静电除尘用高频高压电源
电除尘用高频高压电源的研制
电除尘用高频高压电源的研制(Genvolt New Road, Highley, Bridgnorth, Shropshire, UK)摘要高压开关电源已经普遍应用到很多领域,最近几年在电除尘应用方面也取得了较大的进展。
本文提出了咱们对设计高压开关电源的一些试探,并扼要介绍了咱们最新研制的用于电除尘的32kW高频高压开关电源。
1 前言近几年,大伙儿已经开始熟悉到高频高压开关电源用于电除尘的一些突出的优势。
很多研究报告也都显示高频高压开关电源能够显著提高除尘的效率,能够大大提高功率因素。
在间歇方式工作时,由于其关断和开通时刻大大缩短,因此能够更有效的处置反电晕及提高高比电阻粉尘的搜集能力,等等。
但是与其他应用领域有所不同,电除尘的环境及其负载特性对高频高压开关电源提出了极为苛刻的要求。
第一是电除尘用高频高压电源只能安装在室外而且置于房顶,电源的设计必需考虑温度,湿度,海拔高度,尘埃等因素的阻碍。
仅温度一项就极为棘手。
众所周知,电子元件都是由许许多多的PN节组成,而PN节温度最高只能为125摄氏度,少有可达150度。
高于此温度那么立刻烧毁。
温度越是远离此上限温度,那么工作越靠得住。
这就要求电除尘用高频高压电源的温升尽可能低。
负载特性是电除尘电源有别于其他应用的又一个特点。
除负载的动态转变范围大之外,电源必需能经受多达每秒一次的频繁放电也是一个苛刻的要求。
对电除尘电源的操纵也和其他的高压开关电源很不一样。
常规的高压电源追求低纹波,高稳固度,好的线性或负载调整率等,大体上是一个电压源。
用于电除尘的高压开关电源输出特性更像一个电流源,同时又希望能够任意设置电压的波形,响应速度快,过冲小,耐受频繁的火花放电。
2 电除尘用高频高压电源设计上的考虑见诸有关资料的用于电除尘的高压开关电源各有特色。
电路上大致可分为功率输入部份,逆变部份,升压整流输出部份和对电源的操纵部份。
电源功率输入部份高功率的电源都采纳三相输入,不可控三相整流,滤波。
高频电源在静电除尘器上的应用
高频电源在静电除尘器上的应用摘要: 节能减排保护环境和生态平衡是各行各业的重要任务,也是衡量各个企业制造出来的产品性能价格比的重要指标。
目前燃煤电厂传统的电除尘电源及其控制系统已不能满足现代化电厂低能耗、低排放的要求。
贵溪发电有限责任公司(厂)电气专业组织有关技术人员对该情况进行讨论研究,决定保持现有电除尘器本体等基础,对贵溪发电有限责任公司(厂)#5炉双列四室一电场高压电源进行改造换型,提高电除尘电源效率、提高除尘效率,减少排放量,增加节电量。
笔者时任贵溪电厂二期维护部电气技术员,全程主持了此次高频电源改造项目,现将高频电源的原理、功能及改造后的效果编辑整理,以飨读者。
关键词: 电除尘器高频电源燃煤电厂除尘效率一、前言电除尘用高频高压整流设备(简称高频电源)可配套各类除尘设备广泛应用于电力、冶金、建材、轻工、化工等众多行业的烟气粉尘治理,是一种高效除尘、保护环境的重要设备。
高频电源是新一代的绿色电源产品,是我国电除尘器供电技术的一项革命性的突破。
该产品与传统的可控硅控制工频电源相比性能优异明显,具有输出纹波小、平均电压电流高、体积小、重量轻、成套设备集成一体化、转换效率与功率因数高、采用三相电源对电网影响小等多项显著优点,它的研制成功实现了电除尘器配套电源技术水平质的飞跃,对我国环保设备配套电源产品的产业结构调整和优化升级有积极的影响。
二、高频电源应用特点1. 体积小、重量轻,仅为常规电源的几分之一,安装方便,不占空间。
2. 效率与功率因数高,高频电源效率>0.9,功率因数>0.9。
3. 采用三相电源对电网影响小,无缺相损耗,无电网污染。
4. 纯直流供电时,输出电流大,可达工频电源的2倍,输出电压高,可达工频电源的1.3倍(图一),间歇供电时,可有效抑制反电晕现象,实现保效节能,特别适用于高比电阻粉尘工况。
5. 采用串并联混合谐振逆变器有恒流特性,可以有效抑制电场火花的电流冲击,可以更迅速地熄灭火花并且快速恢复电场能量。
静电除尘器高频电源改造技术应用与推广
静电除尘器高频电源改造技术应用与推广摘要:基于对静电除尘工作原理的分析,把握高频电源较之工频电源所具有的优势,进一步地,围绕工程实例展开研究,结果显示,用高频电源对工频电源进行替代,执行静电除尘器的技术改造任务,以原有除尘效率的有效保持为前提,能够达到至少50%的节能率。
关键词:静电除尘器,工频电源,高频电源,改造技术,节能减排在国家倡导节能减排的宏观背景下,火电厂积极地对各种行之有效的节能降耗技术和手段进行探寻与应用。
高频电源是一种新型的为静电除尘器供电的设备,相较于工频电源而言,该设备能够以对除尘效率的有效保证为前提,在很大程度上实现对电能消耗的降低。
某火电厂对静电除尘器的供电方式进行改造,由高频电源对以往的工频电源进行替换,将理想的节能效果发挥出来。
1静电除尘工作原理静电除尘器主要是在两个金属电极上进行高压直流电的加装,以此得到一个高压电场,该电场能够让原本位于其中的气体发生电离现象。
而在此之后,会有电子和正负离子生成,其中,带电的离子与电子能够令粉尘荷电。
基于异性相吸的原理,在电场力的作用之下,荷电粉尘会沿着异性电极的方向不断运动,并在最后吸附于电极之上,以此便能实现从烟气中的分离。
在电除尘振打设备具有规律的振打之下,在电极上吸附的那些粉尘便会落入对其进行收集的物体中。
从构成上来看,静电除尘器主要包括两大组成部分,其一为电除尘器本体,主要功能为对烟尘进行净化处理,其二则是将高压直流电产生的模块以及低压控制模块。
现阶段,板卧式电除尘器有着最高的应用率,主要由壳体、阴阳极系统、阴阳极振打模块以及气流分布模块与拍灰模块共同构成。
2高频电源较之工频电源所具有的优势2.1具有更大的电晕功率相较于工频电源而言,高频电源提供的输出电压和电流均可以达到更高的水平,在相同的电场内部,输入的功率也会明显较之工频电源要更大,这意味着其可以在较大程度上实现对收尘效率的提升。
另外,基于对参数的借鉴,执行对高比电阻粉尘的判断任务,将间歇脉冲供电占空比确定下来,又能进一步达到对反电晕的有效抑制目的,将粉尘排放量有效减少,可以超过30%;不仅如此,电晕电压和峰值电流较之工频电源的二次电压和电流而言也要高出较为明显的水平。
电除尘器高频用电源介绍
14.4
2
0.4A/72kV
380
47
72
0.4
31
28.8
3
0.6A/72kV
380
71
72
0.6
46
43.2
4
0.8A/72kV
380
94
72
0.8
62
57.6
5
1.0A/72kV
380
118
72
1
77
72
6
1.2A/72kV
