常微分方程的基本概念PPT课件

合集下载

常微分方程基本概念PPT讲稿

常微分方程基本概念PPT讲稿

的解.
y + 2y + y = 0
解 求 y = 3e – x – xe – x 的导数, 得
y = - 4e – x + xe - x, y = 5e – x - xe - x,
将 y,y 及 y 代入原方程的左边,有 (5e – x - xe - x) + 2(- 4e – x + xe - x) + 3e – x – xe – x = 0, 即函数 y = 3e – x – xe – x 满足原方程,所以该函数是 所给二阶微分方程的解.
语言. 2020/8/21
2
一、微分方程
定义 1 凡含有未知函数导数 (或微分) 的方程, 称为微分方程,有 时 简 称 为 方 程 , 未 知 函 数 是 一 元 函数的微分方程称做常微分方程,未 知 函 数 是 多 元 函数的微分方程称做偏微分方程. 本教材仅讨论常微 分方程,并简称为微分方程.
2020/8/21
4
二、微分方程的解
定义 2 任何代入微分方程后使其成为恒等式的 函数,都叫做该方程的解. 若微分方程的解中含有 任意常数的个数与方程的阶数相同,且 任 意 常 数 之 间不能合并,则称此解为该方程的通解(或一般解). 当通解中的各任意常数都取特定值时所得到的解,称 为方程的特解.
2020/8/21
7
例 2 验证方程 y 2 y 的通解为 y = Cx2 (C 为
x
任意常数),并求满足初始条件 y|x = 1 = 2 的特解.
解 由 y = Cx2 得 y = 2Cx,
将 y 及 y 代入原方程的左、右两边,左边有 y= 2Cx,
而右边 2 y 2Cx, 所以函数 y = Cx2 满足原方程.

常微分方程的一般概念.ppt

常微分方程的一般概念.ppt

条件为:
1 dP k P dt P t 0(1790 年 ) P0
20
从而得出人口按指数规律增加:
P P0e kt
评价 l相对增长率等于常数这一假设只在一
个较短的时间间隔对问题的模拟较好;
l按指数模型,人口将无限增长下去, 但这是不可能的。
21
2. Logistic 模型(人口增长模型 )
32
Ž C 0 情况,对应
R 2GM0 , R
设初:条 t0件 时 R0,
通过解这个一阶方程, 得
2R2 3 3
2GM 0 tC,
再利用初条件, R3 得 92G到M 0t2
33
这个公式被称为“扁平宇宙模型” (flat universe model) , 试问此 模型就宇宙膨胀可以给出什么预言?
二、近代以来交通、通讯工具的进步对人们社会生活的影 响
(1)交通工具和交通事业的发展,不仅推动各地经济文化交 流和发展,而且也促进信息的传播,开阔人们的视野,加快 生活的节奏,对人们的社会生活产生了深刻影响。
(2)通讯工具的变迁和电讯事业的发展,使信息的传递变得 快捷简便,深刻地改变着人们的思想观念,影响着人们的社 会生活。
请见以下各种微分方程:
(1) dy f(x) dx
(2) dd22 xtad dx tbx0
11
(3) m d d22 ythyd d y tk yF (t) ( 4 )y P (x )y Q (x ) (5 ) xd ys xixnd 0y
( 6 )x 3 y x 2 y 4 x y 3 x 2 (7 ) (y)2 4 y 3 x 0
dt
k
分离变量并积分
rdt
dx
x(1

《常微分方程》全套课件(完整版)

《常微分方程》全套课件(完整版)
捕捉到这种联系,而这种联系,用数学语言表达出来,其结 果往往形成一个微分方程.一旦求出这个方程的解,其运动规 律将一目了然.下面的例子,将会使你看到微分方程是表达自 然规律的一种最为自然的数学语言.
例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,

