无机化学-沉淀溶解
合集下载
无机化学第六章 沉淀-溶解平衡
第六章
沉淀—溶解平衡 沉淀 溶解平衡
§ 6.1 溶解度和溶度积 § 6.2 沉淀的生成与溶解 § 6.3 两种沉淀之间的平衡
§ 6.1 溶解度和溶度积
6.1.1 溶解度 6.1.2 溶度积 6.1.3 溶解度和溶度积的关系
6.1.1 溶解度
在一定温度下,达到溶解平衡时,一 定量的溶剂中含有溶质的质量,叫做溶解 度通常以符号 S 表示. 对水溶液来说,通常以饱和溶液中每 100g 水所含溶质质量来表示,即以: g /100g水表示.
AgCl(s) → Ag+(aq) + Cl-(aq)
开始浓度/(molL-1) 变化浓度/(molL-1) 平衡浓度/ (molL-1) 平衡时:Ksp°(AgCl) = {c(Ag+)}{c(Cl-)} 0.020 0.020-x x 0.040 0.020-x 0.040-(0.020-x)
溶解度/ mol L 5 1.3 × 10 7 7.1 × 10
1
9.1 × 10 10
1.1 × 10
12
6.5 × 10
5
* 相同类型的难溶电解质,其 Ksp 大的 S 也大.
不同类型的难溶电解质不能直接用溶度积 比较其溶解度的相对大小. Ksp (AgCl) > Ksp (Ag 2CrO 4 ) S ( AgCl) < S ( Ag 2CrO 4 )
难溶金属硫化物的多相离子平衡: MS(s)
2 2
+ S2 (aq) M (aq) HS (aq) + OH (aq)
2+
强碱S : S (aq) + H 2 O(l) MS(s) + H2 O(l)
2+
沉淀—溶解平衡 沉淀 溶解平衡
§ 6.1 溶解度和溶度积 § 6.2 沉淀的生成与溶解 § 6.3 两种沉淀之间的平衡
§ 6.1 溶解度和溶度积
6.1.1 溶解度 6.1.2 溶度积 6.1.3 溶解度和溶度积的关系
6.1.1 溶解度
在一定温度下,达到溶解平衡时,一 定量的溶剂中含有溶质的质量,叫做溶解 度通常以符号 S 表示. 对水溶液来说,通常以饱和溶液中每 100g 水所含溶质质量来表示,即以: g /100g水表示.
AgCl(s) → Ag+(aq) + Cl-(aq)
开始浓度/(molL-1) 变化浓度/(molL-1) 平衡浓度/ (molL-1) 平衡时:Ksp°(AgCl) = {c(Ag+)}{c(Cl-)} 0.020 0.020-x x 0.040 0.020-x 0.040-(0.020-x)
溶解度/ mol L 5 1.3 × 10 7 7.1 × 10
1
9.1 × 10 10
1.1 × 10
12
6.5 × 10
5
* 相同类型的难溶电解质,其 Ksp 大的 S 也大.
不同类型的难溶电解质不能直接用溶度积 比较其溶解度的相对大小. Ksp (AgCl) > Ksp (Ag 2CrO 4 ) S ( AgCl) < S ( Ag 2CrO 4 )
难溶金属硫化物的多相离子平衡: MS(s)
2 2
+ S2 (aq) M (aq) HS (aq) + OH (aq)
2+
强碱S : S (aq) + H 2 O(l) MS(s) + H2 O(l)
2+
无机化学课件PPT-沉淀溶解平衡
Fe(OH)2 Fe(OH)3
FeS Hg2Cl2 Hg2Br2 Hg2I2
HgS PbCl2 PbCO3 PbCrO4 PbSO4 PbS PbI2 Pb(OH)2
Ksp 4.87 10-17 2.64 10-39 1.59 10-19 1.45 10-18 5.8 10-25 4.5 10-29 4.0 10-53 1.17 10-5 1.46 10-13 1.77 10-14 1.82 10-8 9.04 10-29 8.49 10-9 1.42 10-20
若考虑PO43-离子水解,则[PO43-] S,而是:
S
[PO
3 4
]
[HPO
2 4
]
[H
2
PO
4
]
[H
3PO
4
]
[PO
3 4
]1
[H ] Ka3
[H ]2 K a2K a3
[H ]3 K a1K a2Ka3
三、溶度积规则
溶度积规则:可以通过比较沉淀溶解平衡的反应商Q和Ksp的大 小来判断难溶强电解质溶液中反应进行的方向:
沉淀溶解平衡 (Precipitation and Dissolution Equilibrium)
根据物质在水中的溶解度(S)大小,将其分为四个级别:
易溶:S > 1 g/100g H2O 可溶:S = 0.1 – 1 g/100g H2O 微溶:S = 0.01 – 0.1 g/100g H2O 难溶:S < 0.01 g/100g H2O 不存在完全不溶的化合物
解:沉淀出Ni(OH)2,则溶液中[Ni2+][OH-]2 > Ksp(Ni(OH)2) [Ni2+] = 0.01 moldm-3 最低的[OH-]浓度为 [OH-]min2 = Ksp(Ni(OH)2) /[Ni2+]
FeS Hg2Cl2 Hg2Br2 Hg2I2
HgS PbCl2 PbCO3 PbCrO4 PbSO4 PbS PbI2 Pb(OH)2
Ksp 4.87 10-17 2.64 10-39 1.59 10-19 1.45 10-18 5.8 10-25 4.5 10-29 4.0 10-53 1.17 10-5 1.46 10-13 1.77 10-14 1.82 10-8 9.04 10-29 8.49 10-9 1.42 10-20
若考虑PO43-离子水解,则[PO43-] S,而是:
S
[PO
3 4
]
[HPO
2 4
]
[H
2
PO
4
]
[H
3PO
4
]
[PO
3 4
]1
[H ] Ka3
[H ]2 K a2K a3
[H ]3 K a1K a2Ka3
三、溶度积规则
溶度积规则:可以通过比较沉淀溶解平衡的反应商Q和Ksp的大 小来判断难溶强电解质溶液中反应进行的方向:
沉淀溶解平衡 (Precipitation and Dissolution Equilibrium)
根据物质在水中的溶解度(S)大小,将其分为四个级别:
易溶:S > 1 g/100g H2O 可溶:S = 0.1 – 1 g/100g H2O 微溶:S = 0.01 – 0.1 g/100g H2O 难溶:S < 0.01 g/100g H2O 不存在完全不溶的化合物
解:沉淀出Ni(OH)2,则溶液中[Ni2+][OH-]2 > Ksp(Ni(OH)2) [Ni2+] = 0.01 moldm-3 最低的[OH-]浓度为 [OH-]min2 = Ksp(Ni(OH)2) /[Ni2+]
无机化学第7章沉淀与溶解平衡
7.2 沉淀的生成与溶解
7.2.1 溶度积规则 7.2.2 同离子效应和盐效应 7.2.3 沉淀的酸溶解 7.2.4 沉淀的配位溶解 7.2.5 沉淀的氧化还原溶解