380
141
72
1.2
93
86.4
7
1.4A/72kV
380
165
▲三相平衡供电:高频电源为三相输入,三相供电平衡,功率因数大于0.95,无缺相损耗,无电网污染。
▲可提高电晕功率:高频电源的输出电压纹波系数比常规电源小(高频电源约1%,而常规电源约30%),可大大提高电晕电压(约30%),从而增加电场内粉尘的荷电能力,也减小了荷电粉尘在电场中的停留时间,从而可提高除尘效率。电晕电压的提高,同时也提高了电晕电流,增加了粉尘荷电的机率,进一步提高除尘效率,特别适用于高浓度粉尘场合。
JHGP系列型电除尘器高频高压电源输入/输出参数表(Io≤100mA)
序号
设备容量
交流输入电压
交流输入电流
直流输出电压
直流输出电流
交流入功率
直流输出功率
(V)
(A)
(KV)
(mA)
(kVA)
(kW)
1
10mA/60kV
380
1
60
10
0.64
0.6
2
20mA/60kV
EHC-II电除尘高频电源使用手册
设备的正常启动-----------------------------------------------------------------25
设备的正常停机-----------------------------------------------------------------25
EHC-II产品结构
高频电源正面图
图1
EHC-II铭牌安装在正面外壳上,通过铭牌可以获知此台EHC-II的规格大小。
图2
图2是高频电源铭牌,其中:
电源断开情况下,由于EHC-II高频电源内部带有大容量电容,其残余能量仍能造成人员的伤害,非专业人士严禁打开机箱!
电源断开情况下,由外部电源供电的控制电路也会将危险电压引入EHC-II高频电源内部,仍有可能造成人员的伤害,如低压振打、加热控制回路检修维护时,请断开外部相关控制回路的电源!
EHC-II高频电源必须用足够粗的电缆可靠接地,绝对禁止在没有可靠接地或接地电阻大于国家相关标准的情况下,对EHC-II高频电源进行通电!
双室四电场(以上)通讯方案---------------------------------12
双室四电场(以上)通讯方案2---------------------------------------------13
五、产品适用范围----------------------------------------------14
高压侧参数说明-----------------------------------------------------------------9
静电除尘器高频电源
静电除尘器高频电源各类高压电源的性能对比与脉冲高频电源简介概述在饱受雾霾之苦的今天。
随着我国对环境保护的日益重视,燃煤电厂的污染排放受到人们的关注,国家和地方环保部门对燃煤电厂污染物的排放和总量有了较严格的控制,并且排放标准逐年升高。
这就迫使企业对现有的静电除尘器设备进行不断的升级和改造。
但是现有的问题是,很多企业的静电除尘器在当初设计时没有考虑到未来的排放标准会如此苛刻,导致一批静电除尘器在今天的环保标准下排放超标。
而在静电除尘器升级改造中,增加电场又没有足够的场地,用袋式除尘器又担心后期的维护成本。
所以提高静电除尘器高压电源的供电技术,才是解决这个问题最有效的捷径。
下面我们就通过粉尘的荷电机理与电源工作原理来论证一款由中国自主研发的新型静电除尘器高压电源——脉冲高频电源。
一、静电除尘器高压电源发展的三个阶段:第一阶段:工频电源1、恒流源:单相交流380V输入,变压器分档调幅调压,高压硅堆整流输出。
输出频率100Hz。
二次电压输出波形:纹波较大的直流(DC)电压波形。
2、单相可控硅电源:单相交流380V输入,可控硅调相调压,高压整流变压器输出。
输出频率100Hz。
二次电压输出波形:纹波较大的直流(DC)电压波形。
3、三相可控硅电源:三相交流380V输入,可控硅调相调压,高压整流变压器输出。
输出频率300Hz。
二次电压输出波形:纹波较小的直流(DC)电压波形。
第二阶段:高频电源1、按输出频率可分为:10 kHz、20 kHz、50 kHz。
2、按调压方式可分为:调频高频电源、调幅高频电源。
三相交流380V输入,可控硅/二极管调相调压,IGBT全桥逆变经高压整流变压器输出。
输出频率10 kHz、20 kHz、50kHz。
二次电压输出波形:基本上纯直流的(DC)电压波形。
第三阶段:工频基波脉冲电源工频基波脉冲电源:由两组独立电源组成即基波电源和脉冲电源。
基波频率300Hz,脉冲频率100pps,脉冲宽度75μs;第四阶段:脉冲高频电源:由多组独立高频电源叠加组成。
《基于STM32的高频高压静电除尘电源的控制研究》范文
《基于STM32的高频高压静电除尘电源的控制研究》篇一一、引言随着工业化的快速发展,粉尘污染问题日益严重,静电除尘技术因其高效、环保的特性受到了广泛关注。
高频高压静电除尘电源作为静电除尘技术的核心设备,其控制系统的设计和优化对提高除尘效率、保证设备安全运行具有重要意义。
本文以STM32微控制器为核心,对高频高压静电除尘电源的控制进行研究,旨在提高系统的稳定性和除尘效率。
二、STM32微控制器与系统架构STM32系列微控制器因其高性能、低功耗的特性,在工业控制领域得到了广泛应用。
在高频高压静电除尘电源控制系统中,STM32作为核心控制器,负责采集系统运行数据、控制电源的开关以及调节输出电压等。
系统架构主要包括电源模块、控制模块、检测模块和通信模块。
其中,控制模块以STM32为核心,通过与各模块的通信接口相连,实现对系统的全面控制。
三、高频高压静电除尘电源的控制策略1. 电压调节策略:根据实际工作需求,通过PWM(脉宽调制)技术调节高频高压电源的输出电压。
同时,采用闭环控制策略,实时采集输出电压和电流数据,根据数据调整PWM信号的占空比,以实现精确的电压调节。
2. 功率因数校正:为提高电源的效率,需对输入电流进行功率因数校正。
通过分析输入电流的波形和相位,对PWM信号进行相应调整,以降低谐波成分,提高功率因数。
3. 故障诊断与保护:系统具有完善的故障诊断和保护功能。
当检测到过压、过流、过热等故障时,系统将立即切断电源,并启动报警程序,确保设备安全运行。
四、控制系统软件设计软件设计是高频高压静电除尘电源控制系统的关键部分。
在STM32微控制器上运行的软件系统应具备实时性、稳定性和可扩展性。
主要任务包括数据采集、控制算法实现、通信协议处理等。
在数据采集方面,软件系统需实时采集电源的输出电压、电流以及系统各部分的工作状态等数据。
