焦炉设计计算要点剖析
焦炉排计划的大循环小循环的计算方法
焦炉排计划的大循环小循环的计算方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!焦炉排计划的大循环小循环的计算方法是焦化行业中一项重要的技术。
第三节 焦炉的生产能力和发展方向
2、推焦
5-2串序的排列为:
1 6 11 16 ……… 71 76 81 3 8 13 18 ……… 73 78 83 5 10 15 20 ……… 70 75 80 2 7 12 17 ……… 72 77 82 4 9 14 19 ……… 74 79 84
第四节 炼焦炉生产操作
炼焦炉的生产操作包括焦炉的出炉操作和焦炉的加热 管理,前者是由焦炉移动机械所进行的操作,后者则是对 焦炉正常加热进行调温、调压等管理操作。
一、焦炉的出炉操作
二、焦炉的加热管理
1、装煤操作
装煤操作是由加煤车进行的,加煤车从焦炉的煤塔受 煤,然后将煤加入炭化室。焦炉煤塔的设计容量一般能保 证焦炉16h的用量,焦炉对装煤操作的要求是:装满、装 平、定量、均衡、减少烟尘排放。每孔炭化室的装煤量应 均衡,与规定值偏差不超过±150kg,以保证焦炭的产量 和炉温的稳定。往炭化室放煤时要迅速,有利于提高煤料 在炉内的堆密度。放煤后需平好煤,使荒煤气导出畅通, 同时做到不堵孔、不缺角,带出余煤少。
该种串序对于焦炉机械采用5炉距一次定位操作特别 有利,大大减少了焦炉机械来回的行程。我国宝钢即采用 了该项技术。
2、推焦
9-2串序的安排如下(焦炉炭化室不编带0号编号):
1 11 21 31 ……… 71 81 91 3 13 23 33 ……… 73 83 93 5 15 25 35 ……… 75 85 7 17 27 37 ……… 77 87 9 19 29 39 ……… 79 89 2 12 22 32 ……… 72 82 92 4 14 24 34 ……… 74 84 6 16 26 36 ……… 76 86 8 18 28 38 ……… 78 88
焦炉 荷载 计算
焦炉荷载计算
(原创版)
目录
1.焦炉荷载的定义和重要性
2.焦炉荷载的计算方法
3.焦炉荷载的考虑因素
4.焦炉荷载的应用实例
正文
一、焦炉荷载的定义和重要性
焦炉荷载是指在焦炉生产过程中,由于温度变化、气体流动、焦炭层压力等因素引起的焦炉结构的内应力和变形。
焦炉荷载对于焦炉的安全生产和结构稳定性具有重要的影响,因此对其进行准确的计算和分析至关重要。
二、焦炉荷载的计算方法
焦炉荷载的计算主要包括以下几个步骤:
1.确定计算模型:根据焦炉的实际情况,选择合适的计算模型,如简支梁模型、连续梁模型、板壳模型等。
2.确定计算参数:计算焦炉荷载需要确定一些参数,如焦炭层的密度、比热容、热导率等。
3.计算温度梯度:根据焦炭层的热传导特性,计算出温度梯度。
4.计算内应力:根据计算模型和温度梯度,计算出焦炉结构的内应力。
三、焦炉荷载的考虑因素
在计算焦炉荷载时,需要考虑以下因素:
1.焦炭层的物理性质:如密度、比热容、热导率等。
2.焦炉的结构特性:如焦炉的高度、宽度、厚度等。
3.焦炉的生产过程:如焦炭的燃烧速度、气体的流动速度等。
4.环境的影响:如温度、压力、湿度等。
四、焦炉荷载的应用实例
焦炉荷载的计算在焦炉的设计、生产和维护过程中具有重要的应用。
例如,在焦炉的设计阶段,可以通过计算焦炉荷载,优化焦炉的结构设计,提高其安全性和稳定性。
在焦炉的生产阶段,可以通过监测焦炉荷载,及时发现潜在的安全隐患,保障生产过程的安全。
在焦炉的维护阶段,可以通过检查焦炉荷载,评估焦炉的使用寿命,制定合理的维护计划。
关于焦炉基础结构设计的分析
关于焦炉基础结构设计的分析闵克涛毛建伟张绍金(中冶焦耐工程技术有限公司,鞍山114002)近年来,我国焦炭产量已达4亿吨左右,焦炉也向大型化发展,4.3m焦炉减少,6m焦炉得到普遍推广,由1994年的21座增加到2006年的67座,马钢、太钢、沙钢、兖矿等大型焦化厂先后引进了7.63m焦炉。
本文以马钢焦化厂7.63m焦炉为例介绍和分析了我国焦炉基础设计的技术状况。
马钢焦化厂7.63m焦炉是在德国凯泽斯图尔7.63m焦炉技术基础上设计的,图1是其基础平面的布置图。
图1 7.63m焦炉基础平面布置图1 基础结构设计的分析对于下喷式焦炉的基础结构,横向一般采用5柱构架,边柱上、下端铰接,中间各柱上、下端固接。
纵向采用现浇钢筋混凝土板式构架结构,中间未留伸缩缝。
为防止顶板的温度变形,构架柱需配置较多的钢筋。
为减少配筋,42孔以上的下喷式焦炉基础结构一般将纵向两端一定区段内的基础构架柱脚做成铰接,而对基础结构纵向中部区域的基础构架柱脚和上、下端节点仍然设计成固接。
国内焦炉基础设计是根据结构在温度作用下的变形特点,将受基础顶板温度变形影响较大的构架边柱的上、下做成铰接,将基础结构纵向两端的数排构架下端做成铰接,降低了基础顶板温度变形作用在构架柱中产生的内力,节省了材料用量。
但由于铰接柱设置的增加,在7度以上抗震设防烈度的设计中不易满足现行抗震设计规范的要求,结构安全度下降。
德国凯泽斯图尔焦化厂采用的是下喷式焦炉,基础纵向结构采用现浇钢筋混凝土板式构架结构,每13.2m左右留有20mm的伸缩缝,基本上消除了温度纵向变形对结构的影响。
基础横向结构采用5柱构架,中间柱上、下固接,其余各柱下端固接、上端平面内铰接、平面外固接。