7.2.1 溶度积规则 AmBn(s) = mAn+(aq) + nBm(aq) J = {c(An+)}m ·c{(Bm–)}n
沉淀—溶解平衡的反应商判据,即溶度积规则:
c始 (OH )
K
sp
(
Ni(OH
)2
)
co (Ni2 )
5.0 10 16 7.110 8 mol L1 0.10 pH始 ≥ 6.85
c终 (OH ) 3
K
sp
(
F
e(OH
)3
)
1.0 105
1.591011mol L1
pH终 = 3.20
所以,若控制pH = 3.20 ~ 6.85,可保证Fe3+完全沉淀,而Ni2+ 仍留在溶液中。
KspӨ = [An+]m ·[Bm–]n
KspӨ 称为溶度积常数 (solubility product constant),简
称溶度积。它反应了难溶电解 质在水中的溶解能力。
溶度积的性质
1、与难溶电解质的本性有关,即不同的难溶电解 质的Ksp不同。
2、与温度有关。手册中一般给出难溶电解质在 25ºC时的Ksp 。
MS(s) + H2O(l) ⇌ M2+(aq) + OH-(aq) + HS-
(aq)
其平衡常数表示式为:
KӨ = c(M2+)c(OH-)c(HS-)
♦ 难溶金属硫化物在酸中的沉淀溶解平衡:
无机化学第六章
3
s[Mg(OH) 2 ] =
3
K sp [Mg(OH) 2 ] 2 ×1
2 −12
c
5.1×10 = mol ⋅ L−1 4 = 1.1×10−4 mol ⋅ L−1
对于同类型的难溶强电解质,标准溶度积常 数越大,溶解度也就越大。但对于不同类型的难 溶强电解质,不能直接用标准溶度积常数来比较 溶解度的大小,必须通过计算进行比较。
= (v+ s / c )v+ ⋅ (v− s / c )v− = (v+ )v+ ⋅ (v− )v− ⋅ ( s / c )v+ + v−
v+ + v−
s = c
Ksp (v+ )v+ ⋅ (v− )v−
例题
例 6-1 已知 25 ℃ 时 BaSO4 的溶解度为 1.05× 10-5 mol·L-1 ,试求该温度下 BaSO4 的标准溶度积常 数。 解:BaSO4 为 1-1 型难溶强电解质,其标准溶度 积常数为:
(二) 发生氧化还原反应使沉淀溶解
在含有难溶强电解质沉淀的饱和溶液中加入 某种氧化剂或还原剂,与难溶电解质的阳离子或 阴离子发生氧化还原反应,使 J < Ksp ,导致难溶 强电解质的沉淀溶解。
(三) 生成配位个体使沉淀溶解
在含有难溶强电解质沉淀的饱和溶液中加入 某种电解质,与难溶强电解质的阳离子或阴离子 生成配离子,使 J < Ksp ,导致难溶电解质沉淀溶 解。
⋅
1.6 ×10−24 = = = 2.5 ×10−3 K a1 (H 2S) ⋅ K a2 (H 2S) 8.9 ×10−8 × 7.1×10−15
由反应式可知,当 0.010 mol ZnS 溶解在 1.0 L 盐酸 中, Zn2+ 和 H2S 的平衡浓度均为 0.010 mol·L-1。溶 液中 H+ 相对浓度为:
s[Mg(OH) 2 ] =
3
K sp [Mg(OH) 2 ] 2 ×1
2 −12
c
5.1×10 = mol ⋅ L−1 4 = 1.1×10−4 mol ⋅ L−1
对于同类型的难溶强电解质,标准溶度积常 数越大,溶解度也就越大。但对于不同类型的难 溶强电解质,不能直接用标准溶度积常数来比较 溶解度的大小,必须通过计算进行比较。
= (v+ s / c )v+ ⋅ (v− s / c )v− = (v+ )v+ ⋅ (v− )v− ⋅ ( s / c )v+ + v−
v+ + v−
s = c
Ksp (v+ )v+ ⋅ (v− )v−
例题
例 6-1 已知 25 ℃ 时 BaSO4 的溶解度为 1.05× 10-5 mol·L-1 ,试求该温度下 BaSO4 的标准溶度积常 数。 解:BaSO4 为 1-1 型难溶强电解质,其标准溶度 积常数为:
(二) 发生氧化还原反应使沉淀溶解
在含有难溶强电解质沉淀的饱和溶液中加入 某种氧化剂或还原剂,与难溶电解质的阳离子或 阴离子发生氧化还原反应,使 J < Ksp ,导致难溶 强电解质的沉淀溶解。
(三) 生成配位个体使沉淀溶解
在含有难溶强电解质沉淀的饱和溶液中加入 某种电解质,与难溶强电解质的阳离子或阴离子 生成配离子,使 J < Ksp ,导致难溶电解质沉淀溶 解。
⋅
1.6 ×10−24 = = = 2.5 ×10−3 K a1 (H 2S) ⋅ K a2 (H 2S) 8.9 ×10−8 × 7.1×10−15
由反应式可知,当 0.010 mol ZnS 溶解在 1.0 L 盐酸 中, Zn2+ 和 H2S 的平衡浓度均为 0.010 mol·L-1。溶 液中 H+ 相对浓度为:
无机化学(三) 第四章 沉淀-溶解平衡
时,溶液中存在如下平衡:
溶解
AgCl(s) Ag+(aq)+Cl-(aq)
结晶
平衡常数:
KsӨ(AgCl) = {ceq(Ag+)/cӨ}·{ceq(Cl-)/cӨ}
不考虑量纲时: Ks(AgCl) = ceq(Ag+)·ceq(Cl-)
当温度一定时, Ks(AgCl) 恒定, 把此平衡常数称“溶度
初始浓度: [Fe3+]=0.10/2=0.050mol/L
[NH43+]=0.20/2=0.10mol/L
加入NH3/NH43+混合液前
[NH3·H2O]=0.20/2=0.10mol/L 平衡时,根据缓冲溶液计算公式可得:
[OH-]=(Ks/0.10 )1/3 =2.98×10-13mol/L
[OH-] = Kb×[NH3·H2O]/[NH4+]
加入NH3/NH43+混合液后,
≈ Kb = 1.7×10-5 溶解
[OH-]升高,Q{Fe(OH)3}增 大,且大于Ks{Fe(OH)3} ,
Fe(OH)3(s)
Fe3+(aq)+3OH-(aq) 发生沉淀。
结晶
NH3/NH43+混合液就
那么: Q = [Fe3+] ·[OH-] 3 = 2.5×10-16 > Ks 所以: 有Fe(OH)3沉淀生成
平衡浓度(mol/L):
结晶 ns
ms
溶度积:Ks(AnBm) = (ns)n·(ms)m = nn·mm·sn+m
则有: s nm Ks (nnmm )
<例1>
25℃时,Ks(AgCl) = 1.77×10-10, Ks(Ag2CrO4) = 1.12×10-12,
无机化学-第07章-沉淀溶解平衡-2012
6
7
例: 解:
θ
计算298K CuS的溶度积Ksp
CuS的沉淀平衡式为
CuS(s)
-53.0 66.5
Cu (aq)+ S (aq)
64.8 -99.6 33.2 -14.6
-1 -1
2+
2-