在控制算法实现方面,软件应根据实际需求和系统状态,通过PWM技术调节电源的输出电压和功率因数。
静电除尘器脉冲高频电源 各类高压电源性能对比
静电除尘器脉冲高频电源各类高压电源的性能对比与脉冲高频电源简介概述在饱受雾霾之苦的今天。
随着我国对环境保护的日益重视,燃煤电厂的污染排放受到人们的关注,国家和地方环保部门对燃煤电厂污染物的排放和总量有了较严格的控制,并且排放标准逐年升高。
这就迫使企业对现有的静电除尘器设备进行不断的升级和改造。
但是现有的问题是,很多企业的静电除尘器在当初设计时没有考虑到未来的排放标准会如此苛刻,导致一批静电除尘器在今天的环保标准下排放超标。
而在静电除尘器升级改造中,增加电场又没有足够的场地,用袋式除尘器又担心后期的维护成本。
所以提高静电除尘器高压电源的供电技术,才是解决这个问题最有效的捷径。
下面我们就通过粉尘的荷电机理与电源工作原理来论证一款由中国自主研发的新型静电除尘器高压电源——脉冲高频电源。
一、静电除尘器高压电源发展的三个阶段:第一阶段:工频电源1、恒流源:单相交流380V输入,变压器分档调幅调压,高压硅堆整流输出。
输出频率100Hz。
二次电压输出波形:纹波较大的直流(DC)电压波形。
2、单相可控硅电源:单相交流380V输入,可控硅调相调压,高压整流变压器输出。
输出频率100Hz。
二次电压输出波形:纹波较大的直流(DC)电压波形。
3、三相可控硅电源:三相交流380V输入,可控硅调相调压,高压整流变压器输出。
输出频率300Hz。
二次电压输出波形:纹波较小的直流(DC)电压波形。
第二阶段:高频电源1、按输出频率可分为:10 kHz、20 kHz、50 kHz。
2、按调压方式可分为:调频高频电源、调幅高频电源。
三相交流380V输入,可控硅/二极管调相调压,IGBT全桥逆变经高压整流变压器输出。
输出频率10 kHz、20 kHz、50kHz。
二次电压输出波形:基本上纯直流的(DC)电压波形。
第三阶段:工频基波脉冲电源工频基波脉冲电源:由两组独立电源组成即基波电源和脉冲电源。
基波频率300Hz,脉冲频率100pps,脉冲宽度75μs;第四阶段:脉冲高频电源:由多组独立高频电源叠加组成。
新型高频脉冲电源在静电除尘器中的应用展望
新型高频脉冲电源在静电除尘器中的应用展望(字数5693)关键词高频脉冲技术(HFPC),电除尘器(ESP),门隔离场效应晶体管(IGBT),整流电源。
摘要时至今日,用高频(20-50kHz)脉冲电源产生纯净的直流高压为电除尘器供电,已经是被广泛接受的技术。
此种高压开关电源展现了除尘器新的过程技术。
纯净的直流电压对于ESP性能的改善,其结果已经为ESP业界所了解。
此电源的电路运行频率大大高于电网频率。
其主要优势是减小尺寸(降到常规系统的15%),并且改善了ESP的电源控制。
ESP的能量可以被控制在微秒级,而不再依赖于主频率。
受益于纯净的直流电源,改善了由于过高的空间电荷产生电晕闭塞而导致的ESP高排放。
可以得到更高的次级(kV)平均电压和电流。
同样使用纯净的直流电改善了中、低比电阻,包括湿式电除尘器的排放。
实地测试表明ESP性能改善的实现,包含低和高比电阻粉尘条件。
此外,这个高频电源是三相驱动。
三相负载均衡,功率因数接近于1。
本文介绍此新型ESP电源。
报道了在不同过程条件的ESP中采用纯净高频直流电供电的运行基理,以及在国内外的应用和前景。
电除尘器供电电源的发展历史回顾本文的首要目标是来叙述一种基于高频脉冲(HFPC )技术的新型ESP电源。
首先就要回顾整流电源的演变历史,梳理静电除尘器供电技术的发展脉络。
常规电源(主频率能量转换器)图1,ESP电源,主频整流器工业应用的ESP运行的是负直流高压。
通常运行电压低于负100kV。
这是由电极间距,以及产生电晕电流所需要电场强度的烟气条件所致。
常规电源(主频率)参见图1。
由一个单相变压器产生高压,经过一个全波整流器,输出一个脉动直流高电压到ESP中由电极组成的高压框架。
这些电极——是放电极和接地的收尘电极,之间相当于一个充电电容。
电晕电流波纹频率两倍于主频率(参见图2)。
此系统有两个明显缺点。
其一,除尘器要获得高的平均电压和电流,就希望运行的峰值电压接近于火花水平处。
电除尘器高频用电源介绍
一、电除尘器高频电源JHGP型电除尘器高频电源介绍概述除尘器高频高压电源是国际上先进的电除尘器供电新型电源,具有完全自主知识产权,佳环电子在专业生产电除尘用高压电源技术上处于领先地位。
该产品与传统的可控硅控制工频电源相比性能优异,具有输出纹波小、平均电压电流高、体积小、重量轻、集成一体化结构、转换效率与功率因数高、采用三相平衡供电对电网影响小等多项显著优点。
特别是可以较大幅度地提高除尘效率,所以它是传统可控硅工频电源的革命性的更新换代产品,实现了电除尘器供电电源技术水平质的飞跃。
该产品主要开关器件采用了德国semikrom(西门康)公司的器件,控制采用数字化控制,具有多种通讯方式,以便集中管理控制。
可控硅交流工频直流电除尘器电场相整流变压器工频电源直流k交流直流电除尘器电场高频相整流变压器二、高频电源工频电源与高频电源原理结构图JHGP型高频电源的特点高频逆变器整流电路▲更好的节能效果:高频电源具有高达93%以上的电能转换效率,在电场所需相同的功率下,可比常规电源更小的输入功率(约20%),具有节能效果。
;有更好的荷电强度,在保证了粉尘充分荷电的基础上,可以大幅度减少电场供电功率,从而减少无效的电场电功率。
▲三相平衡供电:高频电源为三相输入,三相供电平衡,功率因数大于0.95,无缺相损耗,无电网污染。
▲可提高电晕功率:高频电源的输出电压纹波系数比常规电源小(高频电源约1%,而常规电源约30%),可大大提高电晕电压(约30%),从而增加电场内粉尘的荷电能力,也减小了荷电粉尘在电场中的停留时间,从而可提高除尘效率。
电晕电压的提高,同时也提高了电晕电流,增加了粉尘荷电的机率,进一步提高除尘效率,特别适用于高浓度粉尘场合。
▲更好的电源适应性:与工频电源相比,高频电源的适应性更强。
高频电源的输出由一系列的高频脉冲构成,可以根据电除尘器的工况提供最合适的电压波形。
间歇供电时,供电脉宽最小可达到1ms,而工频电源最小为10ms,可任意调节占空比,具有更灵活的间歇比组合,可有效抑制反电晕现象,特别适用于高比电阻粉尘工况。
GGYAj电除尘用高频高压电源技术介绍
监 控 界 面
监 控 界 面
监控 界面
监 控 界 面
温升控制