常微分方程的基本概念课件

常微分方程的基本概念课件

微分方程的解
总结词
求解常微分方程是数学中的一个重要问题。
详细描述
求解常微分方程是数学中的一个重要问题,也是应用领 域中经常遇到的问题。求解常微分方程的方法有多种, 包括分离变量法、变量代换法、积分因子法、常数变易 法等。对于一些特殊类型的常微分方程,如线性微分方 程、一阶常系数线性微分方程等,有特定的解法。此外, 数值解法也是求解常微分方程的一种常用方法,如欧拉 法、龙格-库塔法等。
线性微分方程的解法
总结词
详细描述
欧拉方法
总结词
详细描述
CATALOGUE
常微分方程的应用
物理问题
01
自由落体运动
02 弹性碰撞
03 电路分析
生物问题
种群增长模型
传染病传播模型
神经网络模型
经济问题
供需关系
股票价格动态 经济周期模型
CATALOGUE常微分源自程的数值解法欧拉方法总结词 详细描述
CATALOGUE
常微分方程的解法
分离变量法
总结词
详细描述
变量代换法
总结词
通过引入新的变量来代换原方程中的未知函数,从而将复杂的问题转化为简单的 问题,便于求解。
详细描述
变量代换法是一种常用的求解常微分方程的方法。通过引入新的变量来代换原方 程中的未知函数,我们可以将复杂的问题转化为简单的问题,便于求解。这种方 法适用于具有特定形式的一阶或高阶常微分方程。
龙格-库塔方法
总结词
详细描述
龙格-库塔方法的基本思想是用一系列 的折线来逼近微分方程的解。在每一 步,它首先计算出折线的斜率,然后 用这个斜率来更新折线的位置。
改进的龙格-库塔方法
总结词
改进的龙格-库塔方法是对标准龙格-库塔 方法的改进,它在每一步都使用更高阶 的插值多项式来逼近微分方程的解。

常微分方程基本概念

常微分方程基本概念
其中c1,, cn为相互独立的任常数 .
注1:称函数y (x, c1,, cn )含有n个独立常数,是指
存在(x, c1,, cn )的某一邻域,使得行列式
c1
(, ',, (n1) )
(c1, c2 ,, cn )
'
c1
(n1)
c1
c2
cn
'
c2
'
cn 0
(n1) (n1)
为了从通解中得到合乎要求的特解,必须根据实 际问题给微分方程附加一定的条件,称为定解条件.
求满足定解条件的求解问题称为定解问题.
常见的定解条件是初始条件,n阶微分方程的初
始条件是指如下的n个条件:
当x
x 0时,
y
y0 ,
dy dx
y (1) 0
,,
d (n1) y dxn1
y (n1) 0
这里x0 , y0 , y0(1) ,, y0(n1)是给定的 n 1个常数.
定义6 在通解中给任意常数以确定的值而得到的解 称ቤተ መጻሕፍቲ ባይዱ方程的特解.
例如 y sinx, y cosx都是方程 y" y 0的特解. 可在通解y c1sinx c2cosx中分别取 c1 1, c2 0,得到 : y sinx,
c1 0, c2 1,得到 : y cosx.
3 定解条件
tx
dx dt
3
x
0;
d4x d2x (4) dt4 5 dt2 3x sin t;
都是常微分方程
2.偏微分方程 如果在一个微分方程中,自变量的个数为两个或两 个以上,称为偏微分方程.
如 (5) z z z ;
x y

常微分方程 ppt课件

常微分方程  ppt课件

量,x是未知函数,是未知函数对t导数. 现
在,我们还不会求解方程(1.1),但是,如果
考虑k=0的情形,即自由落体运动,此时方程
(1.1)可化为
d2x dt 2

g
(1.2)
将上式对t积分两次得
x(mt)xk12xgt2mgc1t c2
(1.3) (1.1)
ppt课件
11
一般说来,微分方程就是联系自变量、 未知函数以及未知函数的某些导数之间的关 系式. 如果其中的未知函数只是一个自变量 的函数,则称为常微分方程;如果未知函数 是两个或两个以上自变量的函数,并且在方 程中出现偏导数,则称为偏微分方程. 本书 所介绍的都是常微分方程,有时就简称微分 方程或方程.
这样,从定义1.1可以直接验证:
F(x, y, y) 0
(1.8)
如果在(1.8)中能将 y 解出,则得到方程
y f (x, y)
(1.9)

M (x, y)dx N(x, y)dy 0
(1.10)
(1.8)称为一阶隐式方程,(1.9)称为一阶显式方程,(1.10)称为微 分形式的一阶方程.
ppt课件
14
n 阶隐式方程的一般形式为
常微分方程
ppt课件
1
常微分方程课程简介
常微分方程是研究自然科学和社会科学中的事物、 物体和现象运动、演化和变化规律的最为基本的数 学理论和方法。物理、化学、生物、工程、航空航 天、医学、经济和金融领域中的许多原理和规律都 可以描述成适当的常微分方程,如牛顿运动定律、 万有引力定律、机械能守恒定律,能量守恒定律、 人口发展规律、生态种群竞争、疾病传染、遗
ppt课件
2
传基因变异、股票的涨伏趋势、利率的 浮动、市场均衡价格的变化等,对这些 规律的描述、认识和分析就归结为对相 应的常微分方程描述的数学模型的研究.

