中缀表达式(Infix Notation) 一般我们所用表达式是将运算符号放在两运算对象的中 间,比如:a+b,c/d等等,我们把这样的式子称为中缀表达 式。 2.后缀表达式(Postfix Notation) 后缀表达式规定把运算符放在两个运算对象(操作数) 的后面。在后缀表达式中,不存在运算符的优先级问题,也 不存在任何括号,计算的顺序完全按照运算符出现的先后次 次序进行。 3.中缀表达式转换为后缀表达式 其转换方法采用运算符优先算法。转换过程需要两个栈: 一个运算符号栈和一个后缀表达式输出符号栈。
(4)读栈顶元素
datatype ReadTop(SeqStack *s) { if (SEmpty ( s ) ) return 0; // 若栈空,则返回0 else return (s->data[s->top] );
// 否则,读栈顶元素,但指针未移动
}
(5)判栈空
int SEmpty(SeqStack *s) { if (s->top= = –1) return 1; else return 0; }
2.顺序栈运算的基本算法 (1)置空栈 首先建立栈空间,然后初始化栈顶指针。 SeqStack *Snull() { SeqStack *s; s=new (SeqStack);

大学《数据结构》第三章:栈和队列-第一节-栈

大学《数据结构》第三章:栈和队列-第一节-栈

第一节栈
一、栈的定义及其运算
1、栈的定义
栈(Stack):是限定在表的一端进行插入和删除运算的线性表,通常将插入、删除的一端称为栈项(top),另一端称为栈底(bottom)。

不含元素的空表称为空栈。

栈的修改是按后进先出的原则进行的,因此,栈又称为后进先出(Last In First Out)的线性表,简称为LIFO表。

真题选解
(例题·填空题)1、如图所示,设输入元素的顺序是(A,B,C,D),通过栈的变换,在输出端可得到各种排列。

若输出序列的第一个元素为D,则输出序列为。

隐藏答案
【答案】DCBA
【解析】根据堆栈"先进后出"的原则,若输出序列的第一个元素为D,则ABCD入栈,输出序列为DCBA
2、栈的基本运算
(1)置空栈InitStack(&S):构造一个空栈S。

第三章 栈和队列

第三章 栈和队列

8
Push(&S, e) 初始条件: 已存在。 初始条件:栈S已存在。 已存在 操作结果:插入元素e为新的栈顶元 操作结果:插入元素 为新的栈顶元 素。 Pop(&S, &e) 初始条件: 已存在且非空。 初始条件:栈S已存在且非空。 已存在且非空 操作结果:删除S的栈顶元素,并用e 操作结果:删除 的栈顶元素,并用 的栈顶元素 返回其值。 返回其值。
4
通常称top为栈顶指针。因此,顺序栈的类型定 为栈顶指针。因此, 通常称 为栈顶指针 义只需将顺序表的类型定义中的长度属性改为 top即可。顺序栈的类型定义如下: 即可。 即可 顺序栈的类型定义如下: # define STACK_INI_SIZE 100; # define STACKINCREMENT 10; typedef struct{ SElemType *base; SElemType *top; //设栈顶栈底 设栈顶栈底 两指针的目的是便于判断栈是否为空 int StackSize; //栈的当前可使用 栈的当前可使用 的最大容量. 的最大容量 5 }SqStack;
3.1 栈
3.1.1 栈的定义及基本运算 栈(Stack)是限制在表的一端进行插入和 是限制在表的一端进行插入和 删除运算的线性表,通常称插入、 删除运算的线性表,通常称插入、删除的这一 端为栈顶(Top),另一端为栈底 端为栈顶 ,另一端为栈底(Bottom)。 。 当表中没有元素时称为空栈。 当表中没有元素时称为空栈。 假设栈S=(a1,a2,a3,…an),则a1称 假设栈 , 为栈底元素, 为栈顶元素。栈中元素按a 为栈底元素,an为栈顶元素。栈中元素按 1, a2,a3,…an的次序进栈,退栈的第一个元 的次序进栈, 素应为栈顶元素。换句话说, 素应为栈顶元素。换句话说,栈的修改是按后 进先出的原则进行的。因此, 进先出的原则进行的。因此,栈称为后进先出 表(LIFO-Last In First Out )。 1 -