这种结构整体性较好,在结构的抗震计算和抗震构造设计上更易满足抗震设计规范的要求。
缺点是由于纵向增设了伸缩缝,增加了施工的难度,延长了施工的周期。
2 基础结构抗震设计的分析马钢抗震设防烈度为7度,设计基本地震加速度为0.1g,筑场地土类别为B类,基本风压为0.50kN/m2。
焦炉传热和结焦时间计算
2
式中:
α辐、CO2——CO2的辐射系数,查图8-5
α辐、H2O——H2O的辐射给热系数,查图8-6 。
第八章
焦炉传热和结焦时间计算
第八章
焦炉传热和结焦时间计算
图8-5 CO2辐射给热系数
第八章
焦炉传热和结焦时间计算
第八章
焦炉传热和结焦时间计算
图8-6 H2O辐射给热系数
第八章
焦炉传热和结焦时间计算
t1 ' 式中:
α——热废气对蓄热面的给热系数,kJ/m2· ℃ h·
τ——加热期时间,h/周期
α’——蓄热面对冷气体的给热系数,kJ/m2· ℃ h· τ’——冷却期时间,h/周期
第八章
焦炉传热和结焦时间计算
φ —— 格子砖内部传热系数,kJ/m2· 周期· ℃
cg
δ —— 格子砖半壁厚,m ρ—— 格子砖密度,kg/m3 c —— 格子砖比热容, kJ/kg· ℃
第五节 蓄热室传热
目的意义: 回收废气显热 确定蓄热室换热面积F 确定格子砖块数n=F/F砖 确定格子砖层数N=n/n层 确定格子砖的高度h=h砖×N 确定蓄热室高度 确定焦炉高度
第八章
焦炉传热和结焦时间计算
第八章
焦炉传热和结焦时间计算
第八章
焦炉传热和结焦时间计算
一、蓄热室传热特点
1、蓄热室的作用:回收废气显热并用来预热用于加热焦炉的空气或高 炉煤气。 2、蓄热室可分为加热期(下降气流)和冷却期(上升气流),格子砖 是热量的传递者。 在加热期:下降的高温废气将热量传递给格子砖,格子砖被加热, 废气被冷却。 在冷却期:格子砖将热量传递给上升的高炉煤气或空气,格子砖被 冷却,上升的空气或高炉煤气被加热。
炼焦炉耗热量的计算
炼焦炉耗热量的计算
炼焦炉是用于生产焦炭的设备,它耗热量的计算涉及到多个因素。
下面我将从多个角度来回答这个问题。
首先,炼焦炉耗热量的计算与炼焦炉的类型和工艺有关。
常见
的炼焦炉有焦炉、半焦炉和煤气化炉等。
每种炼焦炉的工艺流程和
燃烧方式不同,因此计算方法也会有所差异。
其次,炼焦炉耗热量的计算需要考虑到炉内各个部位的热量损失。
炉内煤料的加热过程中,热量会通过辐射、对流和传导等方式
逐渐传递到煤料表面。
然后,煤料在炉内燃烧产生焦炭,并伴随着
煤气的生成。
在这个过程中,热量会通过煤气带走一部分,并通过
炉壁和烟道散失。
因此,计算炼焦炉耗热量需要综合考虑这些热量
损失。
另外,炼焦炉耗热量的计算还需要考虑到燃料的热值和燃烧效率。
不同的燃料具有不同的热值,而燃烧效率则受到炉内氧气供应、燃料的燃烧方式和炉内温度等因素的影响。
因此,在计算炼焦炉耗
热量时,需要准确测量燃料的热值,并考虑到燃烧效率的影响。
此外,炼焦炉耗热量的计算还需要考虑到炉内的热量平衡。
炉
内的热量平衡是指炉内各个部位的热量输入和输出之间的平衡关系。
通过对炉内热量平衡的计算,可以确定炉内的热量损失和燃料的利
用率,从而进一步计算炼焦炉的耗热量。
综上所述,炼焦炉耗热量的计算涉及到炼焦炉的类型和工艺、
热量损失、燃料的热值和燃烧效率,以及炉内的热量平衡等因素。
为了准确计算炼焦炉的耗热量,需要综合考虑这些因素,并进行相
应的测量和分析。
焦化厂10万吨炉子煤气量计算
焦化厂10万吨炉子煤气量计算焦化厂的炉子是一个重要的设备,用于生产高品质的焦炭。
为了确定炉子的煤气量,我们需要考虑炉子的尺寸和操作条件。
首先,我们需要知道炉子的尺寸。
炉子通常由两个主要部分组成:炉膛和管道系统。
炉膛是焦化过程中煤炭的主要燃烧区域,而管道系统用于输送煤气到其他工序。
炉子的尺寸是通过炉膛的容积来衡量的,通常以立方米(m³)为单位。
在本例中,我们假设炉子的容积为100立方米。
其次,我们需要考虑炉子的操作条件。
焦化过程中煤炭的燃烧会产生大量的煤气,其中包括一氧化碳(CO)、二氧化碳(CO₂)、氮气(N₂)、水蒸汽(H₂O)以及其他杂质。
煤气的总体积是由煤炭的化学成分和反应温度决定的。
在焦化过程中,煤气的温度通常在1000℃到1200℃之间。
在这个温度范围内,煤气的体积大致可以通过理想气体状态方程PV=nRT 来计算。
然后,我们需要知道炉子的产能。
焦化厂一般以产能来衡量焦炭的生产规模,通常以吨为单位。
在本例中,我们假设炉子的产能为10万吨。
为了计算炉子的煤气量,我们可以按照以下步骤进行:1.计算煤气的体积:使用理想气体状态方程PV=nRT来计算煤气的体积。
其中,P是压力,V是体积,n是物质的量(以摩尔为单位),R是气体常数,T是温度。
2.确定煤气的成分:根据焦化过程中煤炭的化学反应,可以预测煤气的成分。
例如,一氧化碳(CO)的体积百分比通常在20%到30%之间,二氧化碳(CO₂)的体积百分比通常在5%到10%之间。
3.计算煤气的总体积:根据煤气的成分和体积百分比,可以计算煤气的总体积。
4.计算煤气的体积流量:炉子的产能是每年焦炭的生产量,我们可以通过除以焦炭的产量来计算每吨焦炭的煤气产量。
然后,乘以每吨焦炭的煤气体积,就可以得到每年的煤气体积。
5.计算煤气的日均体积流量:将每年的煤气体积除以365,可以得到每天的煤气体积。
对于这个10万吨炉子,我们需要准确的数据来进行计算。
由于没有提供具体的数据,上述步骤只是一个大体的计算过程。