常微分方程ppt (20)

常微分方程ppt (20)

2u 2u 2u 2 2 0. 2 x y z
注:我们不特别声明,就称常微分方程为微分方程或方程。 方程的阶数:一个微分方程中,未知函数最高阶导数的阶数, 称为方程的阶数。 一般的n阶微分方程的形式为:
dy dny F ( x, y. ,, n )=0. dx dx
dy dny dny F 其中: ( x, y. ,, n )=0 是变量 x, y, , n 的已知函数。 dx dx dx
用maple 7解双摆的运动微分方程
2 2 ( t ) 10 ( t ) 20 ( t ) t
2
2 2 ( t ) 20 ( t ) 20 ( t ) t
2
用maple 7编写的双摆的动态演示图
如果一个微分方程关于未知函数及其各阶导数都是线性的, 则称它为线性微分方程,否则称之为非线性微分方程。
x x2 sin t 是二阶非线性微分方程。 例如: 解和隐式解:设 y ( x) 是定义在区间 ( a, b) 上的 n
阶可微函数,将其代入方程
后,能使它变成恒等式, 则称函数 y ( x) 为方程的解。 若关系式 程解称
0
( n 1) , , c2
则称 y ( x, c1 ,, cn ) 含有n个相互独立的常数。
y 例: c1 cos x c2 sin x 是 y y 0 的通解。 因为 y c1 sin x c2 cos x 而
cos x sin x 1 0 sin x cos x
用Maple7编写的单摆模型的动态示意图
当单摆随时间而摆动时,我们可以看到,摆线在逐渐变短,同时摆的幅 度越来越大 !
1.1.2 微分方程的基本概念

经济数学基础微积分课件 常微分方程

经济数学基础微积分课件 常微分方程

例2 验证函数 y e x e x 是不是方程
y 2 y y 0的解.
解 求 y e x e x 的导数,得 y e x e x , y e x e x
将y、y及y 代入原方程的左边,有
e x e x 2e x 2e x e x e x 0 即函数 y e x e x 不满足原方程,
前页 后页 结束
M1(x) N1(x)
d
x
N2(y) M 2( y)
d
y
0
将(9.2.3)式两边积分后,
(9.2.3)
M1(x) N1(x)
d
x
N2(y) M 2( y)
d
y
C
(C为任意常数)
可验证,此结果即用隐式给出的方程(9.2.3)的通解.
约定:
在微分方程这一章中不定积分式表示被积函数的一
y e p(x)d x q(x)e p(x)d x d x C
即为所求(9.3.1)的通解.
前页 后页 结束
例1 求微分方程 dy 2xy 2xe x2 的通解. dx
解 p(x) 2x, q(x) 2xex2
代入公式
y e2xd x 2xex2 e2xd x d x C
常微分方程
9.1 常微分方程的基本概念 9.2 可分离变量的微分方程 9.3 一阶微分方程与可降阶
的高阶微分方程 9.4 二阶常系数微分方程 9.5 常微分方程的应用举例
结束
9.1 常微分方程的基本概念
定义一 含有未知函数的导数(或微分)的方程称为 微分方程。
常微分方程:未知函数是一元函数的微分方程 偏微分方程:未知函数是多元函数的微分方程 定义二 在微分方程中,所出现的未知函数的最高阶