第3章 限定性线性表——栈和队列

第3章  限定性线性表——栈和队列

两栈共享技术(双端栈):
主要利用了栈“栈底位置不变,而栈顶位置动态变
化”的特性。首先为两个栈申请一个共享的一维数 组空间S[M],将两个栈的栈底分别放在一维数组的 两端,分别是0,M-1。
共享栈的空间示意为:top[0]和top[1]分别为两个 栈顶指示器 。
Stack:0
M-1
top[0]
top[1]
(1)第i号栈的进栈操作 int pushi(LinkStack top[M], int i, StackElementType x) { /*将元素x进入第i号链栈*/
LinkStackNode *temp; temp=(LinkStackNode * )malloc(sizeof(LinkStackNode)); if(temp==NULL) return(FALSE); /* 申请空间失败 */ temp->data=x; temp->next=top[i]->next; top[i]->next=temp; /* 修改当前栈顶指针 */ return(TRUE); }
case 1:if(S->top[1]==M) return(FALSE);
*x=S->Stack[S->top[1]];S->top[1]++;break;
default: return(FALSE);
}
return(TRUE);
返回主目录
}
【思考题】
说明读栈顶与退栈顶的处理异同,并标明将已知 的退栈顶算法改为读栈顶算法时应做哪些改动。
返回主目录
链栈的进栈操作
int Push(LinkStack top, StackElementType x)

栈的定义

栈的定义
int pop (SNODE * top)
{
SNODE *p; int x; if( top = = NULL ) { cout<<“栈溢出\n”;x=-1; } else { p = top; top = top-> link ; x = p-> data ; free(p) ; } return x }
(1) 队头指针 front = (front+1)% MAXSIZE ;
(2)队尾指针 rear = (rear +1)% MAXSIZE ;
循环队列队空、队满条件
1 2 3
队空条件 front = rear
0
MAXSIZE-1
front
...rΒιβλιοθήκη ar1 2a2 a3
3
0
a1
...
队满条件(剩下一个位置) front=(rear+1)% MAXSIZE
栈操作举例
TOP
a1 a2 …… 栈底 1.
top=0
(空栈)
an
MAXSIZE
栈顶
2. A B C
top=3 (A、B、C进栈)
3.
A B
top=2 (C出栈)
4. A B C D E F
top=MAXSIZE (栈满)
进出栈序列
有三个元素的进栈序列是1,2,3。写出可能的出 栈序列。
出栈序列
a3
a2 a1 ^ 栈底
算法1-8 进栈操作程序
push(SNODE *top , int x) { SNODE *t; t=new SNODE; if(t = = NULL ) { cout<<“内存中已无可用空间\n”; } else { t -> data = x; t -> link = top; top= t; } }