焦炉工艺设计、生产常用计算式及例题选集
焦炉工艺设计、生产常用计算式及例题选集1、两座不同炭化室宽度焦炉的结焦时间经验关系计算式一般结焦时间的计算方法:设计焦炉和确定焦炉加热制度时,须工艺计算和规定结焦时间与标准火道温度的关系,而对生产焦炉,可通过测定焦饼中心温度加以调整。
通常的炭化室宽度与结焦时间经验关系计算式如下:t1/t2=(B1/B2)n式中:t1、t2一不同宽度炭化室焦炉结焦时间,小时;B1、B2一不同焦炉的炭化室宽度,米;n一结焦时间延长指数,或n= 1.05~1.10 *t c/t k;t c一标准火道平均温度,℃;t k一焦饼中心温度,℃。
由试验得出,在焦炉燃烧室立火道温度1200~1400℃的情况下,n 值为 1.2~1.5。
不同宽度炭化室生产焦炉的操作经验表明,600mm宽的炭化室与450mm宽的炭化室相比,n为1.3~1.4 。
注:应用上述经验关系计算式时,不宜将顶装煤焦炉与侧装煤捣固焦炉串用(它们区别有炭化室内煤料状态不同,捣固煤饼密度,以及在结焦初期煤饼同炭化室炉墙两侧间隙的传热扩散率与顶装煤料的传热扩散率有所不同,配合入炉煤水分等因素)。
例题:当焦饼中心温度为1000℃,标准火道平均温度为1300℃时,若捣固焦炉炭化室平均宽度为500mm,结焦时间为23.50小时,则炭化室平均宽度为550mm的捣固焦炉,结焦时间应为多少小时?解:按照以上计算式为23.50/t2=(0.50/0.55)1.05 *1300/1000 =0.878t2=26.7小时设计结焦时间可取值26.5小时。
2、焦炉加热水平高度经验计算式通常情况,燃烧室高度比炭化室高度矮一些,两者顶盖之差值亦称为焦炉加热水平高度。
其值过大,焦饼上部温度低,不利于焦饼上下均匀成熟。
过小,炉顶空间温度高,影响炼焦化产品及焦炉煤气的质量和产量,也使炉顶空间易结石墨,影响推焦等。
焦炉加热水平高度可按以下经验计算式来确定:H=h+△h+(200~300)式中:H一焦炉加热水平高度,毫米;h一装煤线距炭化室顶部的距离,毫米;△h一装炉煤炼焦时产生的垂直收缩量,毫米,一般为炭化室装煤高度的5~7% 。
6米焦炉热工参数分析
6m焦炉热工参数的分析及节能措施汪洋(攀钢煤化工厂,攀枝花617022)根据国家“十一五”钢铁企业发展纲要中节能减排的要求,我厂对新1、2号焦炉的热工参数进行了测量与计算,在此基础上研究了6m焦炉的节能降耗方案,以实现符合国家节能减排要求的焦炉最佳经济运行模式。
1 物料平衡物料平衡计算中取1000kg干煤为基准。
物料平衡参数见表1。
物料平衡G入= GM+GS= 1130.58 kgG出= GJ+GV+GB+GA+GZ+GK+GS+GL= 1120.981 kg物料误差η = (G入-G出)/G入×100% = 0.85%计算误差为0.85%<5%,符合行业标准。
2 能量平衡对炼焦炉的热平衡,一般应以焦炉本体为测定体系。
热量平衡参数见表2,根据表2数据计算得出本次标定的2号焦炉的热平衡误差为1.71%<5%, 符合行业标准。
2.1 效率计算1)热效率:η热 = (Q供-Q废-Q不)Q供= 81.31%2)热工效率::η热工 = (Q供-Q废-Q损-Q散)Q供=68.16%3)窑炉统一效率:η统=(Q有-Q原)/(Q供-Q原)=67.82%2.2 炼焦耗热量计算1) 相当耗热量。
用湿煤炼焦,以l kg干煤为计算标准,需供给焦炉的热量:q相=Q1/1000 = 2847 kJ/kg干煤2) 湿煤耗热量。
1 kg湿煤炼成焦炭需供给焦炉的热量:q湿=q相×(100-Mt)/100 = 2518.2 kJ/kg表1 物料平衡参数表2 热量平衡参数3) 干煤耗热量。
1 kg水蒸汽出炭化室所需热量:qs1=[ (2500+2.06×755) + (2500+748×2.056)]/ 2×0.6782 = 5966.7 kJ/kg由q湿=q干×(100-Mt)/100-qs1(Mt/100)得q干=[q湿-qs1(Mt/100)]/(100-Mt)×100 = 2067.7 kJ/kg4)相当(换算)耗热量。
焦炉工艺标准计算参考总结(上)
焦炉工艺计算参考5.2 工艺计算5.2.1 炭化室的物料衡算物料平衡是根据物质不灭定律进行计算的。
炭化室的物料衡算指进入炭化室的的原料——煤为入方,炼焦的各种产品——焦炭及其他化工产品为出方进行衡算。
进行物料衡算是炼焦车间设计最基本的依据,也是确定各种设备操作负荷和经济估算的基础[16]。
(1) 物料平衡的入方物料平衡的入方包括入炉煤量,入炉煤带入的水分,以及漏入炭化室的空气量1) 入炉煤量入炉煤量指每孔炭化室的装煤量或整座焦炉每小时的装煤量。
物料平衡的计算基准是吨入煤量。
物料平衡入方的干煤量(G m )按下式计算:G m1001000100W-=⨯,kg/t (5.1) 式中:1000——物料平衡计算的基准数; W ——入炉煤的水含量,%。
由于本次设计采用的是捣固焦炉,捣固炼焦工艺为了使配合煤能够顺利捣成煤饼,一般取水含量为9%~11%,本次设计取入炉煤中水分含量为10%。
入炉煤带入的水量(G s )按下式计算:G s =1000100W⨯,kg/t ; 根据以上公式可得:G m= 1000101000900100-⨯= kg/t G s =101000100⨯=100 kg/t 1) 吸入炭化室的空气量当集气管压力保持正常数值时,在整个结焦过程中,炭化室内均为正压,所以空气及燃烧系统产生的废气不容易漏入炭化室中。