常微分方程基本概念

常微分方程基本概念
常微分方程基本概念
目录
• 常微分方程的定义与分类 • 常微分方程的解法 • 常微分方程的应用 • 常微分方程的数值解法 • 常微分方程的稳定性 • 常微分方程的近似解法
01 常微分方程的定义与分类
定义
定义1
常微分方程是包含一个或多个未知函数的导 数的方程。
定义2
常微分方程是描述一个或多个未知函数随时间变化 的数学模型。
非线性系统的稳定性
01
非线性系统的稳定性是指系统在受到扰动后,能否 保持在一定的平衡状态。
02
非线性系统的稳定性可以通过分析系统的动态行为 来判断。
03
非线性系统的稳定性判据包括:局部稳定性和全局 稳定性。
稳定性判据
劳斯-霍尔维茨判据
用于判断线性时不变系统的稳定性,通过 计算系统的极点和零点来确定系统的稳定
参数法适用于一些难以直接求解的常微分 方程,通过引入参数,对方程进行变形, 使其转化为可求解的形式。这种方法在求 解某些特殊类型的常微分方程时非常有效 。
积分因子法
总结词
积分因子法是一种通过引入积分因子来化简常微分方程的方法。
详细描述
积分因子法适用于具有特定形式的常微分方程,通过引入积分因子,将原方程转化为易于求解的形式。这种方法 在求解某些特殊类型的常微分方程时非常有效。
牛顿第二定律
01
描述物体运动规律时,常使用常微分方程来表达加速度与力和
质量的关系。
波动方程
02
在研究波动现象,如声波、光波和水波时,常微分方程用来描
述波的传播规律。
热传导方程
03
在研究热量传递和扩散时,热传导方程用来描述温度随时间和
空间的变化规律。
生物问题
种群动态

常微分方程全册ppt课件

常微分方程全册ppt课件

z z (5) z ; x y
2u 2u (6) 2 x y uz 0 . 2 x y
都是偏微分方程 注: 本课程主要研究常微分方程,同时把常微分方程简称 为微分方程或方程
微分方程的阶 定义 微分方程中出现的未知函数的最高阶导数或微分的阶数称为 微分方程的阶数.
z z (5) z ; x y
2 3
(2) xdy ydx 0 ;
d 4x d 2x (4) 5 2 3x sin t ; 4 dt dt
2u 2u (6) 2 x y uz 0 . 2 x y
常微分方程 如果在一个微分方程中,自变量的个数只有一个,则这样 的微分方程称为常微分方程
两种群竞争模型
Lorenz方程
Lorenz吸引子,蝴蝶效应
对初值的敏感性
分形(fractal)
吸引盆
总结
微分方程反映量与量之间的关系,与时间有关,是一个动态系 统 从已知的自然规律出发,考虑主要因素,构造出由自变量、未 知函数及其导数的关系史,即微分方程,从而建立数学模型 数学模型的建立有多种方式 研究微分方程的解和解结构的性质,检查是否与实际相吻合, 不断改进模型 由微分方程发现或预测新的规律和性质
如:
dy (1) 2x dx
是一阶微分方程
(2) xdy ydx 0
d 2x dx (3) tx x 0 2 dt dt
d 4x d 2x (4) 5 2 3x sin t 4 dt dt
3
是二阶微分方程
是四阶微分方程
n阶微分方程的一般形式为
此ppt下载后可自行编辑
教学课件
常微分方程

常微分方程ppt

常微分方程ppt
1.微分方程的基本概念 2.一阶常微分方程 3.二阶线性微分方程
学科背景
十七世纪末,力学、天文学、物理 学及工程技术提出大量需要寻求函数 关系的问题。在这些问题中,函数关 系不能直接写出来,而要根据具体问 题的条件和某些物理定律,首先得到 一个或几个含有未知函数的导数的关 系式,即微分方程,然后由微分方程 和某些已知条件把未知函数求出来。
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求
降落伞下落速度与时间的函数关系.
解: 根据牛顿第二定律列方程
dv m mg kv
dt
初始条件为 v t 0 0
对方程分离变量, 然后积分 :

( 此处 mg k v 0 )
利用初始条件, 得 C 1 ln ( mg )
分离变量
cot u du dx x
两端积分
ln| sinu | ln| x | C1
sinu eC1x Cຫໍສະໝຸດ (C 0)由此又得到 y x arcsinC( x) (C 0)
注意: y 0 也是原方程的一个解, 所以可以有C 0
通解
y x arcsinC( x) (C R)
[例2] dy x y dx x y
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。