实现顺序栈的各种基本运算的算法实验原理

实现顺序栈的各种基本运算的算法实验原理

实现顺序栈的各种基本运算的算法实验原理一、引言顺序栈是一种常见的数据结构,它的特点是栈中元素的存储是连续的。

顺序栈的基本运算包括入栈、出栈、判空和获取栈顶元素等。

本文将详细介绍实现顺序栈各种基本运算的算法实验原理。

二、顺序栈的定义顺序栈是由一个一维数组和一个栈顶指针组成的数据结构。

栈顶指针指向栈顶元素的位置,当栈为空时,栈顶指针为-1;当栈满时,栈顶指针等于数组的长度减1。

三、顺序栈的入栈操作入栈操作是将一个元素压入栈中。

具体步骤如下:1. 判断栈是否已满,如果满则提示栈已满,无法进行入栈操作;2. 栈顶指针加1;3. 将待入栈的元素存入栈顶指针所指向的位置。

四、顺序栈的出栈操作出栈操作是将栈顶元素删除并返回。

具体步骤如下:1. 判断栈是否为空,如果为空则提示栈已空,无法进行出栈操作;2. 获取栈顶元素的值;3. 栈顶指针减1。

五、顺序栈的判空操作判空操作是判断栈是否为空。

具体步骤如下:根据栈顶指针的值来判断,如果栈顶指针为-1,则表示栈为空,否则表示栈非空。

六、顺序栈的获取栈顶元素操作获取栈顶元素操作是获取栈顶元素的值,但不删除。

具体步骤如下:1. 判断栈是否为空,如果为空则提示栈已空,无法获取栈顶元素;2. 获取栈顶元素的值。

七、顺序栈的算法实现下面以C语言为例,给出顺序栈的算法实现:1. 定义顺序栈的数据结构typedef struct {int top; // 栈顶指针int maxSize; // 栈的最大容量int* data; // 栈的数据存储区} SeqStack;2. 初始化顺序栈void initStack(SeqStack* stack, int maxSize) {stack->top = -1;stack->maxSize = maxSize;stack->data = (int*)malloc(maxSize * sizeof(int)); }3. 入栈操作void push(SeqStack* stack, int value) {if (stack->top == stack->maxSize - 1) {printf("栈已满,无法进行入栈操作\n");return;}stack->top++;stack->data[stack->top] = value;}4. 出栈操作int pop(SeqStack* stack) {if (stack->top == -1) {printf("栈已空,无法进行出栈操作\n");return -1;}int value = stack->data[stack->top];stack->top--;return value;}5. 判空操作int isEmpty(SeqStack* stack) {return stack->top == -1;}6. 获取栈顶元素操作int top(SeqStack* stack) {if (stack->top == -1) {printf("栈已空,无法获取栈顶元素\n");return -1;}return stack->data[stack->top];}八、实验原理1. 实验目的:通过实现顺序栈的各种基本运算,加深对顺序栈的理解,并掌握顺序栈的操作原理和算法实现。

第3章 栈

第3章 栈

3.1 栈的定义及运算
• • • • • • (3)判断栈满FullStack(S)。 初始条件:栈S已存在。 操作结果:若栈已满返回1,否则返回0。 (4)进栈Push(S,x)。 初始条件:栈S已存在且非满。 操作结果:其作用是将数据元素x插入栈S中,使 其为栈S的栈顶元素。
3.1 栈的定义及运算
3.2 栈的存储和实现
• (5)出栈操作。出栈操作的过程如图3-4所示。先判断栈S如 图3-4(a)是否为空,若不空将栈顶元素取出赋给指针x所指 的对象,如图3-4(b)所示,然后将记录栈顶的下标变量top 减1(但该元素还在数组内,只是栈顶指针已经改变位置), 如图3-4(c)所示。
图3-4 出栈操作过程图
3.2 栈的存储和实现
• 3.2.1 顺序栈
• 由于栈是操作受限制的线性表,因此与线性表类 似,栈也有两种存储结构,即顺序存储结构和链 式存储结构。
• 1.顺序栈的定义
• 栈的顺序存储结构称为顺序栈。类似于顺序表的 类型定义,顺序栈是用一个预设的足够长度的一 维数组和一个记录栈顶元素位置的变量来实现。
3.2 栈的存储和实现
• • • • • • • • • • • • • • if(flag==1) printf("\n出栈成功!"); else printf("出栈失败!"); break; case '4': if(flag=GetTop(&S,&x)) printf("当前的栈顶元素值为:%d",x); break; case '0': ch1='n';break; default: printf("输入有误,请输入0~4进行选择!"); }