在物料平衡计算中可以不予考虑。
(2) 物料平衡的出方1) 全焦量(G J )全焦量指包括粉焦在内的不同粒度焦炭的总和,其计算式如下:J G =10010001000100100100ar dJ ar J K W A K --=⨯,kg/t (5.2) 式中:ar J K ——入炉煤收到基全焦率,% d J K ——入炉煤干燥基全焦率,%d J K 用数理统计的方法得出的计算式如下:d J K =103.19―0.75V d ―0.0067Jt ,% (5.3)d V ——入炉煤的干基挥发分,%;与配合煤的干基挥发分相同。
焦炉设计计算要点
焦炉设计计算要点1 依据在方案论证中必须指出设计依据。
设计依据分二种情况:钢铁联合企业焦炉多为复热式焦炉,设计计算以高炉煤气加热为主。
独立焦化厂焦炉以单热式焦炉为主,设计计算以焦炉煤气加热为主。
并注意设计计算均以焦侧为主。
2 主要公式2.1 炉孔数和炉组的最后确定(1)焦炉的生产能力与炉孔数计算总炉孔数N=100G 365240.95kVτρ⨯⨯⨯⨯⨯⨯⨯式中 N--总炉孔数目,个;G——干全焦的年产量,万吨/年;V--炭化室有效容积,m3/孔;ρ-—堆煤密度,t/m3;K-—全焦率,%;ϕ--考虑到炭化室检修时的减产系数,0.95;τ-—焦炉周转时间,h。
注意焦炉周转时间是受多个因素影响的复杂因素,必须作充分论证讨论.单孔装煤量G=ρ·V t/孔.设计好总炉孔数后,必须再复算焦炉的实际生产能力M,万吨全焦/年。
(2)机械装备水平2.2蓄热室计算2。
2。
1流量分配比的确定在焦炉设计中这部分内容是最重要的,该部分计算有错误的话,下面内容将要全部反攻重算.高炉煤气与焦炉煤气加热计算有所不同。
(1)机、焦侧气流流量分配比(即耗热比)LBV V Q Q ==机焦机焦 造成机、焦侧流量不同一般有三个主要原因: ①锥度方向引起的装煤量不同.②装煤量不同,但机焦侧焦饼要同时成熟,故焦侧焦饼温度比机侧温度要高15~20℃③废气热损失,焦侧比机侧大,故焦侧耗热量比机侧要大.按经验值,后两个原因造成的差比为1.05~1。
06倍,当炭化室锥度为50mm 时,气流比:1.1141.0624755002525500=⨯++==机侧气体流量焦侧气体流量n (注意各人设计炭化室宽度是不同,因而必须自己计算.)(2)蓄热室废气流量分配比:为了使空气蓄热室和高炉煤气蓄热室的废气排出温度接近。
则进入空气蓄热室和煤气蓄热室的气体流量应有一定的分配比,这样才可充分利用蓄热室的面积。
0.414(1.1571080 1.35290) 1.2580.350(1.4281080 1.34490)()==-⨯-⨯===⨯-⨯-m V c t c t V c t c t 蓄煤焦煤出煤出煤进煤进蓄空焦空出空出空进空进进煤气蓄热室的废气量煤气经蓄热室预热所需的热量进空气蓄热室的废气量空气经蓄热室预热所需的热量()式中 V 煤焦蓄——焦侧煤气蓄热室煤气流量,m 3/s ; V 空焦蓄——焦侧空气蓄热室空气流量,m 3/s;c 煤进、c 煤出——为进、出口煤气蓄热室的煤气比热容,KJ/(Kg ·℃); t 煤进、t 煤出——相应的温度,℃;c 空进、c 空出——为进、出口空气蓄热室的空气比热容,KJ/(Kg ·℃); t 空进、t 空出——相应的温度,℃;现假设t 煤出=t 空出=1080℃, t 煤进=t 空进=90℃.注意:工学士必须掌握试插法.这从假设t 煤出=t 空出=1080℃, t 煤进=t 空进=90℃开始查得:c 煤进、c 煤出、c 空进、c 空出,再通过蓄热室热平衡计算出t 空进、t 空出温度,看假设是否合理,若不合理必须从头开始再假设计算。
焦炉小孔的计算依据
一、计算依据:1、横管压力一般在800Pa,横管两端压差小于20Pa,所以横管内各点压力近似看作相同。
2、煤气进入各火道的阻力主要集中在小孔板上,小孔板阻力占总阻力的90%。
3、各火道所需的煤气量与碳化室宽度的平方成正比,即各火道所需的煤气量与孔板孔洞的面积成正比,即孔板直径与碳化室的宽成正比。
4、炉头火道因散热等因素所需煤气量与该侧火道所需煤气量的1.5倍,第二火道为1.2倍.二、计算方法:碳化室平均宽度450mm,锥度50mm,立火道28个,则第3火道碳化室宽429.64mm,第26火道碳化室宽470.36mm,该两个火道碳化室宽度比470.36/429.64=1.097。
当第3火道孔板直径是9.2mm时,第26火道孔板直径是9.2×1.097=10.09mm。
用坐标纸以此二火道孔板直径划直线得各火道孔板直径。
第1火道孔板直径等于机侧平均直径乘以1.5的平方根,第2火道孔板直径等于机侧平均直径乘以1.5的平方根;焦侧27、28立火道计算类似。
但是我不知道第3火道孔板直径是9.2mm是怎样确定出来的?请各位好友指教!当焦炉煤气流量为:500m 3、1500 m 3、25000 m 3,压力为10000pa 时,以3#焦炉为例计算其小孔板的排列:已知条件:碳化室平均宽度450mm ,锥度50mm ,立火道28个,则第3火道碳化室宽429.64mm ,第26火道碳化室宽470.36mm ,由于用焦炉煤气加热,则主管的压力可以取1200pa 。