∆fH -1 KJ.mol θ S -1 -1 J.K .mol
θ θ
∆rH = 64.8+33.2-(-53)=151.0 KJ.mol
溶度积规则
---用于判断沉淀平衡移动的方向,即van’t Hoff等 温式在沉淀溶解平衡中的应用。 离子积 Qi 难溶电解质的溶液中离子浓度的乘积
PbI2 ( s) Pb2+ (aq) 2I- (aq)
Qi = c(Pb2+) c2(I-)
AmDn(s) mAn+ + nDm平衡时: Ksp = cm(An+)cn(Dm-)
3
一、溶度积
——沉淀溶解平衡常数
溶解 Ag (aq) Cl- (aq) AgCl (s) 沉淀
初始
V溶
> V沉
平衡
V溶
=V沉
4
在一定温度下,当沉淀和溶解速率相等时, 就达到平衡。此时所得的溶液即为该温度下的 饱和溶液,溶质的浓度即为饱和浓度。
AgCl(s) Ag (aq) Cl- (aq)
难溶电解质的沉淀溶解平衡
叶国东
1
第一节
溶度积原理
溶度积的概念 溶解度的概念 第二节 沉淀和溶解平衡
沉淀的生成 沉淀的溶解 沉淀的转化 练习
2
第一节
溶度积原理
可溶:100克水中溶解1克以上。 微溶:100克水中溶解0.01~1克。 难溶:100克水中溶解0.01克以下。
7
例: 解:
θ
计算298K CuS的溶度积Ksp
CuS的沉淀平衡式为
CuS(s)
-53.0 66.5
Cu (aq)+ S (aq)
64.8 -99.6 33.2 -14.6
-1 -1
2+
2-
∆fH -1 KJ.mol θ S -1 -1 J.K .mol
θ θ
∆rH = 64.8+33.2-(-53)=151.0 KJ.mol
溶度积规则
---用于判断沉淀平衡移动的方向,即van’t Hoff等 温式在沉淀溶解平衡中的应用。 离子积 Qi 难溶电解质的溶液中离子浓度的乘积
PbI2 ( s) Pb2+ (aq) 2I- (aq)
Qi = c(Pb2+) c2(I-)
AmDn(s) mAn+ + nDm平衡时: Ksp = cm(An+)cn(Dm-)
3
一、溶度积
——沉淀溶解平衡常数
溶解 Ag (aq) Cl- (aq) AgCl (s) 沉淀
初始
V溶
> V沉
平衡
V溶
=V沉
4
在一定温度下,当沉淀和溶解速率相等时, 就达到平衡。此时所得的溶液即为该温度下的 饱和溶液,溶质的浓度即为饱和浓度。
AgCl(s) Ag (aq) Cl- (aq)
难溶电解质的沉淀溶解平衡
叶国东
1
第一节
溶度积原理
溶度积的概念 溶解度的概念 第二节 沉淀和溶解平衡
沉淀的生成 沉淀的溶解 沉淀的转化 练习
2
第一节
溶度积原理
可溶:100克水中溶解1克以上。 微溶:100克水中溶解0.01~1克。 难溶:100克水中溶解0.01克以下。
第六章沉淀溶解平衡无机化学
6.5? 105
(1) 相同类型 Ksp 大的 S 也大
AgCl AgBr AgI
(2) 不同类型要计算
Ksp 减小
S 减小
§6.2 沉淀的生成与溶解
6.2.1 溶度积规则 6.2.2 同离子效应和盐效应 6.2.3 pH 值对溶解度的影响
——沉淀的酸溶解 6.2.4 配合物的生产对溶解度的影响
——沉淀的配位溶解
S 3 Ksp 4
3 1.11012 4
6.5105 mol L1
思考题:求Ca
3
(PO4
)
2的S与K
间的关系
sp
S 5 Ksp 108
分子式 AgCl AgBr AgI
结论:
溶度积 1.8 ? 1010 5.0 ? 1013 8.3 ? 10 17 1.1? 1012
溶解度/ mol ?L1 1.3? 105 7.1? 107 9.1? 1010
6.2.1 溶度积规则 AnBm (s) nAm (aq) mB n (aq)
J c n (A m ) c m (B n )
(1) J < Ksp 不饱和溶液,无沉淀析出;
若原来有沉淀存在,则沉淀溶解;
(2) J = Ksp 饱和溶液,处于平衡; (3) J > Ksp 过饱和溶液,沉淀析出。
难溶物在纯水中的溶解度:S ( mol·L-1 )
AnBm (s) nAm (aq) mB n (aq)
平衡 ci / mol L1
nS
mS
Ksp (nS)n (mS)m
AB型 S Ksp
A
2B或AB
型
2
Ksp
22 S3
S 3 Ksp 4
例:Ksp (Ag2CrO4 ) 1.11012
(1) 相同类型 Ksp 大的 S 也大
AgCl AgBr AgI
(2) 不同类型要计算
Ksp 减小
S 减小
§6.2 沉淀的生成与溶解
6.2.1 溶度积规则 6.2.2 同离子效应和盐效应 6.2.3 pH 值对溶解度的影响
——沉淀的酸溶解 6.2.4 配合物的生产对溶解度的影响
——沉淀的配位溶解
S 3 Ksp 4
3 1.11012 4
6.5105 mol L1
思考题:求Ca
3
(PO4
)
2的S与K
间的关系
sp
S 5 Ksp 108
分子式 AgCl AgBr AgI
结论:
溶度积 1.8 ? 1010 5.0 ? 1013 8.3 ? 10 17 1.1? 1012
溶解度/ mol ?L1 1.3? 105 7.1? 107 9.1? 1010
6.2.1 溶度积规则 AnBm (s) nAm (aq) mB n (aq)
J c n (A m ) c m (B n )
(1) J < Ksp 不饱和溶液,无沉淀析出;
若原来有沉淀存在,则沉淀溶解;
(2) J = Ksp 饱和溶液,处于平衡; (3) J > Ksp 过饱和溶液,沉淀析出。
难溶物在纯水中的溶解度:S ( mol·L-1 )
AnBm (s) nAm (aq) mB n (aq)
平衡 ci / mol L1
nS
mS
Ksp (nS)n (mS)m
AB型 S Ksp
A
2B或AB
型
2
Ksp
22 S3
S 3 Ksp 4
例:Ksp (Ag2CrO4 ) 1.11012
无机化学课件-沉淀溶解平衡
的乘积为一常数 。它的大小与物质的溶解度有关,反映了难 溶电解质在水中的溶解能力。
二、溶度积和溶解度的关系
【 例 3-1】AgCl 在 298K 时 的 溶 解 度 (S) 为 1.91×10-3g·L-1, 求其溶度积。
解: AgCl(s)
Ag+(aq) + Cl-(aq)-
已知AgCl的摩尔质量M(AgCl)为143.4g.mol-1,将AgCl的 溶解度换算成物质的量浓度为:
解释:用活度的概念
3.3 沉淀的生成
条件: IP > Ksp
【例3-5】 在20ml 0.0020mol·L-1Na2SO4溶液中加入 20 ml 0.020mol·L-1 BaCl2溶液,有无BaSO4沉淀生 成?并判断 SO42- 离子是否沉淀完全? 已知BaSO4的Ksp= 1.07×10-10 .