计算机数据结构知识点梳理 栈的基本概念及应用

计算机数据结构知识点梳理		栈的基本概念及应用

2、进栈和出栈是栈的最基本操作,要能灵活运用后进先出原则解决实际问题。其中, 经典选择题的题型是考查出栈顺序的可能性,用排除法很容易解决此类问题。
另外,对于顺序存储结构的栈还需注意: (1)进栈时要判断栈是否满; (2)出栈时要判断栈是否空。
[题1] 设n个元素进栈序列是p1,p2,p3,…,pn,其输出序列是1,2,3,…,n,若 pn=1,则pi(1≤i≤n-1)的值是( )。
A.可能是2 B.一定是2 C.不可能是2 D.不可能是3
分析:当p3=1时,进栈序列是p1,p2,p3,…,pn,由输出序列可知,p1,p2,p3 都进栈,出栈p3,此后紧跟着出栈的一个元素是2,而p1不可能紧跟着p3出栈, 因为栈中前面有p2,因此p1不可能是2。
解答:C。
知识点3:栈的基本概念及应用
1、栈是运算受限(限制在表的一端进行插入和删除)的线性表,允许插入、删除的这一 端称为栈顶,另一个固定端称为栈底。栈是一种先进后出的线性结构。
一串数据依次通过一个栈,并不能保证出栈数据的次序总是倒置,可以产生多种出栈 序列。一串数据通过一个栈后的次序由每个数据之间的进栈、出栈操作序列决定,只 有当所有数据“全部进栈后再全部出栈”才能使数据倒置。事实上,存在一种操作序 列——“进栈、出栈、进栈、出栈……”——可以使数据通过栈后仍然保持次序不变。
A.n-i+1
B.n-i
C.i
D.有多种可能
分析:本题主要考查栈的先进后出的特性。当pn=1时,进栈序列是p1,p2, p3,…,1,由输出序列可知,p1,p2,p3,…,pn进栈,然后依次出栈,即pn1=2,pn-2=3,…,p1=n,也就是说pi是p1,p2,p3,…,pn,其输出序列是1,2,3,…,n,若 p3=1,则p1(1≤i≤n-1)的值是( )。

第一节 栈

第一节 栈

第一节栈一、栈的基本概念1.栈的定义限制在表的一端进行插入和删除运算的线性表。

栈顶(top)和栈底(bottom) :允许插入、删除的一端称为栈顶,另一端称为栈底。

空栈:表中没有元素称为空栈。

栈顶元素:处于栈顶位的数据元素。

2.栈的特征运算受限的线性表。

栈的运算规则:后进先出(LIFO)3.栈的基本运算(1)初始化InitStack(S):构造一个空栈S。

(2)判栈空EmptyStack(S):若栈S为空栈,则返回1,否则返回0。

(3)进栈Push(S,x):将元素x插入栈s,使x成为栈S的栈顶元素。

(4)出栈Pop(S):删除S的栈顶元素。

(5)取栈顶GetTop(S):返回栈顶元素。

二、栈的顺序实现1.思路栈的本质是线性表,线性表的存储结构对栈也适用,栈的顺序存储结构称为顺序栈。

与顺序表类似,可用一个预设的足够长度的一维数组来实现顺序栈。

栈底位置固定不变,栈顶位置随着入栈和出栈操作而变化。

用一个整型变量top存储栈顶的位置,通常称top 为栈顶指针(实际是数组的下标)。

2.顺序栈的定义const int maxsize=100;//顺序栈的容量typedef struct seqstack{ DataType data[maxsize]; //存储栈中数据元素的数组int top; //标志栈顶位置的变量} SeqStk;3.基本运算在顺序栈上的实现算法(1)初始化int InitStack(SeqStk *stk){stk->top=0; //置空栈return 1;}(2)判栈空int EmptyStack(SeqStk *stk) //若栈为空,则返回1,否则返回0{If (stk->top==0)return 1;else return 0;}(3)进栈int Push(SeqStk *stk,DataType x) //若栈未满,元素x进栈stk中,否则提示出错信息{if (stk->top==maxsize-1){error("栈已满"); return 0;}//栈满不能入栈,返回错误代码0else { stk->top++; //栈顶指针向上移动stk->data[stk->top]=x; //将x置入新的栈顶return 1; //入栈成功,返回成功代码1}}(4)出栈int Pop(SeqStk *stk){ if (EmptyStack(stk)){error("下溢"); return 0;} //栈空不能出栈,返回错误代码0else{stk->top--;//栈顶指针向下移动return 1; //返回成功代码1 }}(5)取栈顶元素DataType GetTop(SeqStk *stk) //取栈顶元素,栈顶元素可以通过参数返回{ if ( EmptySeqStack (stk)) return NULLData;//栈空,返回NULLDataelsereturn stk->data[stk->top];//返回栈顶数据元素}4.几点注意:(1) 对于顺序栈,入栈时,首先判栈是否满了,栈满时,不能入栈; 否则出现空间溢出,引起错误,这种现象称为上溢。