下喷式焦炉的焦炉煤气从横管经小支管、小孔板、立管进入砖煤气道,横管内气体的流动服从变量气流基本公式:()2o l +l =p +222733T p D λωρ⎡⎤-⎢⎥⎢⎥⎣⎦分机机始机 ,pa (1)()2o l +l =p +222733T p D λωρ⎡⎤-⎢⎥⎢⎥⎣⎦焦分焦焦始,pa (2)式中:ωω焦机、——由支管进入横管后煤气流向焦侧和机侧的初始速度,m/sl l 焦机、——由支管入口处至焦、机侧端部的距离,mml 分——煤气进入横管后分为两股气流的阻力的当量长度,取横管直径的60倍,l 分=60D ,mm 0ρ——焦炉煤气的密度(0℃), T ——横管内煤气的温度,K为了确定生产条件下横管的摩擦系数,用式(1)和式(2)联解得()()22+l +l =p -p =2--2-227333l l T p D D λλρωω⎧⎫⎧⎫⎡⎤⎡⎤⎪⎪⎪⎪∆∙∙⎢⎥⎢⎥⎨⎬⎨⎬⎢⎥⎢⎥⎪⎪⎪⎪⎣⎦⎣⎦⎩⎭⎩⎭分机焦分焦焦横机机 (3) 式中:l l D 焦机、、对于焦炉是定值,ωω焦机、可根据流向机侧和焦侧的流量确定:2=4VD ωπ∙∑焦焦 , 2=4VD ωπ∙∑机机,m 3/s (4)(1) 一个燃烧室的煤气流量()001=n-1+20.753600V V ⨯⨯,燃,m 3/s (5) 式中:V 0——一座焦炉的加热煤气流量,m 3/h 。
焦炉设计毕业论文演讲稿
四大机车,OCC系统
4、焦炉环保
通过焦炉节能及余热回收,发展煤调湿,捣固炼焦等新技术来实现 焦炉节能与环保。
二、方案论证
本设计是将JN60型焦炉进行2×60孔设计。 该炉型的特点是双联火道,废气循环,高炉 煤气侧入的复热式焦炉。
焦炉主要尺寸 煤气加热特性 燃烧反应计算表
结论
(1)本文对2×60孔焦炉进行设计,年产130 万吨,炭化室高6m宽440mm。
(2)本文对焦炉蓄热室流量分配、热量平衡、 格子砖高度、炉体水压、烟囱高度进行计算, 计算得到格子砖高度2.214m,烟囱高度 130m。
(3)使用AutoCAD画图,高效、快捷。 (4)本设计的不足之处在未对此设计焦炉的缺
2X60孔炼焦炉的设计
设计:梁秀君 指导老师:王晓婷
设计内容
•一、文献综述 •二、方案论证 •三、焦炉工艺计算
一、文献综述
1、中国焦炉的发展
大型化、高效、节能、环保
2、焦炭质量指标
焦炭冷强度是表征常温下焦炭的抗碎能力和耐磨能力。焦炭热 强度是反映焦炭在使用环境温度和气氛下,抵抗破
总烟道
250 523
分烟道 烟筒
260
533
240
513
加热系统各部位断面积个水力直径
部位
小烟道(垂 直)
断面积, ㎡
0.181
(水 2.22 平)
篦子砖上孔 0.307
下孔 0.283
平均 0.295
格子砖(一 1.529 层计)
蓄热室顶部 空间 水平 断面
3.355
短斜道入口 0.022
断面积, 水力直
㎡
径,m
0.0176
0.0107
焦炉 荷载 计算
焦炉荷载计算摘要:一、焦炉荷载计算的重要性二、焦炉荷载计算的方法1.静荷载计算2.动荷载计算3.特殊荷载计算三、焦炉荷载计算的注意事项四、结论正文:焦炉荷载计算在焦化厂的设计和生产中具有非常重要的作用。
它不仅影响到焦炉结构的安全性,还直接关系到生产效率和产品质量。
因此,准确地计算焦炉荷载是焦化厂设计和生产的关键环节之一。
焦炉荷载计算主要包括静荷载计算、动荷载计算和特殊荷载计算三个部分。
首先是静荷载计算。
静荷载是指焦炉在生产过程中,由于自身重量、燃烧气体压力等因素产生的荷载。
这一部分的荷载计算相对简单,通常采用设计规范中的公式进行计算。
其次是动荷载计算。
动荷载是指焦炉在生产过程中,由于炉体温度变化、热胀冷缩等因素产生的荷载。
这一部分的荷载计算较为复杂,需要考虑多种因素,如温度变化、材料膨胀系数等。
通常采用数值模拟的方法进行计算。
最后是特殊荷载计算。
特殊荷载是指焦炉在生产过程中,由于突发事件(如地震、火灾等)产生的荷载。
这一部分的荷载计算需要根据实际情况进行,通常采用工程类比法或地震反应谱法进行计算。
在焦炉荷载计算过程中,还需要注意以下几点:1.正确选择计算方法。
不同的荷载类型需要采用不同的计算方法,选择正确的计算方法是保证计算结果准确性的前提。
2.充分考虑各种因素。
焦炉荷载计算需要综合考虑多种因素,如材料性能、生产工艺、环境条件等。
只有充分考虑这些因素,才能保证计算结果的准确性。
3.注意计算精度。
焦炉荷载计算是一个复杂的过程,计算结果可能会受到多种因素的影响。
因此,在计算过程中,应注意控制计算精度,确保计算结果的可靠性。
总之,焦炉荷载计算是焦化厂设计和生产的重要环节。
年产100万吨6m焦炉炉体设计
设计任务书(一)设计参数(1)生产能力:年产焦炭100万吨。
(2)焦炉炉体的主要尺寸及技术指标(冷态尺寸)见下表:(4)撰写毕业设计说明书、绘制相关工艺图纸4张。
要求:至少有一张徒手绘制或用计算机(Auto CAD)绘制的图纸。
摘要焦炉炉体主要由炭化室、燃烧室、斜道区、蓄热室和炉顶区组成,蓄热室以下为烟道与基础。
焦炉结构的发展大致经过四个阶段,即土法炼焦、倒焰式焦炉、废热式焦炉和近代的蓄热式焦炉。
本设计为JN-60型焦炉,是目前普遍采用的一种大型焦炉。
此焦炉为双集气管、单吸气管,双联火道,废气循环,焦炉煤气下喷,高炉煤气侧入,复热式焦炉。
JN-60型焦炉的优点是耗热量低、热工效率高;炭化室内煤的堆积密度较大,高向加热均匀;基建投资省、劳动生产率高占地面积少、维修费用低。