BaSO4 (s)
Ba 2+ +
起始浓度/mol·L-1 0.010﹣0.0010 平衡浓度/ mol·L-1 0.010﹣0.0010+ x
SO420 x
Ksp = [Ba2+][SO42-] = ( 0.0090 + x ) x ∵ x 很小 ∴ 0.0090 + x ≈ 0.0090
即 1.07×10-10 ≈ 0.0090 x ∴ x = [SO42-] ≈ 1.2×10-8 mol·L-1 沉淀完全是指离子残留量 ≤ 10-6 mol·L-1
⑴ >10-5 g ·ml-1 固体,才有浑浊现象。 ⑵ 溶液呈过饱和状态时,沉淀难于生成。
⑶ 避免沉淀剂过量
如: Hg2+ + 2I- = HgI2↓(桔红) HgI2 + 2I- = HgI42- (无色)
二、溶度积和溶解度的关系
【 例 3-1】AgCl 在 298K 时 的 溶 解 度 (S) 为 1.91×10-3g·L-1, 求其溶度积。
解: AgCl(s)
Ag+(aq) + Cl-(aq)-
已知AgCl的摩尔质量M(AgCl)为143.4g.mol-1,将AgCl的 溶解度换算成物质的量浓度为:
解释:用活度的概念
3.3 沉淀的生成
条件: IP > Ksp
【例3-5】 在20ml 0.0020mol·L-1Na2SO4溶液中加入 20 ml 0.020mol·L-1 BaCl2溶液,有无BaSO4沉淀生 成?并判断 SO42- 离子是否沉淀完全? 已知BaSO4的Ksp= 1.07×10-10 .
BaSO4 (s)
Ba 2+ +
起始浓度/mol·L-1 0.010﹣0.0010 平衡浓度/ mol·L-1 0.010﹣0.0010+ x
SO420 x
Ksp = [Ba2+][SO42-] = ( 0.0090 + x ) x ∵ x 很小 ∴ 0.0090 + x ≈ 0.0090
即 1.07×10-10 ≈ 0.0090 x ∴ x = [SO42-] ≈ 1.2×10-8 mol·L-1 沉淀完全是指离子残留量 ≤ 10-6 mol·L-1
⑴ >10-5 g ·ml-1 固体,才有浑浊现象。 ⑵ 溶液呈过饱和状态时,沉淀难于生成。
⑶ 避免沉淀剂过量
如: Hg2+ + 2I- = HgI2↓(桔红) HgI2 + 2I- = HgI42- (无色)
无机化学第6章 难溶强电解质的沉淀-溶解平衡
✓ Ksp反映的方程式,难溶电解质在反应物的 位置,即方程式的左边
常见难溶强电解质的溶度积
二、标准溶度积常数与溶解度 的关系
一定温度下,溶度积和溶解度都可表示难 溶电解质在水中的溶解能力。
若溶解度s 的单位用mol.L-1,称为摩尔溶 解度。
注意:推导若溶度积和溶解度关系时, 溶解度采用摩尔溶解度。
2. 溶度积与溶解度
二、标准溶度积常数与溶解度的关系
难溶强电解质Mv Av饱和溶液中存在沉淀-溶解平衡:
MvAv (s) vMz (aq) vAz (aq)
1-2型
如:Ag2CrO4 (s) 2Ag+ (aq) + CrO42- (aq)
2s
s
Ksp ={ceq (Ag+ )}2 {ceq (CrO42- )}= (2 s)2 (s)
Question
我们常说的沉淀,是不是一点都不溶?
例:
实验:取上层清液适量
滴加少量KI溶液
黄色沉淀(AgI)
AgCl
是否含有 s(AgCl)=1.34×10-5 mol·L-1
Ag+、Cl-
=1.92×10-4克/100mL
Question
我们常说的沉淀,是不是一点都不溶?
例:
AgCl(s) 溶解 AgCl(aq) 沉淀
AgCl(aq)
解离 Ag+ (aq)+ Cl-(aq) 分子化
AgCl
是否含有
AgCl(s)
溶解 Ag+ (aq)+ Cl-(aq) 沉淀
Ag+、Cl-
沉淀-溶解平衡
图 6-1 难溶强电解质的溶解和沉淀过程
沉淀溶解平衡
难溶强电解质Mv+Av-饱和溶液中存在如下动态平衡:
常见难溶强电解质的溶度积
二、标准溶度积常数与溶解度 的关系
一定温度下,溶度积和溶解度都可表示难 溶电解质在水中的溶解能力。
若溶解度s 的单位用mol.L-1,称为摩尔溶 解度。
注意:推导若溶度积和溶解度关系时, 溶解度采用摩尔溶解度。
2. 溶度积与溶解度
二、标准溶度积常数与溶解度的关系
难溶强电解质Mv Av饱和溶液中存在沉淀-溶解平衡:
MvAv (s) vMz (aq) vAz (aq)
1-2型
如:Ag2CrO4 (s) 2Ag+ (aq) + CrO42- (aq)
2s
s
Ksp ={ceq (Ag+ )}2 {ceq (CrO42- )}= (2 s)2 (s)
Question
我们常说的沉淀,是不是一点都不溶?
例:
实验:取上层清液适量
滴加少量KI溶液
黄色沉淀(AgI)
AgCl
是否含有 s(AgCl)=1.34×10-5 mol·L-1
Ag+、Cl-
=1.92×10-4克/100mL
Question
我们常说的沉淀,是不是一点都不溶?