温升主要部件:IGBT、串联谐振电感、变压器。 有效的冷却系统保证高频电源可靠工作。逆变回 路的散热采用强迫风冷,将所有重要发热器件都 纳入到冷却系统中。 IGBT全桥采用大散热器散热,结构设计时让整 个散热通道风阻尽量小。 变压器采用油浸自冷,合理使用铁芯材料,控制 铁损,合理布置变压器与硅堆安装结构,有效提 高散热效果。 变换器回路设计中,注意避免涡流效应与趋肤效 应带来的损耗而引起的局部高温。
恒流特性可以有效抑制电场火花的电流 冲击,迅速熄灭火花和恢复电场能量。
开关损耗小。
2、PWM硬开关技术
对瞬间短路过流抑制能力较差,存在较 大的开关损耗,难以适应电除尘工况的 特殊要求。
高频电源组成与基本原理
1、组成部分
变换器、高频变压器、控制器
2、工作原理
从三相交流输入整流为直流电源,经逆变为高频交 流,最后整流输出直流高压。变换器实现直流到高 频交流的转换,高频变压器/高频整流器实现升压整 流输出,为ESP提供供电电源。
可设置火花后恢复曲线,设置火花快上升初值、 终值、增量、慢上升增量、恒火花率。
高频电源控制系统
3、智能控制策略
反电晕自动检测与控制功能。开发出高频电源 应用条件下的特殊反电晕检测方法,使设备根 据反电晕指数及时减功率输出来减轻反电晕的 影响。反电晕严重时,设备自动进入间歇脉冲 供电状态,寻求最佳的脉冲宽度和脉冲频率, 以获得最佳的除尘效果。
GGYAj电除尘用高频高压电源
福建龙净环保股份有限公司
前言
1、背景
国家实施环保排放新标准,环保技术面临 挑战。
研发新产品,以有效提高除尘效率,确保 烟气排放达到环保标准,是责任,也是攻 关课题。
静电除尘器工作原理
静电除尘器工作原理静电除尘器是一种常用的空气净化设备,它通过利用静电原理去除空气中的颗粒物,提高空气质量。
静电除尘器主要由高压电源、收集极、放电极和除尘器壳体等组成。
下面将详细介绍静电除尘器的工作原理。
1. 高压电源:静电除尘器的高压电源通常采用直流电源,其作用是提供高电压给除尘器的放电极和收集极,形成电场。
2. 收集极:收集极是静电除尘器的重要组成部分,通常由金属丝或金属板制成。
收集极的作用是吸引和收集空气中的颗粒物,使其附着在收集极上。
3. 放电极:放电极通常由金属丝或金属板制成,放置在收集极的前方。
放电极的作用是在高电压的作用下产生电晕放电,使空气中的颗粒物带电。
4. 除尘器壳体:除尘器壳体是静电除尘器的外部保护结构,通常由金属或塑料制成。
除尘器壳体的作用是固定收集极和放电极,并保护内部电路和设备。
静电除尘器的工作原理如下:1. 电场形成:当高压电源通电时,通过导线将高电压输送到放电极和收集极上。
由于收集极和放电极之间的电压差,形成了一个强电场。
2. 颗粒物带电:当空气中的颗粒物经过静电除尘器时,由于电场的作用,颗粒物表面的电子会被电场中的电子吸引,使颗粒物带上电荷。
3. 颗粒物收集:带电的颗粒物被电场吸引到收集极上,附着在收集极的表面。
由于收集极的细小间隙和电场的作用,颗粒物很容易被吸附并固定在收集极上。
4. 除尘效果:通过静电除尘器的工作,空气中的颗粒物被有效地去除,从而提高了空气质量。
清洁的空气通过除尘器壳体的出口排出,达到净化空气的目的。
静电除尘器的优点:1. 高效除尘:静电除尘器能够高效地去除空气中的颗粒物,包括细小的尘埃、烟雾和花粉等。
2. 低能耗:相比其他类型的除尘设备,静电除尘器的能耗较低,节省能源。
3. 长寿命:静电除尘器的主要部件采用金属材料制成,具有较长的使用寿命。
4. 易于维护:静电除尘器的清洁和维护相对简单,只需定期清理收集极上的颗粒物即可。
静电除尘器的应用领域:1. 工业领域:静电除尘器广泛应用于工业生产过程中的粉尘处理,如钢铁、化工、矿山等行业。
火力发电厂静电除尘器高频电源故障分析及处理
火力发电厂静电除尘器高频电源故障分析及处理摘要:近年来,在国家“双碳”目标的背景和要求下,火力发电厂不得不投入烟气超低排放技术。
静电除尘器做为火力发电厂超低排放的重要设备,高频电源的缺陷严重困扰了静电除尘设备稳定、可靠运行,极大部分高频电源故障无法在线处理以致于部分电场因故障退出运行,导致电除尘除尘效率降低。
因此,设备优化、改进、定期维护及电除尘实际运行工况及电场运行参数变化分析对于电除尘器的故障处理及稳定运行尤为重要,本篇文章结合本电厂所使用的菲达静电电除尘器、金华大维EHC-II高频电源进行故障分析和处理,可作为故障分析、处理参考。
关键词:静电除尘器;高频电源;故障分析;处理;1.工作原理、结构组成简介1.1工作原理高频电源是将输入的三相工频交流电源经过三相全桥整流滤波后产生低压直流电,再通过全桥IGBT等逆变电路,形成高频脉冲式交流电,后经高频变压器将低压高频交流脉冲升压整流后,输出供给静电电除尘电场使用。
在高压静电场的作用下,含尘烟气中悬浮的通过高压电场时,带上电子和离子的尘粒在电场力作用下向异性电极运动并吸附在异性电极上堆积起来,所堆积的粉尘,通过振打等方式使电极上的灰尘落入灰斗中。
电场场强越高,电除尘器效果越好,且以负电荷捕集灰尘的效果最好,静电电除尘运行全流程如下:三相工频交流电整流、滤波全桥IGBT逆变高频变压器含尘烟气正离子粘附尘粒高压静电场(高频电源)气体介质电离自由电子粘附尘粒负离子含尘烟气振打带正电荷尘粒受电场力作用趋向阴极落灰灰斗出灰带负电荷尘粒受电场力作用趋向阳极落灰振打1.2结构组成简介(1).整流和滤波三相交流电压经整流桥得到直流电压,再经滤波,输出稳定的直流电压。
(2).高频逆变直流电压经由IGBT逆变桥、谐振电容、谐振电感组成的串联LC谐振逆变电路,逆变成高频交流电压。
(3).高频变压器逆变波形经过高频变压器升压,再经高频整流桥整流,从而得到电场所要求的直流高压。
电除尘用脉冲式高频高压电源
电除尘用电除尘用脉冲式高频高压电源脉冲式高频电源是新一代先进的电除尘器电源产品。
以我司自主开发的GAC-520控制器作为中心控制部件,以IGBT为主控器件,借助调制解调技术,驱动不同类型整流变压器,实现高频电源功能,为电除尘器电场提供最高的电晕功率,最大限度激发电场的收尘潜能,提高除尘效率。
一、产品特点1、二次电压平滑、二次电流高、闪络控制特性好二次电压趋近于纯直流,几乎没有纹波。
高频电源纯直流供电时的输出纹波小于5%,远小于工频(50/60Hz)电源35%-45%的纹波百分比,闪络恢复快,运行平均电压可达工频电源的1.3倍。
二次电流为尖峰载波使阴极尖端的电场强度的不均匀性更加激烈,电晕电流加大,可达工频电源的2倍,在同一电场的情况下,能够大幅度提高电晕功率,提高收尘效率。
闪络恢复快,微秒级内快速关断闪络电流,无闪络电流冲击问题,不会损伤极板,极线。
2、运行更可靠,系统更智能脉冲式高频电源借助调制解调技术,将高频信号调制于低频载波信号中,解决了高频大功率信号不能远距离传输的问题,成功地将高频控制柜与变压器分开,避免了原高频电源控制柜置于除尘器顶上受环境侵蚀的故障发生,极大地提高设备的运行可靠性。