常微分方程PPT课件

常微分方程PPT课件

8.1 常微分方程的基本概念

【例8-2】列车在平直线路上以20 m/s的速度行驶,当其制动时获得的加速度为 -0.4 m/s2 时,问开始制动后多长时间列车才能停住?在这段时间内列车行驶了多少路程? 解 设把列车刹车时的时刻记为t=0.设制动后t时刻列车行驶了s.显然直接求s=s(t)是困 难的,但由导数的物理意义可知d2s/dt2=-0.4 两端积分,得ds/dt=∫(-0.4)dt=-0.4t+C1 两端再积分,得s=-0.2t2+C1t+C2 其中C1,C2都是任意常数.现在需要确定C1,C2的值,根据题意知,未知函数s=s(t)满足 s0=0,v(0)=s′0=20 代入上面的两式,得C1=20,C2=0,因此s(t)=-0.2t2+20t 由于列车刹住时的速度为零,即s′(t)=-0.4t+20=0 求得t=50 s,于是列车所走的路程为s(50)=-0.2×502+20×50=500(m)
8.1 常微分方程的基本概念
上述两个实例讨论的都是已知未知函数导数(或微分)所满足的方程,求解未知函数的问 题,这就是微分方程问题.
定义8.1 含有未知函数导数或微分的方程称为微分方程.未知函数是一元函数的微 分方程称为常微分方程,简称为微分方程或方程;未知函数是多元函数的微分方程称 为偏微分方程.本书只讨论常微分方程.例8-1和例8-2中所建立的方程都是常微分方 程. 不同类型的微分方程在解法上有很大的差异.因此,在解微分方程之前必须正确识别 微分方程的类型.所谓微分方程的类型主要指方程的阶、线性与非线性、变系数与常 系数、齐次与非齐次等.
8.1 常微分方程的基本概念
例如 可以验证例8-1中,函数y=x2+C和y=x2+1都是方程dy/dx=2x的解,其中 y=x2+C是微分方程dy/dx=2x的通解,y=x2+1是微分方程dy/dx=2x的特解;例8-2 中的通解为s(t)=-0.2t2+C1t+C2,特解为s(t)=-0.2t2+20t. 在通解中说任意常数是独立的,其含义是指它们不能合并而使得任意常数的个 数减少.例如,函数y=C1sin x+C2sinx形式上有两个任意常数,但这两个常数并 不是独立的,事实上它可以写成y=(C1+C2)sinx=Csinx(其中C=C1+C2),因此 本质上它只含有一个任意常数. 显然,微分方程的通解给出了解的一般形式,若用未知函数及其各阶导数在某 个特定点的值将通解中的任意常数确定下来,就得到微分方程的特解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dx
或f(x)d xg(y)dy
2. 可化为可分离变量
3. 一阶线性方程 dyp(x)yq(x)
dx
.
11
5.2.1可分离变量的微分方程
如果一阶微分方程
dy f (x, y) dx
右端f(的 x,y)可以表x的 示函 为 g(数 x)和y的函h(数 y)的乘积 即f(x,y)g(x)h(y),则形dy如 g(x)h(y)的方程,称
问题的提出:
A.求曲线方程
例 1 一曲线通过点(1,2),且在该曲线上任一点
M(x, y)处的切线的斜率为2x,求这曲线的方程.
解 设所求曲y线 y为 (x)
dy 2x dx
y2xdx 即yx2C,
其x 中 1 时 ,y2 求C 得 1,
所求曲线方y程 x为 2 1.
B.质点自由下落
一质点在重力作用下自由下落(不计空气阻力),试求 质点下落距离S与时间t的函数关系。
注意: y 0也是原方程的一个 , 解 所以可以有 C 0
1.微分方程的基本概念 2.一阶常微分方程 3.二阶线性微分方程
学科背景
十七世纪末,力学、天文学、物理 学及工程技术提出大量需要寻求函数 关系的问题。在这些问题中,函数关 系不能直接写出来,而要根据具体问 题的条件和某些物理定律,首先得到 一个或几个含有未知函数的导数的关 系式,即微分方程,然后由微分方程 和某些已知条件把未知函数求出来。
dx
通解
yCx e.2 (CR)
14
(2) [解]
1y2 3x2ydy dx
分离变量
y dy 1 y2
dx 3x2
两端积分, 得
12 1y2 1C
2
3x
通解
1y2 1 C 3x
注意y: 2 1,即y1也是方程! 奇的异解 解
.
15