例:
AgCl(s) 溶解 AgCl(aq) 沉淀
AgCl(aq)
解离 Ag+ (aq)+ Cl-(aq) 分子化
AgCl
是否含有
AgCl(s)
溶解 Ag+ (aq)+ Cl-(aq) 沉淀
Ag+、Cl-
沉淀-溶解平衡
图 6-1 难溶强电解质的溶解和沉淀过程
沉淀溶解平衡
难溶强电解质Mv+Av-饱和溶液中存在如下动态平衡:
无机化学 沉淀溶解平衡.
例: AgCl(s)
Ag + + Cl –
初始 v溶 > v沉
平衡 v溶 = v沉 2
上一页
下一页
本章目录 总目录
无机及分析化学 第八章 沉淀溶解平衡
Ksθp= [Ag+]r[Cl -]r
Ksθp 称为难溶电解质的沉淀溶解平衡
常数,简称溶度积。
一般难溶电解质:
AmDn(s)
mAn+(aq) + nDm-(aq)
溶度积规则:
Qc < Ksθp , 无沉淀生成,加入沉淀可溶解。 Qc > Ksθp ,有沉淀生成。 Qc = Ksθp,平衡态,既无沉淀生成,也不能
溶解沉淀
上一页
下一页
15 本章目录平衡
上一页
下一页
16 本章目录 总目录
无机及分析化学 第八章 沉淀溶解平衡
S 5 Ksp 108
上一页
下一页
7 本章目录 总目录
无机及分析化学 第八章 沉淀溶解平衡 溶度积反映了物质的溶解能力,但只有同
种类型的难溶电解质才能直接从Ksp 的大小来 比较它们的溶解度S大小。
对于不同类型的难溶电解质不能简单地直 接用Ksp 比较作结论,而要通过计算其溶解度 S才能确定。
上一页
A2+ (aq) + 2D–(aq)
S
2S
Ksθp = [A2+]r[D –]r2= S(2S)2 = 4S 3
S
3
K
θ sp
4
上一页
下一页
5 本章目录 总目录
无机及分析化学 第八章 沉淀溶解平衡
3. AD3或A3D型 (如 Fe(OH)3 、Ag3PO4)
无机化学 - 沉淀溶解平衡
溶液中c(An+)= m·S,c(Bm-)= n·S 9
Kspθ与S的定量关系
① AB型: AB
A++ B-
溶解度为 S mol·L–1 S S
K
SP
ceq ( A c
)
ceq ( B c
)
S2
c
2
② AB2 、A2B型:Mg(OH)2,Ag2SO4
AB2
A2++ 2B-
S 2S
K
SP
S
5.3×10-5 < 1.7×10-4
∴ 不同类型的难溶电解质,
Kspθ大,S不一定大, 通过计算比较S
14
练习
1.下列叙述正确的是( ) A.用水稀释含有AgCl固体的溶液时,AgCl的标准溶度积常数不变 B.标准溶度积常数大者,溶解度也大 C.由于AgCl水溶液导电性很弱,所以它是弱电解质 D.难溶电解质离子浓度的乘积就是该物质的标准溶度积常数
解: ① ∵ Kspθ=c1 [Ag+]c[I-]=8.3×10-17
Kspθ=c2 [Ag+]c[Cl-]=1.8×10-10 c1 [Ag+]=8.3×10-17/0.010= 8.3×10-15 (AgI先↓)
c2 [Ag+]=1.8×10-10/0.010= 1.8×10-8 (AgCl后↓)
B.3.510-5 mol / L
C.5.010-5 mol / L
D.1.7 10-3 mol / L
(D)
2.
室温下,La2
(C2O4
)3?在纯水中的溶解度为1.1106
?mol
/
L,? 其K
sp
()
A.7.3 1012
Kspθ与S的定量关系
① AB型: AB
A++ B-
溶解度为 S mol·L–1 S S
K
SP
ceq ( A c
)
ceq ( B c
)
S2
c
2
② AB2 、A2B型:Mg(OH)2,Ag2SO4
AB2
A2++ 2B-
S 2S
K
SP
S
5.3×10-5 < 1.7×10-4
∴ 不同类型的难溶电解质,
Kspθ大,S不一定大, 通过计算比较S
14
练习
1.下列叙述正确的是( ) A.用水稀释含有AgCl固体的溶液时,AgCl的标准溶度积常数不变 B.标准溶度积常数大者,溶解度也大 C.由于AgCl水溶液导电性很弱,所以它是弱电解质 D.难溶电解质离子浓度的乘积就是该物质的标准溶度积常数
解: ① ∵ Kspθ=c1 [Ag+]c[I-]=8.3×10-17
Kspθ=c2 [Ag+]c[Cl-]=1.8×10-10 c1 [Ag+]=8.3×10-17/0.010= 8.3×10-15 (AgI先↓)
c2 [Ag+]=1.8×10-10/0.010= 1.8×10-8 (AgCl后↓)
B.3.510-5 mol / L
C.5.010-5 mol / L
D.1.7 10-3 mol / L
(D)
2.
室温下,La2
(C2O4
)3?在纯水中的溶解度为1.1106
?mol
/
L,? 其K
sp
()
A.7.3 1012
无机化学-沉淀-溶解平衡
7.2 沉淀的生成
一、溶度积规则 针对于: 针对于: J = AmBn(s)=mAn++nBmm n n+) m-) C(A C(B m+n Ө C
∆rGm=RTln
J KӨ
J< Ksp Ө, ∆rGm <0,反应正向进行,沉淀溶解 ,反应正向进行, J=KspӨ, ∆rGm =0,反应处于平衡状态 , J> KspӨ, ∆rGm > 0,反应逆向进行,沉淀生成 ,反应逆向进行, 应用溶度积规则, 应用溶度积规则,我们可以直接判断沉淀能否生成或溶解
盐溶液中含有少量Cu 杂质, 例5 在0.1mol·L-1Co2+盐溶液中含有少量 2+杂质,应用硫化物 沉淀法除去Cu 的条件是什么? 沉淀法除去 2+的条件是什么? 已知kspӨ(CoS)=4.0×10-21; kspӨ(CuS)=6.3×10-36 已知 × × 解: C(H+)<
θ
+沉淀完全,溶液中H 满足: Cu2+沉淀完全,溶液中 +满足:
溶解过程:BaSO4(s)→Ba2+(aq) + SO42-(aq) 溶解过程: ( ) 沉淀过程: 沉淀过程:Ba2+ (aq) + SO42-(aq)→BaSO4(s)
在含有固体难溶电解质的饱和溶液中,存在难溶电解质与由它离解产生的 在含有固体难溶电解质的饱和溶液中, 离子之间的平衡: 离子之间的平衡: BaSO4(s)=Ba2+(aq)+SO42-(aq) 沉淀-溶解平衡 沉淀 溶解平衡
θ θ
溶液中H 满足: 溶液中 +满足:0. 19mol·L-1<C(H+)<4.8×104mol·L-1 ×
无机化学第八章 沉淀-溶解平衡
在含I-和Cl-的溶液中,逐滴加入AgNO3: Ag I- AgI (淡黄色,Ksp 8.521017 )
一定量AgNO3后 Ag Cl- AgCl (白色,Ksp 1.771010)
【例2】设溶液中Cl-、CrO42-离子浓度均为0.0010 mol/L。 若逐滴加入AgNO3溶液,哪一种离子先产生沉淀?已知
= (1.12×10-12/0.001)1/2 = 3.3×10-5 mol/L ∴ AgCl先沉淀。
沉淀转化
思考与讨论
沉淀转化现象:由一种沉淀转化成另一种沉淀的过程
他的实质是什么?