采用IGBT硬开关工作方式。
在硬开关工作方式下,逆变回路的工作频率及载波频率完全由单片机控制,与逆变回路参数及负载的大小无关,保证工作的稳定性,同时减少了逆变回路的损坏,提高逆变回路的效率。
与常规的电源相比具有更高的除尘效率。
内置智能型控制软件,能根据现场的工况情况,自动调节工作频率,以适应不同电场、不同工况的要求。
工作频率从2KHz-20KHz之间变化。
任何的谐振式高频电源都无法做到这样宽范围频率调节。
3、三相平衡,无谐波采用三相电源输入,对电网无污染。
效率与功率因素高,功率因素大于95%,比工频电源节能20%以上,节省大量电能,绿色环保。
4、非常适用于除尘器电源产品的升级改造,方便快捷脉冲式高频高压电源控制柜,非常使用用于常规电源的升级改造成为高频电源。
EHC-II电除尘高频电源使用手册
为了保证您的人身及设备安全,请在使用前仔细阅读此安全须知,以防造成不必要的损失!EHC—II高频电源为静电除尘器上使用的高压专业设备,只有具备相关资质的电气工程师才可以对 EHC-II高频电源进行使用及维护,非专业人士使用及维护有可能会对设备或人员安全造成伤害!电源通电情况下,不能对EHC—II高频电源连接电缆、隔离开关、静电除尘器进行维修作业,否则会对设备或人员安全造成伤害!电源断开情况下,由于EHC-II高频电源内部带有大容量电容,其残余能量仍能造成人员的伤害,非专业人士严禁打开机箱!电源断开情况下,由外部电源供电的控制电路也会将危险电压引入EHC—II高频电源内部,仍有可能造成人员的伤害,如低压振打、加热控制回路检修维护时,请断开外部相关控制回路的电源!EHC-II高频电源必须用足够粗的电缆可靠接地,绝对禁止在没有可靠接地或接地电阻大于国家相关标准的情况下,对EHC-II高频电源进行通电!静电除尘器检修时,必须断开EHC-II高频电源的输入电源,EHC—II高频电源的高压输出端,必须可靠接地!断电检修时,高压隔离开关各闸刀必须用足够粗的导线和地线连接,以免其他电场高压漏电,对在高压隔离开关内检修的人员造成伤害!请按正常关机步骤停机后再断开高频电源输入电源,禁止在高频电源运行时突然切断输入电源!EHC-II高频电源比传统的工频电源具有更强的集尘效果,请注意灰斗的料位状态及输灰的时间工艺,防止料位过高,造成极间短路或灰斗坍塌等问题!高度集成高频升压高效除尘排放低费用低能耗低目录一、EHC—II高频电源概述——-—-—----—————--—-—-—--—-——————-—--——---————- 4 ●EHC—II产品信息---———-—--—-————--———-————----—-————-—-—------——-——-—---------—- 4 ●EHC-II产品结构—-—-———--———————-—--——-—-—--———---—-———-—-——---—-—-—-—--—-—-———- 4 二、EHC—II高频电源的设计特点——-—--———---—-—--————-—--—————-—-----———---—--7 ●高频电源内部的关键元件的型号—————--—-—-—-—-———-—————-—--—-—--————-————-—--—-———7 ●逆变部分IGBT设计--—--——--—-—-----——-—-—----—---———————----—--—-————---—---—---7 ●散热系统的设计--—---—--—-————--———-——-----————---——---——---—----———--—-———-——--7 ●高频变压器设计----———---—-----———-—--—-—-——-—-----——---——-——--——-—-——-—-—-——---8 ●外壳防护设计-———---—-—-—-——-—--—-—-——----——--——-—--—-—--—--—-—————---———-——-———8 ●高压出线的设计----—-——----—-———————-----——-—--—----——-—————--—-————-—-——-—-----8 三、EHC—II高频电源控制原理-——--——--—————-—-—--——-———--—-——--———-——————-—9 ●低压侧参数说明—----—-———-——-—--———-—-—-—----—---——-—--——-—----—-—-—-————-—--—--9 ●高压侧参数说明-——-----——----————-----—---—-—-----—-—-——-——---———————--—-—-—-———9 ●温度说明---—-—-——-----————-—-------—————-—-——-—---———————--—————-——--———————-——10 ●工作方式说明————-—---——---—-——--—-------——--——-----—-—————————--—--—----———--——10 ●闪络说明—---————----—--—----—-—---——-—---—---———---—-—--———-——---—-—----———-—--10 四、EHC—II高频电源通讯方案——-—---———-—--—---—--————————-—-——-—------—---1 1 ●单台高频电源通讯方案--—--—-———-————-———-—--————-————---———---—-—-—--—-—1 1 ●单室四电场通讯方案—---——--—--———-—--—-—-—---——-————----———-—--——--—-—--1 1 ●双室四电场(以上)通讯方案1—------————————-----—-—-—-----—---———-——-————1 2 ●双室四电场(以上)通讯方案2—-————---———-———--—--—-------————--—----——-——1 3 五、产品适用范围-—-———------—-—-—-—--—-—-——----———--———-—-—--—1 4 六、运行环境——-—--————---—--——-———-———----——-----——-——--——1 5 七、技术参数及选型指导--———--——-——-——-——-———-—-——--———--—————-—---—-1 6 八、运输及储存—-—---—-----——-----——-—————-———--—-———--——---—17 九、现场安装指导——-—----—-——--—-————------——-—--——---————--———18 ●设备的拆封—-———————————---—---———--——--———------—-—-——----——--————————-------—-18 ●设备的起吊----———-———-—---——-—-—-——-——-—--——-——-——-———————-——-—--—-——--————-———18 ●设备的机械安装———----—-——-————-—-—-----—-—--———---—--———--———-——-———--—----——--19 ●设备的电气安装——-—-—----—-————————————-——-———-———---——-—-----—-———----—--—-—-—-20 十、首次使用(正式运行前的调试工作)-—--—-———--—-—-—-——--—-—---—--—-———-—-2 1 ●首次使用前的检查—--——-—-————-—-————-—-—-—-——-———-—-—-——-——----—----—-—--—---———2 1●首次使用的短路试验—————-—-——----———-—--—----——-———-—-——----——-——--————---—--—-—2 1 ●首次使用的升压试验----———-—-----—--————--—-—--—-—-—-——--——————--——-—————-———-——2 2 十一、EHC-II高频电源的充电和放电——-——---——-—-————-----———————---—2 3 ●触摸屏手操器充电步骤—---—-————-—-—-——--——--------——-—-——-—-————-———----—-———————-—2 3 ●触摸屏手操器放电步骤——-————---——----————--------—-—-——-————----——-——--——-—————--—-2 3 ●EHC-IPAD无线手操器充电步骤-—--—————-—--—-—-—--——-—-—--————-———-—--—-—----2 4 ●EHC-IPAD无线手操器放电步骤--—-——-—---——-----—--——-——-----———---—--————---2 4 十二、设备启动关机操作—-—-----—-—--——-————-—————-——————--——-—-—---—-—-—2 5 ●安全注意事项—--——--—-———--—-———---—--———-—-------——-——-——--——--———----—-————--—2 5 ●设备的正常启动------————-———-—------—-——---———--—-——--————-—-—--—--—--——-—--———2 5 ●设备的正常停机----——-———----—-——--————------------———-————--——-——--———-—-------2 5 ●检修维护后启动步骤------—--—--—---————————-—--—--——--—-—-----———-—-—-———-—-——-—--2 5 ●检修维护停机步骤-——--—-—-—-—-——-———-----——-—--—---—-——--—-----—--——-——---—2 5 十三、软件监控与操作-——-———--———-—--—--------——----——-—————----—-—27 ●触摸屏手操器——----—-———--——--—-———----———-—--——-—------———-—-—--—-----———-—-——-27 ●EHC—IPAD无线手操器———--—————--—-——-——-——-—-———-———-—-----—--—-—-—-—-—---—-——-—3 5 十四、故障现象及处理————-—--————---———---—---——-———-———--——--————-48 十五、设备维护和保养—-—-—---——---—-----—---————————-—-—-----——----50 ●正常运行维护和保养--—-—-———-—-—--———--—-—-——--——-—--—--—---—-—————-——-—-------————50 ●定期维护和保养——--—--——---—-——-—--—--—--———-——-—-——————----——-————-—----———————50 ●大修维护和保养-————-—--—---—--—--—-—-—-——---——--——-——-——-—-—----—-———--———---——---50 附:EHC-IPAD无线手操器中英文对照表附图1:高频电源安装尺寸图附图2:高频电源外观图附图3:高频电源电气原理图一、EHC-II高频电源概述EHC—II产品信息金华大维电子科技有限公司(国家高新技术企业)生产的EHC—II系列电除尘用高频高压电源(以下简称EHC-II)是目前国际上先进的新型电除尘器高压电源,是大维电子在EHC一代产品基础上,斥巨资升级的高端产品,具有完全自主知识产权.EHC—II是一个高度集成的大功率开关电源,是传统变压器和高压控制柜的结合体,它为高压静电除尘器电场提供所必须的设备以及这些设备的控制系统。
静电除尘的原理是利用粉尘
静电除尘的原理是利用粉尘静电除尘是一种常用的除尘方法,它通过利用电场的力量将空气中的粉尘吸附到带有电荷的收集电极上,从而实现对空气中粉尘的去除。
静电除尘主要包括:电源和电业控制系统、电晕、收集电极等组成。
首先是电源和电业控制系统。
静电除尘需要利用高压电源产生高电压,并通过电业控制系统对电压进行调节和控制,使其达到适当的强度和频率。
一般静电除尘系统采用雷克斯罗斯一能源来作为高压电源,通过电压升压器实现升高电压。
电晕发生在高电压电极附近的气体中,是静电除尘中最重要的过程。
当电压足够大时,电极产生电场,使周围的气体电离。
电离后的电子和离子在电场作用下,形成电晕和空间电荷。
电晕放电可以发生在正极、负极或电极之间的气体中,也可以发生在粉尘颗粒附近的气体中。
在静电除尘过程中,粉尘的带电原理是通过吸附效应实现的。
当空气中的粉尘颗粒与电晕和空间电荷接触时,由于带电性差异导致了颗粒上的静电吸附效应。
具体而言,当一个带有电荷的物体接近一个带有不同电荷的物体时,两者之间会产生静电吸引力。
在静电除尘中,收集电极上的电荷为正,而空气中的粉尘颗粒带有负电荷。
因此,带有电荷的粉尘颗粒会被收集电极吸附,从而使粉尘颗粒从空气中被除去。
静电除尘中,收集电极起到了至关重要的作用。
收集电极一般分为金属材料和绝缘材料两种。