栈的运算遵循的原则

栈的运算遵循的原则

栈的运算遵循的原则
栈是一种常见的数据结构,它遵循后进先出(LIFO)的原则。

这意味着最后进入栈的元素将首先被移除。

栈的操作包括压栈(push)和出栈(pop),以及其他一些相关操作。

首先,我们来详细介绍一下栈的基本操作。

1. 压栈(push):将一个元素添加到栈的顶部,即将它放在已有元素的上面。

2. 出栈(pop):移除栈顶的元素,并返回被移除的元素。

3. 查看栈顶元素(top):获取栈顶的元素值,但并不移除它。

4. 判断栈是否为空(empty):检查栈中是否没有元素。

另外,还有一些与栈相关的常用操作。

5. 清空栈(clear):移除栈中的所有元素,使之成为空栈。

6. 获取栈的大小(size):返回栈中元素的个数。

下面我们来介绍一下这些栈的操作原则。

1.后进先出:栈遵循后进先出(LIFO)的原则,也就是说最后进入栈的元素将首先被移除。

通过压栈和出栈操作,可以实现这一原则。

2.保持有序:在进行压栈和出栈操作时,栈的元素排列会保持有序,并且栈顶元素是最新添加的元素。

这是因为新元素总是被添加到栈顶,并且栈顶的元素会被最先移除。

3.操作快速:栈的操作通常是在常数时间内完成的,即无论栈中有多少个元素,这些操作所需的时间是固定的。

这是因为栈是通过链表或数组实现的,元素的添加和移除只需要对栈顶进行操作。

4.空间有限:栈的大小通常是有限的,它由数组或链表的大小限制。

当栈已满时,再进行压栈操作将导致栈溢出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栈的定义及基本运算
1、理解栈的含义
栈(Stack)是限制仅在表的一端进行插入和删除运算的线性表。

打个比方:用桶堆积物品,先堆进来的压在底下,随后一件一件往堆。

取走时,只能从上面一件一件取。

堆和取都在顶部进行,底部一般是不动的。

栈就是一种类似桶堆积物品的数据结构。

通常称插入、删除的这一端为栈顶(Top),另一端称为栈底(Bottom)。

当表中没有元素时称为空栈。

栈为后进先出(Last In First Out)的线性表,简称为LIFO 表。

栈的修改是按后进先出的原则进行。

每次删除(退栈)的总是当前栈中"最新"的元素,即最后插入(进栈)的元素,而最先插入的是被放在栈的底部,要到最后才能删除。

2、常用名词
栈Stack:指整个栈中的数据
节点Node/Point:指保存在栈中的某一项数据.
栈指针Node:一个在栈中移动的指针,一般指针指向当前栈顶
栈顶StackTop:栈的顶部
栈底StackBase:栈的底部
入栈Push:把一个数据放进栈中
出栈/弹栈Pop:将一个数据从栈中取出
栈容量:栈的最大容量
溢出:超过栈容量或在指针指向栈底时取数.
3、栈的运算
(1)常规运算
入栈:
Prcedure PUSH ( Data :TData ) ;
Begin
Inc ( Point ) ;
If (Point>Limited) Then
Exit ;
MoveData ( Stack [ Point ] , Data ) ;
End ;
出栈:
Procedure Pop ( V ar Data:TData );
Begin
Dec ( Point ) ;
If ( Pop < Base ) Then
Exit ;
MoveData ( Data , Stack [ Point ] ) ;
End ;
(2)、基本运算
InitStack(S)构造一个空栈S。

DestroyStack ( S ) 消毁一个存在的栈。

ClearStack ( S ) 置空一个存在的栈。

StackEmpty(S)判栈空。

若S为空栈,则返回TRUE,否则返回FALSE。

StackFull(S)判栈满。

若S为满栈,则返回TRUE,否则返回FALSE。

注意:该运算只适用于栈的顺序存储结构。

Push(S,x)进栈。

若栈S不满,则将元素x插入S的栈顶。

Pop(S,e)退栈。

若栈S非空,则将S的栈顶元素删去,并返回该元素于e。

StackTop(S,e)取栈顶元素。

若栈S非空,则返回栈顶元素于e,但不改变栈的状态。

StackTraverse(S,visit() ) 栈的Visit方法遍历。

相关文档
最新文档