AgCl(Ksp=1.8×10-10) AgI(Ksp=8.5×10-17) Ag2S(Ksp=6.3×10-50) 分析沉淀转化的方向
溶度积规则
通过控制离子浓度, 使沉淀生成或溶解
Q > Ksp 过饱和溶液, 将析出沉淀
Q = Ksp 饱和溶液,沉淀 -溶解平衡状态
Q < Ksp 未饱和溶液, 沉淀发生溶解
沉淀的生 成和溶解
石灰石 CaCO3
溶洞的形成
Ca2+ + CO32H2O + CO2
2HCO3-
陕西商洛柞水县柞水溶洞
沉
淀
-
溶 解 平
第 八 章
衡
观看 视频
难溶电解质 的溶度积
概念: 溶解度
在一定温度下,某固态物质在100g 溶剂中达到饱和状态时所溶解的质 量,叫做这种物质在这种溶剂中的 溶解度。
在水中绝对不溶的物质是不存在的,任何难
溶电解质在水中都会溶解,存在一个 沉淀—溶解的平衡。
0.1g/100g
AgCl溶解平衡的建立
Ksp=1.1×10-10mol2/L2 Ksp=5.1×10-9mol2/L2
无机化学第六章+沉淀-溶解平衡
1. 同离子效应
在难溶强电解质溶液中加入与其含有相同离
子的易溶强电解质,而使难溶强电解质的溶解度降
低的作用。
加入 I-
PbI2 (s) Pb2+ (aq) + 2 I- (aq)
平衡移动的方向
例:对已达到平衡的下列反应,分别给其加入HCl、
BaCl2 或 Na2CO3 溶液,结果怎样?
BaCO3 (s)
Ksp (AgCl) = 1.8×10-10 Ksp (AgI) = 8.3×10-17
解:
(a) 哪一种离子先沉淀?
c1( Ag )AgI
Ksp ( AgI ) c(I )
8.3 1017 1.0 103
8.31014 mol
L1
c2 ( Ag )AgCl
Ksp (AgCl) c(Cl )
AgCl AgBr
(2)不同类型要计算
AgI Ksp 减小
S 减小
二、沉淀的生成与溶解
1. 溶度积规则
比较 Q 和 Ksp的大小,可以用来 判读沉淀的 生成及沉淀溶解平衡的移动方向。
An Bm (s)
nAm (aq) mBn (aq)
Q [Am ]n [Bn ]m 离子积
① 若 Q > Ksp,过饱和溶液,沉淀析出 ②若 Q < Ksp ,不饱和溶液,无沉淀析出;若原来
3、 沉淀-溶解平衡和酸碱平衡 ① 难溶金属硫化物的沉淀-溶解平衡 --- 形成弱电解质 H2S
PbS Bi2S3 CuS CdS Sb2S3 SnS2 As2S3 HgS
FeS Fe2+ + S2-
2 HCl 2 Cl_ + 2 H+
无机化学第三章 沉淀溶解平衡
一、难溶电解质的溶解度和溶度积
1. 溶度积常数
BaCO3(s)
BaCO3
溶解 沉淀
Ba2+ + CO322+ 2−
当υ溶 = υ沉时
2+ 2−
[Ba ] ⋅ [CO 3 ] =K [BaCO3 ]
[Ba ] ⋅ [CO 3 ] = K ⋅ [BaCO3 ] = K sp
K sp
2+
溶度积常数,大小与S(溶解度)有关, 是T的函数
c 0.100 Q = = 5.68 × 103>400 K b 1.75 ×10 −5
= 1.32 ×10 −3 [OH ] = K b c = 1.75 ×10 × 0.10
−
−5
( mol·L-1)
又∵ [Mg2+]·[OH-]2 = 1.0×10-3×(1.32×10-3)2 = 1.75×10-9 1.75×10-9 >K sp {Mg (OH) 2 } ∴有Mg(OH)2↓产生
先↓的离子↓完全,后↓的离子留在溶液中 计算出pH范围
MS
M 2+ + S2-
Ksp(MS) = [M2+]·[S2-] ∴↓时,[S2-] 不同。
K sp (MS) [M ]
2+
∵Ksp(MS)不同, 沉淀开始时:
2−
[S ]min >
······⑴
[S 2 − ] 与 [ H + ] 的关系
H2S
Ba3(PO4)2(s)
K sp = [Ba ] ⋅ [PO 4 ]
2+ 3
2. 溶解度和溶度积的换算
例1: 25℃时,AgCl在水中的溶解度为0.00192g·L-1, 试求该温度下的溶度积?(M(AgCl)=143.4g/mol)
无机化学:chapter 7 沉淀溶解平衡
= 55.66kJmol-1
lgK
θ sp
(AgCl)
r Gmθ 2.303RT
55.66 1000 9.7549 2.303 8.314 298
K
θ sp
(AgCl)
1.76 1010
4.溶度积规则 solubility product principle
AmBn (s)
mAn+(aq) +n Bm-(aq)
例1. 已知298.15K时AgCl的溶解度为1.91×10 -3
g
.L-1,求其
K
θ sp
。
解: M(AgCl) 143.4g mol 1
s(AgCl ) 1.91 103 1.33 105 mol L1 143.4
又 AgCl
Ag Cl
ss
Kθ sp
c(Ag ) c(Cl )
1.同类型的难溶电解质,相同温度时,溶解度的
大小可用
K
θ sp
比较,
K
θ sp
大,则s大。
2.不同类型的难溶电解质,相同温度时,溶解度
的大小不能用 Ksθp比较其大小, 只能用s来比较。
3. Kspθ值的确定方法:
① 实验测定各离子的平衡浓度或溶解度
② 由热力学数据计算
rGmθ 2.303RT lg K θ
rGm
rGmθ
RT
ln Q
RT
ln
Q Kθ
Q RT ln Ksθp
Q = cm (An+). cn (Bm-)
离子积
溶度积规则
(1)Q
<
K
θ时,
sp
不饱和溶液,无沉淀生
成;若有沉淀存在,沉淀将会溶解 ,
无机化学052沉淀溶解平衡ppt课件
解:设Mg(OH)2的在298K的溶解度为S mol·L-1 。
Mg(OH)2(s)
Mg2+ + 2OH-
平衡时
S
2S
Ksp(Mg(OH)2)=[Mg2+]·[OH-]2= S·(2S)2 = 4 S 3
S 3 Ksp 3 5.61 1012
4
4
1.12 104 mol L1
Q关系式适用于任意状态的溶液。 Ksp表示难溶强 电解质的饱和溶液中离子幂的乘积,在一定温度下, Ksp为一常数,它只是Q的一个特例。
20
南京医科大学药学院
许贯虹
溶度积规则:
Logo