金属收集电极用于工业中需要高电压和高电流领域,并有很好的导电性和强度。
绝缘材料收集电极则主要用于低压和小电流环境中,对绝缘性和耐热性要求较高。
收集电极通过迅速捕集和吸附空气中的粉尘颗粒,从而实现除尘的目的。
同时,收集电极的设计也需要考虑到电极间的间距、电极形状等因素,以便提高除尘的效率和效果。
总结起来,静电除尘的原理是通过建立高电压电场,使气体电离产生电晕和空间电荷,利用电场强力将带有负电荷的粉尘颗粒吸附到带有正电荷的收集电极上,实现对空气中的粉尘去除。
静电除尘具有去除粉尘高效、耗能低、运行成本较低等优点,被广泛应用在各种工业领域中,如钢铁、水泥、石化等。
静电除尘器工作原理
静电除尘器工作原理静电除尘器是一种常用于工业和环境保护领域的设备,用于去除空气中的颗粒物和灰尘。
它通过利用静电力将带电的颗粒物吸附在集尘板上,并通过清洁装置将其去除。
静电除尘器主要由以下几个部分组成:1. 高压电源:静电除尘器的核心部件之一,用于提供高电压。
高电压可以产生强大的静电场,吸引带电的颗粒物。
2. 集尘板:也称为电极板,是静电除尘器中的主要部件。
它通常由导电材料制成,如金属或导电塑料。
集尘板之间有一定的间距,通过这些间距空气可以流过,但颗粒物无法通过。
3. 清洁装置:用于定期清洁集尘板上的积灰。
常见的清洁装置包括机械振动、气体冲击和喷气等。
清洁装置的作用是将积聚在集尘板上的颗粒物从中移除,以保持除尘器的高效工作。
静电除尘器的工作原理如下:1. 通电:高压电源向集尘板施加高电压,使其带有静电荷。
集尘板的电荷正负极性可以根据需要进行选择,以吸引相应的颗粒物。
2. 吸附:带电的集尘板产生强大的静电场,吸引空气中带电的颗粒物。
颗粒物在静电力的作用下被吸附在集尘板上,形成一层灰尘。
3. 清洁:随着时间的推移,灰尘层会越来越厚,影响除尘器的工作效率。
因此,需要定期对集尘板进行清洁。
清洁装置会定期或根据设定的条件触发,使集尘板产生振动、气体冲击或喷气等作用,将积灰从集尘板上除去。
4. 收集:清洁后的颗粒物会被收集起来,以便进一步处理。
收集方式可以根据具体应用而定,常见的方法包括装袋收集、收集到容器中或通过输送设备进行处理。
静电除尘器的优势在于其高效的除尘能力和较低的能耗。
相比传统的过滤器,静电除尘器可以更彻底地去除微小颗粒物,同时也不会因为颗粒物的积聚而导致阻力增大。
此外,静电除尘器的维护成本相对较低,清洁装置的运行也相对简单。
然而,静电除尘器也存在一些局限性。
首先,它对颗粒物的尺寸和电荷敏感,较大或非带电的颗粒物可能无法被有效去除。
其次,静电除尘器在处理高温气体或含有易燃物质的气体时需要特殊设计,以防止火灾或爆炸的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大功率静电除尘用高频高压电源的研制廖谷然1,杨北革2,薛辉2,吕玉祥1(1. 太原理工大学物理与光电工程学院,山西太原 030024;2. 山西省电力公司大同供电分公司,山西大同 037008)摘要:由于工频可控硅电源在静电除尘器领域中使用时的缺点,高频高压电源势必将取代工频电源成为静电除尘器的供电电源。
而目前国内研制的高频高压电源的功率一般比较小,难以和主流的静电除尘设备相配套。
本文介绍了采用双串联谐振回路并联的新的拓扑结构,设计出了72KV/1.6A的大功率静电除尘用高频高压电源。
通过现场实验验证了72KV/1.6A高频高压电源的可行性。
该电源对静电除尘设备新建或改造时降低成本和维护费用有着实际的意义。
关键词:静电除尘器;高频高压电源;串联谐振;软开关;数字信号处理Development of a High-power High Frequency and High Voltage PowerSupply for Electrostatic PrecipitatorLIAO Gu-ran1,Y ANG Bei-ge2,XUE Hui2,LV Yu-xiang1(1. College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China;2. Shanxi Datong Electric Power Supply Company,Datong 037008,China)Abstract: Due to the disadvantage of industrial frequency power supply with SCR used in the field of electrostatic precipitator. The high frequency high voltage power supply will definitely replace industrial frequency power supply as the power supply of electrostatic precipitator. And at present the power of high frequency high voltage power supply is small, and hard to match electrostatic dust removal equipment. This paper introduces a new topology of double series resonance circuit in parallel, designs the 72KV/1.6A high power high frequency and high voltage power supply for electrostatic precipitator. The feasibility of high frequency and high voltage power supply has been verified by testing it in the real electric field. This power supply has a practical significance to reduce cost and maintenance cost of new electrostatic dust removal equipment or renovation project.Keywords: electrostatic precipitator,high frequency high voltage power supply,series resonance,soft switching,Digital Signal Processing0 引言空气污染直接严重危害人体健康。