设计中进行炉体相关计算,包括:燃烧室静力强度、蓄热室热量衡算、斜道阻力计算等,绘制了四张图纸包括炼焦车间平面布置图、6m焦炉纵剖视图、焦炉加热系统图、燃烧室剖面图。
关键字:JN-60型焦炉,炉体设计,热量衡算,煤气AbstractThe coke oven furnace body consists of the carbonization room, the combustion chamber, the ramp room, the regenerator and the furnace top area. The flue and foundation are under the regenerator. The development of coke structure has undergone four stages, namely, indigenous coke, down-draft type oven, heat-type oven and modern regenerative coke oven.The design adopts JN-60 compound coke oven, a large coke commonly used at present, which has the double collecting pipe, the single suction trachea, the twin quirk, the recycling of waste gas, the coke gas downward spurting and the blast furnace coal gas leaning into. JN-60-type coke oven has the advantage of low heat consumption, heat rate ergonomics; large charcoal interior packing density, the high uniformity of the heat; the low infrastructure investment, the high labor productivity. an the low maintenance costs and area covers .The related computation of furnace body design includes: combustion chamber static rating, heat balance calculation for the regenerator, ramp drag calculation, ect. And four drawings includes: coking workshop floor-plan, 6m coke oven vertical cutaway view, coke oven heating diagram, combustion chamber sectional drawingKey words: JN-60 coke oven, Furnace body design, Heat balance calculation,Coke oven gas前言炼焦炉是将煤料炼制成焦炭的大型工业炉组,由于炼焦生产能力和劳动生产率的不断提高和化学产品的回收利用,使炼焦炉的炉型得到逐步改进。
焦炉 荷载 计算
焦炉荷载计算摘要:1.焦炉荷载计算的背景和意义2.焦炉荷载的定义和分类3.焦炉荷载计算的方法和步骤4.焦炉荷载计算的实际应用和影响5.结论和展望正文:一、焦炉荷载计算的背景和意义焦炉是冶金行业的重要设备之一,其主要作用是将煤炭转化为焦炭。
在焦炉的生产过程中,由于高温、高压和化学反应等因素的影响,焦炉本身会产生一定的荷载。
焦炉荷载计算就是通过科学合理的方法,计算出焦炉在生产过程中所承受的各种荷载,以便于对焦炉进行安全评估和结构优化。
二、焦炉荷载的定义和分类焦炉荷载是指在焦炉生产过程中,由于各种因素作用在焦炉上的力和力矩的总和。
根据荷载的性质和作用方式,焦炉荷载可以分为静态荷载和动态荷载两类。
静态荷载主要包括焦炉自重、炉料重量、炉壁厚度等,是在焦炉生产过程中始终存在的荷载。
动态荷载则主要包括炉料装卸、推焦车运动等过程中产生的荷载,是在焦炉生产过程中不断变化的荷载。
三、焦炉荷载计算的方法和步骤计算焦炉荷载的方法主要有静力平衡法、动力学法和有限元法等。
这些方法各有优缺点,适用于不同的计算场景。
静力平衡法是一种传统的计算方法,主要是通过建立焦炉的力学模型,利用静力平衡原理计算焦炉荷载。
这种方法简单易行,但适用范围有限。
动力学法则是通过计算焦炉在动态过程中的力和力矩,来计算焦炉荷载。
这种方法考虑了焦炉的动态特性,但计算过程较为复杂。
有限元法则是一种现代的计算方法,主要是通过将焦炉划分为多个有限元,计算每个有限元上的力和力矩,从而得到焦炉荷载。
这种方法计算精度高,适用范围广,但计算过程较为复杂。
四、焦炉荷载计算的实际应用和影响焦炉荷载计算的实际应用主要是为了保证焦炉的安全生产。
通过计算焦炉荷载,可以了解焦炉在生产过程中所承受的各种力和力矩,从而对焦炉进行安全评估和结构优化。
此外,焦炉荷载计算还可以为焦炉的设计和制造提供参考。
通过计算焦炉荷载,可以了解焦炉在生产过程中所承受的各种力和力矩,从而为焦炉的设计和制造提供科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焦炉设计计算要点1 依据在方案论证中必须指出设计依据。