设降落伞从跳伞塔下落后所受空气阻力与速度
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求
例如 dy 4x2 ,
dx
一阶
dd22t m ddtgl 0
二阶
二阶及二阶以上的微分方程称为高阶微分方程.
定义3: ( 微分方程的解)
如果把函 y数 y(x)代入微分方程后 成使 为恒等,则 式称函y数 y(x)是微分方程的.
微分方程的通解:
n阶常微分方 的程 包含 n个独立的任意常数 且常数个数与微的 分阶 方数 程相同的解
y 即
x g(u)u
x
y
xu
dyuxdu
dx
dx
这是什麽方 可分离变
程?
量方程!
.
18
[例1]的解:
令 u y x
则dyuxdu,代入得到
dx
dx
uxduutanu dx
分离变量
cotudu dx x
两端积分
ln |siun |ln |x| C 1
siun eC 1xCx (C 0)
由此又得到 yxarc Cs )x i(C n(0)
y
x0
A,
dy dx
x00特解.
1.微分方程的通解和特解有何区别和联系? 2.判断下列函数是否是微分方程 y2y0
的解,是通解还是特解?
(1) y Ce2x (2) y Ce2x (3) y2e2x (4) y 2e2x
§5.2 一阶常微分方程 主要类型
1. 变量可分离型 dy f(x)g(y)
解:将质点的初始位置取为原点,沿质点运动方向 取正向。已知自由落体的加速度为g,即:
d2S dt2
g,
将上式改 dd(dSt写 )g成 dt,两边积dd分 St g得 tC: 1, 再积一次S分 12g得 2tC : 1tC2,其中 C1,C2为任意. 常
5.1 微分方程的基本概念
定义1: 含有未知函数的导数的方程称为微
分方程.
未知函数是一元函数,含有未知函数的导数的微
分方程称为常微分方程.
例如 dy 2x,
dx
d2S dt2
g,
注意 : 微分方程中,未知函数及自变量可以不出现,
但未知函数的导数必须出现.
未知函数是多元函数,含有未知函数的 偏导数的微分方程称为偏微分方程.
定义2: ( 微分方程的阶 )未知函数的导数的最高阶 数称为微分方程的阶.
两边积分 f(ud)得 uulnxC,
求出积,再 分用 后 y代替 u,即得原方程 . 的通解 x
.
17
[例 1] dyytany
dx x x [例2] dy xy
dx xy
dy dx
1
1
y
x y
x
这两个方程的共同特点是什麽 ?
可化为
求解方法
代入得到
dy g( y) dx x
齐次型方程
令u du dx
y f ( x, C1, , Cn )
称为微分方程的通解. 通解中各任意常数取特定值时所得到的解称为特解 .
定义5: ( 积分曲线 与积分曲线族)
积分曲线族
通解y f (x,C)对应于 xy平面上的一族曲线, 称为积分曲线族.
例.验证函y数C1coskxC2sinkx(k是非零常) 数
是微分方dd程 x2y2 k2y 0的通解 .并求满足初始条
降落伞下落速度与时间的函数关系.
解: 根据牛顿第二定律列方程 m d v mg kv
dt
初始条件为 vt0 0
对方程分离变量, 然后积分 :
dv dt mgkv m
得 1ln(mgkv)tC(此 m g 处 k v 0 )
k
m
利用初始条件, 得 C1ln(mg)
t 足够大时
代入上式后化简, 得特解kvmg(1em k t )
vLeabharlann mg k.k16
5.2.2 可化为可分离变量的方程
形如y' f ( y)的微分方程称 齐次为微分方程 . x
解齐次方程时,通常用变量替换法,即 设 u y ,
x
将齐次方程化为可变量分离的方程.
由yux,dyuxdu,代入原,得 方 u程 xduf(u)
dx
dx
dx
分离变:量du得 dx, f(u)u x
.
13
(1) [解] 分离变量
1 dy 2x dx y
两边积分
1 y
dy
2xdx
lny x2C1 即 yex2C1 ex2eC1
当 y0时 , yeC1ex2 当 y0时 , yeC1ex2
记 CeC1,则有yCx e2 (C0) 注意: y0也是方程的 ! 解
故C也可以等于零
于是得到方程 dy 2xy
dx 可分离变变量 程. 的微分方
这类方程的解法,通常是先将变量分离,再两边积分即可
.
.
12
[例1] 解方程
(1) dy 2xy dx
这两个方程的共同特点 是变量可分离型
(2) 1y2 3x2ydy dx
dy f(x)(y) 分离变量 g(y)dyf(x)dx dx
两边积分 g(y)dy f(x)d xC通解
相关文档
最新文档