而火力发电厂、钢铁、冶金、造纸、水泥、轻纺、化工等工业领域生产过程中产生的烟气是空气污染的主要来源。
因此这些烟气在排放到大气之前必须对其进行除尘处理。
20世纪90年代大气污染物排放标准200mg/m3,2004年起实施的更加严格的排放标准则是50mg/m3[1],而从2012年1月1日起实施的新的火电厂大气污染排放标准中燃煤锅炉的烟尘排放标准是30mg/m3[2]。
越来越严格的环保要求给除尘设备和供电电源提出了新的要求。
静电除尘器(ESP)是国际上使用广泛的除尘设备,具有效率高,处理烟气量大,运行成本低,维护方便等优点。
利用静电除尘器能够有效地收集粉尘,使得排放达到标准。
从20世纪八十年代至今,环保领域使用的静电除尘器直流高压供电电源普遍采用工频可控硅电源,其电路结构是两相工频电源经过可控硅移相控制幅度后经整流变压器升压整流后形成100Hz的脉动直流高压。
这种供电电源适用于烟气温度高、压力大的场合。
是国内外传统的静电除尘器供电方式。
但随着环保排放要求的不断提高,此种供电方式也逐渐显示出一些缺点。
比如:1.工作频率为50Hz,转换效率低,耗电量大,变压器体积大,需大量钢材和铜材。
2.采用工频相位控制调压方法,使得功率因数低,且对电网干扰大。
3.晶闸管是半控型器件,对闪络放电等实际状况响应速度慢,延时长,不能立即调整输出电压。
4.输出电压脉动大,使得电晕电压低,无法适合高比电阻的粉尘[3]。
以上几个缺点使得工频电源无法达到环保领域新的排放标准。
因此,研制高性能的静电除尘用高压直流电源势在必行。
随着新一代功率电子器件的发展,比如IGBT等全控型器件的出现和数字控制技术的发展,高频逆变技术在工业上的应用越来越广泛也越来越成熟。
基于高频逆变技术的静电除尘器供电电源越来越受到人们的重视,是静电除尘器供电电源的发展方向[4],成为国内外除尘行业研究的重点。
由于制造和控制技术上的难度,目前国内从事静电除尘用高频电源的公司研发的产品输出功率都不高。
而国内绝大多数主流静电除尘设备要求配套的电源功率在60-100kW。
本文分析了静电除尘用高频高压电源的工作原理,提出了采用双串联谐振回路并联的新的拓扑结构,研制了72KV/1.6A大功率静电除尘用高频高压电源。
工作频率为1-30KHz。
为了减小调频时IGBT的开关损耗,采用串联谐振软开关技术,使得IGBT在零电流下开通和关断。
1 整体电路框图图1 整体电路框图Fig.1 The circuit diagram由整体电路框图可知,72KV/1.6A静电除尘用高频高压电源主电路由两路三相全桥整流,两路串联谐振高频逆变及高频整流变压器几个部分组成。
输入380V工频电压通过三相整流,再经过电解电容稳压作用得到母线电压。
母线电压通过IGBT高频全桥逆变,经过高频整流变压器升压和二次整流后得到直流高压,为静电除尘器本体供电。
图2为串联谐振高压直流电源的具体拓扑电路图。
其中静电除尘器本体可等效为一个电阻和一个电容并联。
图2串联谐振高压直流电源主电路图Fig.2 The main circuit diagram of series resonance high voltage DC power supply 2 工作原理分析图2中两个谐振回路的参数完全相同,IGBT的开关状态也完全对称,因此只对其中一回路进行分析。
并推导出电流波形图。
首先讨论一下基本串联谐振电路:图3 基本串联谐振电路Fig.3 Basic series resonance circuit 设通过谐振电感L的电流为i,谐振电容C两端的电压为U,则i和U有如下关系:indiL U Udt+=(1)dUC idt=(2)由(1)、(2)可以推导出()()00cosri t i w t t=-+()sininrrU Uw t tZ-- (3)()()()00cosin in rU t U U U w t t=---+()00sinr rZ i w t t- (4)(3)、(4)两式中i为t时刻流过谐振电感L的电流,U为t时刻谐振电容C两端的电压,rwLC=为谐振角频率,rLZC=在图2中,设IGBT的开关频率为sf,谐振频率为rf,根据sf与rf不同关系,图2电路有三种不同工作方式。
当sf小于rf的一半时,谐振回路工作在断续工作状态下,IGBT零电流导通,零电流零电压关断,大大减小了IGBT 的开关损耗。
两路PWM 波驱动信号互补,即当Q1、Q4导通时,Q2、Q3截止;Q1、Q4截止时,Q2、Q3导通。
设母线电压为in U ,通过谐振电感电流为i ,谐振电容两端电压为U ,负载电容折算到变压器原边的电压为1U 。
图4 开关模式1 图5 开关模式2 Fig.4 Switching Mode 1 Fig.5 Switching Mode 2图6 开关模式3 图7 开关模式4 Fig.6 Switching Mode 3 Fig.7 Switching Mode 4(1)开关模式1,0t 时刻,Q1、Q4导通,等效电路图4所示。
在0t 时刻,()00i t =,()00U t =,()100U t =。
利用(3)、(4)可以推导出谐振回路的谐振电感上的电流和谐振电容两端的电压如下:()()0sin inr rU i t w t t Z =- (5) ()()0cos in in r U t U U w t t =-- (6)(5)、(6)式中,r w LC =,因此谐振周期2r T LC =,0t 时刻Q1、Q4开通,电流正向流动,过12r T 时间,i 过零,U 达到最大,电路进入开关模式2。
(2)开关模式2,1t 时刻,电流i 反向,流过反并联二极管D1、D4, 等效电路图5所示。
开关模式2的初始条件为:()10i t =,()12in U t U =,()110U t >。
利用(3)、(4)可以推导出谐振回路的谐振电感上的电流和谐振电容两端的电压如下:()()11sin inr rU U i t w t t Z -=- (7)()()()111cos in in r U t U U U U w t t =+--- (8)过12r T 时间到达3t 时,i 到零,D1、D4自然关断,开关模式2结束。
在1t 与3t 中间的2t 时刻关断Q1、Q4,因为此时流过Q1、Q4的电流为0,所以实现了零电流关断,减小了关断损耗。
(3)开关模式3,4t 时刻,Q2、Q3导通,谐振电流i 增加,实现软开通,等效电路图6所示。
工作模式3的初始条件为:()40i t =,()()4132U t U t =,()()1413U t U t =。