设计依据分二种情况:钢铁联合企业焦炉多为复热式焦炉,设计计算以高炉煤气加热为主。
独立焦化厂焦炉以单热式焦炉为主,设计计算以焦炉煤气加热为主。
并注意设计计算均以焦侧为主。
2 主要公式2.1 炉孔数和炉组的最后确定(1)焦炉的生产能力与炉孔数计算总炉孔数N=100G 365240.95kVτρ⨯⨯⨯⨯⨯⨯⨯式中 N——总炉孔数目,个;G——干全焦的年产量,万吨/年;V——炭化室有效容积,m3/孔;ρ——堆煤密度,t/m3;K——全焦率,%;ϕ——考虑到炭化室检修时的减产系数,0.95;τ——焦炉周转时间,h。
注意焦炉周转时间是受多个因素影响的复杂因素,必须作充分论证讨论。
单孔装煤量G=ρ·V t/孔。
设计好总炉孔数后,必须再复算焦炉的实际生产能力M,万吨全焦/年。
(2)机械装备水平焦炉配套机械推焦车装煤车熄焦车拦焦车生产用备用2.2蓄热室计算2.2.1流量分配比的确定在焦炉设计中这部分内容是最重要的,该部分计算有错误的话,下面内容将要全部反攻重算。
高炉煤气与焦炉煤气加热计算有所不同。
(1)机、焦侧气流流量分配比(即耗热比)LBV V Q Q ==机焦机焦 造成机、焦侧流量不同一般有三个主要原因: ①锥度方向引起的装煤量不同.②装煤量不同,但机焦侧焦饼要同时成熟,故焦侧焦饼温度比机侧温度要高15~20℃③废气热损失,焦侧比机侧大,故焦侧耗热量比机侧要大。
按经验值,后两个原因造成的差比为1.05~1.06倍,当炭化室锥度为50mm 时,气流比:1.1141.0624755002525500=⨯++==机侧气体流量焦侧气体流量n (注意各人设计炭化室宽度是不同,因而必须自己计算。
)(2)蓄热室废气流量分配比:为了使空气蓄热室和高炉煤气蓄热室的废气排出温度接近。
则进入空气蓄热室和煤气蓄热室的气体流量应有一定的分配比,这样才可充分利用蓄热室的面积。
0.414(1.1571080 1.35290) 1.2580.350(1.4281080 1.34490)()==-⨯-⨯===⨯-⨯-m V c t c t V c t c t 蓄煤焦煤出煤出煤进煤进蓄空焦空出空出空进空进进煤气蓄热室的废气量煤气经蓄热室预热所需的热量进空气蓄热室的废气量空气经蓄热室预热所需的热量()式中 V 煤焦蓄——焦侧煤气蓄热室煤气流量,m 3/s ; V 空焦蓄——焦侧空气蓄热室空气流量,m 3/s ;c 煤进、c 煤出——为进、出口煤气蓄热室的煤气比热容,KJ/(Kg ·℃); t 煤进、t 煤出——相应的温度,℃;c 空进、c 空出——为进、出口空气蓄热室的空气比热容,KJ/(Kg ·℃); t 空进、t 空出——相应的温度,℃;现假设t 煤出=t 空出=1080℃, t 煤进=t 空进=90℃。
注意:工学士必须掌握试插法。
这从假设t 煤出=t 空出=1080℃, t 煤进=t 空进=90℃开始查得:c 煤进、c 煤出、c 空进、c 空出,再通过蓄热室热平衡计算出t 空进、t 空出温度,看假设是否合理,若不合理必须从头开始再假设计算。
公式中V 煤焦蓄 、V 空焦蓄流量也同样由下面公式计算才能知道。
2.2.2气流流量计算下面是举例数据,该部分计算数据必须按自己设计参数进行计算,热量单位、压力单位必须用国际单位制,否则作为一个大错误:1 Kcal=4.1868 KJ1mmH 2O=9.8P a ≈10.0Pa (1)每个燃烧室所需流量:①干、湿高炉煤气量:335.7304810001352/20.53927G q V m h Q τ⨯⨯⨯===⨯⨯燃耗干高低干煤气式中 G ——炭化室单孔装煤量,35.7t/孔;3048——每千克干煤耗热量,为设计定额查设计手册所得,配煤水份10.0%;Q 低——高炉煤气低位发热量为3927KJ/m 3; τ——周转时间,设计为20.5小时。
3135213521413/1 4.360.9564V m h ===-燃湿高湿煤气﹪式中 4.36﹪——煤气饱和温度为30℃时的1m 3煤气含水百分量;②空气量:3V L 13520.88391195/V m h =⨯=⨯=燃燃空空干高湿空气式中 0.8839——α=1.25时,1m 3干高炉煤气燃烧所需的湿空气量,查燃烧反应表可得,m 3;③废气量:3V 1352 1.782407m /h V V =⨯=⨯=燃燃废废干高废气式中 1.78——α=1.25时,1m 3干高炉煤气燃烧所产生的湿废气量,m 3。
查燃烧反应表可得,m 3。
(2)煤气和空气蓄热室流量分配: ①机、焦侧空气蓄热室空气流量:3V 2211952390m /V h =⨯=⨯=蓄燃空空湿空气②机、焦侧煤气蓄热室煤气流量:3V 2V 214132826m /V h =⨯=⨯=蓄燃燃煤煤湿高(即)湿煤气式中 ⨯2为每一个蓄热室空气、煤气流量要相应供给两个燃烧室用③焦侧空气蓄热室空气流量:3332390 1.1141V V 0.350/sec 20.99/min 1259.4/13600(1 1.114)3600⨯=⨯=⨯===+⨯+n m m m h n 蓄蓄空焦空 ④焦侧煤气蓄热室煤气流量:333n 2826 1.1141V 0.414/sec 24.82/min 1489.2/13600(1 1.114)3600⨯=⨯=⨯===++V m m m h n 蓄蓄煤焦煤⑤焦侧空气蓄热室废气流量:n 11 1.114112V 240721136001 1.1141 1.2583600V n m =⨯⨯⨯⨯=⨯⨯⨯⨯++++废燃空焦废3330.312/sec 18.72/min 1123/m m m h ===⑥焦侧煤气蓄热室废气流量:n 1 1.114 1.2581V 224072113600 1.1141 1.25813600m V n m =⨯⨯⨯⨯=⨯⨯⨯⨯++++废燃煤焦废3330.393/sec 23.56/min 1413/m m m h ===2.2.3焦侧煤气蓄热室热平衡由于焦侧的蓄热室要比机侧大,设计时应考虑到实际生产状况,用比较大的值进行设计,以备生产余地。