➢ Q =Ksp表示溶液饱和,这时溶液中的沉淀与溶 解达到动态平衡,既无沉淀析出又无沉淀溶解
aAn+ (aq) + bBm- (aq) Ki
AaBb (s)
aAn+ (aq) + bBm- (aq) Ksp
Ksp Ks Ki [An ]a [Bm ]b
9
南京医科大学药学院
许贯虹
Logo
AaBb(s)
aAn+ (aq) + bBm- (aq)
Ksp [An ]a [Bm ]b
3. 对于不同类型的难溶电解质,必须经过计算来比 较。
18
南京医科大学药学院
许贯虹
Logo
溶度积与溶解度换算的条难件溶的:硫化物、碳酸盐、
磷酸盐等不适用。 1. 适用于溶解后解离出的正、负离子在水溶液中不 发生水解等副反应或程度较小的物质。
2. 难溶电解质必须完全解离。
许贯虹
Logo
溶度积常数(solubility product constant)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人们最先认识非电解质稀溶液的规律,然后再逐步认识电解 质溶液及浓溶液的规律.
几种盐的水溶液的冰点下降情况
盐
m/mol·kg-1
Ti/K(计算值)
Ti/K(计算值)
实验值 i 计算值
KCl
0.20
0.372
0.673
1.81
KNO3
0.20
MgCl2
0.10
Ca(NO3)2 0.10
0.372 0.186 0.186
2 4
)/mol
dm
-3}
K
θ sp
Ksθp叫溶度积常数.严格讲应用活度积,但 S 很小,f = 1,对通式
M m B n (s)
m M(aq) n B(aq),
K
θ sp
{c(M)/mol
dm -3}m
{c(B)
/
mol
dm-3}n
式中省略了M和B的离子电荷
溶解与沉淀过程
9
(2) 溶度积和溶解度的关系
0.664 0.519 0.461
1.78 2.79 2.48
1887年,Arrhenius 是这样在电离理论中解释这个现象的: ●电解质在水溶液中是电离的. ●电离“似乎”又是不完全的.
然而,我们知道,强电解质离子晶体,在水中应是完全电 离的,那么,这一矛盾又如何解释呢?
3
强电解质溶液理论
1923年,Debye和Hückle 提出了强电解质溶液理论,初步解 释了前面提到的矛盾.
(1) 0.01 mol·kg-1的BaCl2的溶液. (2) 0. 1 mol·kg-1盐酸和0. 1 mol·kg-1CaCl2溶液等体积
混合后形成的溶液.
(1)
m H
0.05 mol
k
g1
,
m Ca
2
0.05 mol
k g1,
mCl
0.15 mol k g1, Z H
ห้องสมุดไป่ตู้
1,
Z Ca
2
2,
指电解质溶液中离子实际发挥的浓度,称为有效浓度或活度.显然
a = fc 这里,a—活度,c —浓度,f —活度系数 ● Z 越高,I 较大,f 的数值越小 ● c 越大,I 较大,则 a 与 c 的偏离越大 ● c 很低,I 也很小,一般可近似认为 f = 1.0 , 可用 c 代替 a
一个适于 r离子半径 3 × 10 –8 cm , I < 0.1mol·kg-1的半经验公式为:
(solubility product constant and solubility)
9.2.2 离子积和溶度积规则
(ion product & rule of solubility product )
9.2.3 沉淀-溶解平衡的移动
( mobile of precipitation – dissolution equilibrium)
解平衡
hard-dissolved strong electrolyte
9.3 非电解质稀溶液的依数性 Colligative properties dilute
nonelectroiyte solution
9.1 强电解质溶液理论(theory of strong electrolyte solution)
第9章 电解质溶液和 非电解质溶液
Chapter 9 Electrolyte Solution and Non Electrolyte Solution
9.1 强电解质溶液理论
Theory of strong electrolyte solution
9.2 难溶性强电解质的沉淀-溶 Precipitation-dissolution equilibrium of
平衡浓度 ci / mol L1
Kθ sp
(nS ) n
(mS )m
nA m (aq) mB n (aq)
nS
mS
对 AB型 S
Kθ sp
对
A 2 B或AB2型
Kθ sp
22 S3
S 3
Kθ sp
;
其它类推.
4
10
两者之间有联系也有差别
常用S(mol/dm3)表示.
8
(2) 溶度积常数
溶解
BaSO 4 (s)
沉淀
Ba
2
(aq)
S
O
2 4
(aq
)
Kθ
{c(Ba
2
)/mol
dm
- 3 } {c (SO
2 4
)/mol
{c(BaSO 4 )/mol dm-3}
dm
-3}
按规定将纯固体的浓度取1,则
Kθ
{c(Ba
2
)/mol
dm
- 3 } {c (SO
9.2.4 两种沉淀之间的平衡
(equilibrium in two precipitation )
7
9.2.1 溶度积常数和溶解度(solubility product constant and solubility)
(1)溶解度
中学里介绍过把某温度下100克水里某物质溶解的最大克数叫溶 解度. 习惯上把溶解度小于0.01g/100g 水的物质叫“难溶物”. 其实 ,从相平衡的角度理解溶解度更确切,即在一定温度和压力下,固液 达到平衡时的状态. 这时把饱和溶液里的物质浓度称为“溶解度”,
溶解度用中学的表示法显然很麻烦,如
AgCl在25 ℃ 时的溶解度为 0.000135g/100g H2O BaSO4在25 ℃ 时的溶解度为 0.000223g/100g H2O HgS在25 ℃ 时的溶解度为 0.0000013g/100g H2O 若溶解度用S ( mol ·L-1 )表示:
A n Bm (s)
lg
f
0.0509 Z1Z 2 1 I
I
电解质溶液理论至今尚在不断发展,本课程不做要求!