(1)带入热量Q 入: ①废气带入热量:Q 1 ②高炉煤气带入热量:Q 2所以,Q 入=Q 1+Q 2=50199+3020=53219KJ/min 。
(2)带出热量Q 出: ①废气带出热量:Q 1’②蓄热室封墙辐射和对流损失为总热量的1.5%计:Q 2’③高炉煤气预热后带出热量:Q 3’=V 蓄煤焦×c ×t 预由上热平衡可计算出t 预,第一次试插法才算完成。
2.2.4格子砖蓄热面及水力直径计算(1)一块格子砖的蓄热面大容积焦炉格子砖目前用得多有二种:149#格子砖为12孔,150#格子砖为9孔,尺寸必须查图。
①两端的外侧及内侧。
(0.148+4×0.005+2×0.007+4×0.015)×2×0.121+4×0.014×0.025 =0.242×2×0.121+0.0014=0.06m 2 ②两旁 0.369×0.096×2=0.0708 m 2③内部 [0.112×24×0.096+0.015×(24-8)×0.0963]=0.281 m 2 ④顶部及底面 [0.369×(0.148-0.014)-12×0.112×0.015]×2=0.0584 m 2 149#格子砖总蓄热面积(12孔):0.06+0.0708+0.281+0.0584=0.4702m 2150#格子砖总蓄热面积(9孔):0.0491+0.0708+0.211+0.0466=0.3775 m2(2)一块格子砖空隙面积149#:(0.104+2×0.007)×0.005×2+0.369×2×0.007+0.112×0.015×12=0.00118+0.00516+0.0202=0.02654m2150#:0.02144 m2(3)一块格子砖的周界长149#:(0.148+0.005×4+0.007×2+0.369)×2+(0.112+0.015)×24=1.102+3.05=4.152 m150#:3.328m(4)焦侧蓄热室一层格子砖总蓄热面积①一层格子砖②蓄热室墙(5)焦侧蓄热室一层格子砖总空隙面积(6)焦侧蓄热室一层格子砖总周边长(7)格子砖的水力直径d水=4×总空隙面积/总周边长2.2.5蓄热室对数平均温度计算2.2.6蓄热室总转热系数K的计算2.2.6.1加热时期的传热系数(1)对流传热系数:(下降气流)①蓄热室上部:②蓄热室中部:③蓄热室下部:(2)辐射给热系数①蓄热室上部注意:原公式和图表单位为Kcal/(m2·h·℃),因而两种单位均计算,最后转化为国际单位制KJ/(m2.h.℃)。
②蓄热室中部③蓄热室下部(3)加热期的总转热系数上部:α上加=0.75×(α上对+α上辐),KJ/(m2.h.℃)中部:α中加=0.75×(α中对+α中辐),KJ/(m2·h·℃)下部:α下加=0.75×(α下对+α下辐),KJ/(m2·h·℃)式中 0.75为校正系数,反映了气体通过蓄热室时分布的不均匀程度。
2.2.6.2 冷却时期的传热系数: (1)对流传热系数(上升气流) ① 蓄热室上部: ② 蓄热室中部: ③ 蓄热室下部: (2)辐射给热系数 ① 蓄热室上部: ② 蓄热室中部: ③ 蓄热室下部:(3)冷却时期的总传热系数上部:ααα''=⨯上上上对冷辐(+)0.75 中部:ααα''=⨯中中中对冷辐(+)0.75 下部:ααα''=⨯下下下对冷辐(+)0.75,KJ/(m 2·h ·℃) 2.2.6.3 蓄热室总传热系数K 的计算根据:α上加与α上冷数值可查附录十七得:K p 上 α中加与α中冷数值可查附录十七得:K p 中 α下加与α下冷数值可查附录十七得:K p 下 1K (2K K )4p P P P K =++上中下,KJ/(m 2·周期·℃) 2.2.7格子砖高度计算(1)换热面积: tK QF p ∆=(2)格子砖层数:n (3)格子砖高度:2.3 焦炉炉体水压计算 2.3.1 已知条件(1)加热系统各部位的温度表 (2)焦炉各部位的空气过剩系数表(3)换算成标准条件下的气体密度湿高炉煤气密度: 湿空气密度: 湿废气密度:(4)加热系统各部位断面积和水力直径见表2.3.2 炉内各部位阻力计算炉内各部位阻力计算通式有: ∑△P=△P 摩+△P 扩+△P 缩+△P 局2L H P 2273o o w Tρλ⋅∆=⨯⨯摩()d (当变量气流时×1/3,由变量公式推导出)2o w m 273TP ρ⋅∆=⨯⨯2o 扩(1-)2;F F K =2小扩大(1-),m F F =小大2P 0.5m 273⋅∆=⨯⨯⨯2o o 缩w (1-)2T ρ;2F 10.5F K ⎡⎤⎛⎫⎢⎥=-⨯ ⎪ ⎪⎢⎥⎝⎭⎣⎦小缩大,m F F =小大 2o P K 2273o w Tρ⋅∆=⨯⨯局式中 局部阻力系数K 值查附表(严文福调节与节能书)。