6
9.2 难溶性强电解质的沉淀-溶解平衡(precipitation-
dissolution equilibrium of hard-dissolved strong electrolyte)
9.2.1溶度积常数 和溶解度
Z Cl
1
所以
I1 2
mi
Z
2 i
1 2
(0.05 12
0.05
22
0.15 12 )
(2) 混合溶液中
mBa 2 0.01mol kg 1, Z Ba 2 2, mCl 1
所以 I 1 2
mi
Z
2 i
1 2
(0.01
22
0.02
12 )
0.03
mol
kg 1
5
(2)活度和活度系数
(1)离子氛和离子强度
强电解质在水溶 液中是完全电离的,但 离子并不是自由的,存 在着“离子氛”。
用I — 离 子强度表示 离子与“离子氛”之间的强弱,Zi表 示溶液中种i离子的电荷数,mi表示i种离子的质量摩尔浓度,则
1
I= 2
mi
Z
2 i
4
Example 1
求下列溶液的离子强度.
Solution
几种盐的水溶液的冰点下降情况
盐
m/mol·kg-1
Ti/K(计算值)
Ti/K(计算值)
实验值 i 计算值
KCl
0.20
0.372
0.673
1.81
KNO3
0.20
MgCl2
0.10
Ca(NO3)2 0.10
0.372 0.186 0.186
2 4
)/mol
dm
-3}
K
θ sp
Ksθp叫溶度积常数.严格讲应用活度积,但 S 很小,f = 1,对通式
M m B n (s)
m M(aq) n B(aq),
K
θ sp
{c(M)/mol
dm -3}m
{c(B)
/
mol
dm-3}n
式中省略了M和B的离子电荷
溶解与沉淀过程
9
(2) 溶度积和溶解度的关系
0.664 0.519 0.461
1.78 2.79 2.48
1887年,Arrhenius 是这样在电离理论中解释这个现象的: ●电解质在水溶液中是电离的. ●电离“似乎”又是不完全的.
然而,我们知道,强电解质离子晶体,在水中应是完全电 离的,那么,这一矛盾又如何解释呢?
3
强电解质溶液理论
1923年,Debye和Hückle 提出了强电解质溶液理论,初步解 释了前面提到的矛盾.
(1) 0.01 mol·kg-1的BaCl2的溶液. (2) 0. 1 mol·kg-1盐酸和0. 1 mol·kg-1CaCl2溶液等体积
混合后形成的溶液.
(1)
m H
0.05 mol
k
g1
,
m Ca
2
0.05 mol
k g1,
mCl
0.15 mol k g1, Z H
ห้องสมุดไป่ตู้
1,
Z Ca
2
2,
指电解质溶液中离子实际发挥的浓度,称为有效浓度或活度.显然
a = fc 这里,a—活度,c —浓度,f —活度系数 ● Z 越高,I 较大,f 的数值越小 ● c 越大,I 较大,则 a 与 c 的偏离越大 ● c 很低,I 也很小,一般可近似认为 f = 1.0 , 可用 c 代替 a
一个适于 r离子半径 3 × 10 –8 cm , I < 0.1mol·kg-1的半经验公式为:
(solubility product constant and solubility)
9.2.2 离子积和溶度积规则
(ion product & rule of solubility product )
9.2.3 沉淀-溶解平衡的移动
( mobile of precipitation – dissolution equilibrium)
解平衡
hard-dissolved strong electrolyte
9.3 非电解质稀溶液的依数性 Colligative properties dilute
nonelectroiyte solution
9.1 强电解质溶液理论(theory of strong electrolyte solution)
第9章 电解质溶液和 非电解质溶液
Chapter 9 Electrolyte Solution and Non Electrolyte Solution
9.1 强电解质溶液理论
Theory of strong electrolyte solution
9.2 难溶性强电解质的沉淀-溶 Precipitation-dissolution equilibrium of
平衡浓度 ci / mol L1
Kθ sp
(nS ) n
(mS )m
nA m (aq) mB n (aq)
nS
mS
对 AB型 S
Kθ sp
对
A 2 B或AB2型
Kθ sp
22 S3
S 3
Kθ sp
;
其它类推.
4
10
两者之间有联系也有差别
常用S(mol/dm3)表示.
8
(2) 溶度积常数
溶解
BaSO 4 (s)
沉淀
Ba
2
(aq)
S
O
2 4
(aq
)
Kθ
{c(Ba
2
)/mol
dm
- 3 } {c (SO
2 4
)/mol
{c(BaSO 4 )/mol dm-3}
dm
-3}
按规定将纯固体的浓度取1,则
Kθ
{c(Ba
2
)/mol
dm
- 3 } {c (SO
9.2.4 两种沉淀之间的平衡
(equilibrium in two precipitation )
7
9.2.1 溶度积常数和溶解度(solubility product constant and solubility)
(1)溶解度
中学里介绍过把某温度下100克水里某物质溶解的最大克数叫溶 解度. 习惯上把溶解度小于0.01g/100g 水的物质叫“难溶物”. 其实 ,从相平衡的角度理解溶解度更确切,即在一定温度和压力下,固液 达到平衡时的状态. 这时把饱和溶液里的物质浓度称为“溶解度”,
溶解度用中学的表示法显然很麻烦,如
AgCl在25 ℃ 时的溶解度为 0.000135g/100g H2O BaSO4在25 ℃ 时的溶解度为 0.000223g/100g H2O HgS在25 ℃ 时的溶解度为 0.0000013g/100g H2O 若溶解度用S ( mol ·L-1 )表示:
A n Bm (s)
lg
f
0.0509 Z1Z 2 1 I
I
电解质溶液理论至今尚在不断发展,本课程不做要求!
6
9.2 难溶性强电解质的沉淀-溶解平衡(precipitation-
dissolution equilibrium of hard-dissolved strong electrolyte)
9.2.1溶度积常数 和溶解度
Z Cl
1
所以
I1 2
mi
Z
2 i
1 2
(0.05 12
0.05
22
0.15 12 )
(2) 混合溶液中
mBa 2 0.01mol kg 1, Z Ba 2 2, mCl 1
所以 I 1 2
mi
Z
2 i
1 2
(0.01
22
0.02
12 )
0.03
mol
kg 1
5
(2)活度和活度系数
(1)离子氛和离子强度
强电解质在水溶 液中是完全电离的,但 离子并不是自由的,存 在着“离子氛”。
用I — 离 子强度表示 离子与“离子氛”之间的强弱,Zi表 示溶液中种i离子的电荷数,mi表示i种离子的质量摩尔浓度,则
1
I= 2
mi
Z
2 i
4
Example 1
求下列溶液的离子强度.
Solution