交通运输道路交通系统仿真模型与方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲 道路交通系统仿 真模型与方法
主要内容
一、系统仿真模型的分类 二、道路交通系统仿真模型的发展 三、微观交通仿真模型 四、中观交通仿真模型 五、宏观交通仿真模型 六、道路交通系统仿真方法
一、系统仿真模型的分类
模型种类:物理仿真和数学仿真 时间:动态仿真模型和静态仿真模型 状态变量的取值:连续性模型和离散性模型 模型参数:确定性仿真和随机性仿真 仿真输出结果:数字仿真与图像仿真 交通系统描述细节程度:宏观仿真、中观仿真和微观
仿真
宏观交通仿真
宏观交通仿真不对某具体车辆的运动过程进行描述,即不 考虑个别车辆的运动,而是从统计意义上成批地考虑车辆 的运动。例如,交通流可以通过流量、密度、速度关系等 一些集聚性的宏观模型来描述,而象车辆的车道变换之类 的细节行为可能根本就不予以描述。
宏观交通仿真模型适用于描述系统的总体特性,并试图通 过真实反映系统中的所有个体特性来反映系统的总体特性。 对计算机资源要求较低,仿真速度很快。宏观仿真模型的 重要参数是速度、密度和流量。
宏观交通仿真模型对交通系统的要素及行为的细节描述程 度较低。同微观仿真相比其精度低,应用的范围也小。
用于研究基础设施的新建、扩建及宏观管理措施等。如大 规模的路网范围内进行交通宏观仿真。
中观交通仿真
在宏观交通网络的基础上,将个体车辆放入宏观交通流中 进行分析,根据模拟的需要,对特定车辆的速度、位置及 其它属性进行标识,或对个体车辆分组,再对每组车辆的 速度、位置及其它属性进行标识。
微观交通仿真对计算机资源要求较高,它的仿真速度慢, 用于研究交通流与局部的道路设施的相互影响(如车道划 分、道路宽度、弯道、坡度及公交站的设置等),也用于 交通控制仿真(如交通信号灯控制、让路停车等)。
二、 道路交通系统仿真模型的发展
20世纪60年代:英国的D. L.罗伯逊于1968年提出 TRANSYT(宏观仿真)交通仿真软件是当时最具代表性 的成果,用以确定定时交通信号参数的最优值。
能够产生进入路网的不同种类的车辆以及车长、初速 度等,获得交通流的各种统计数据;
能够处理车辆在路网上的运行情况,准确地反映出车辆 间的相互作用,如跟驰、车道变换时的相互作用,以及 驾驶员的行为;
能够处理网络内部对车流产生影响的发生点和吸纳点 能够跟踪路网内行驶的任何一辆车,真实地模拟交通控
三、微观交通仿真模型
微观交通仿真模型基本上由两大部分组成: 一部分是路网几何形状的精确描述,包括信号灯、检
测器、可变信息标示等交通设施。 另一部分是每辆车动态交通行为的精确模拟,这种模
拟要考虑驾驶员的行为并根据车型加以区分。
1 交通流微观仿真系统的功能要求
能够建立和处理不同形式的路网,清晰地表现路网的 几何形状,包括交通设施,如信号灯,车辆检测器等;
80年代初已形成了CORQ、FREQ、INTRAS、MACK和 源自文库COT等五大仿真模型,用于高速公路匝道控制和事故 研究。主要以优化城市道路的信号设计为应用目的,多 采用宏观模型。
90年代一些比较知名的交通仿真软件有FRESIM[FHWA (1994)]、CORSIM[FHWA(1996)]等先后相继推出。德 国PTV公司也推出模拟城市道路与城市间高速公路交通 流的微观交通仿真软件VISSIM及用于城市和乡村道路网 短期交通预测的中观交通仿真软件DYNEMO。
制策略(定周期、自适应、匝道控制等);
1 交通流微观仿真系统的功能要求
能够模拟先进的交通管理策略,如路径重定向、速度控 制和车道控制等;
能够提供与外部应用程序交互的接口; 能够模拟动态车辆诱导,再现被诱导车辆和交通中心
的信息交换; 能够应用于一般的路网,包括城市道路和城市间的高
速公路; 能够仿真路网交通流的状况,如交通需求的变化等; 能够模拟公共交通; 提供结果分析的工具和图形化的交互界面。
中观交通仿真模型对交通系统的要素及行为的细节描述程 度较高。其对交通流的描述往往以若干辆车构成的队列为 单元,能够描述队列在路段和节点的流入流出行为,对车辆 的车道变换之类的行为也可用简单的方式近似描述。
这一仿真系统可以用来拟定、评价在较大范围内进行交通 控制和干预的措施和方法,从而对交通流进行最优控制。 根据目前计算机硬件的发展水平,可以在较大规模的路网 范围内进行交通中观仿真,如ITS中面向诱导的交通仿真。
车辆的生成与到达
车辆的到达在某种程度上具有随机性,统计规律可用 车头时距的分布来描述
当描述有充分超车机会的单列车流和密度不大的多列 车流的车头时距分布时,常选用负指数分布
P(ht >t)=exp(-Qt/3600)
描述不能超车的单列车流的车头时距分布和车流量低 的车流的车头时距分布时,常选用移位的负指数分布
交通仿真的发展趋势
目前交通微观仿真模型已有一百多个。其中,多数模 型使用时间步长扫描法,只有少数几种模型采用事件 扫描法。
在现有的交通仿真模型中,以时间扫描作为计算进程 控制的随机性微观仿真模型是当前交通仿真研究的热 点
随着智能运输系统ITS的发展与应用,如何开发支持 ITS影响评价的仿真模型已成为国际流行的发展趋势。
2 微观交通仿真基本模型
微观交通仿真模型的基本构成
车辆行驶行为模型 交通控制状态模型 交通管理状态模型 道路几何状态模型
车辆行驶行为模型通过对车辆在各种约束条件下行驶 行为的描述反映路网交通状态,是模型体系的核心。
后三者侧重于对各类方案的描述,并确定车辆行驶行 为模型的约束条件。
微观交通仿真
微观交通仿真把每辆车作为一个研究对象,对所有个体车 辆都进行标识和定位。在每一扫描时段,车辆的速度、加 速度及其它车辆特性被更新。
微观交通仿真能模拟出短时段内交通流的波动情况。跟驰 模型、超车模型及变换车道模型是微观仿真的基本模型。
对交通流的描述是以单个车辆为基本单元的,进入路网的 时间、车种、车速的设定及路口的转向都是随机确定的。 微观仿真模型的重要参数是每辆车的速度和位置。
主要内容
一、系统仿真模型的分类 二、道路交通系统仿真模型的发展 三、微观交通仿真模型 四、中观交通仿真模型 五、宏观交通仿真模型 六、道路交通系统仿真方法
一、系统仿真模型的分类
模型种类:物理仿真和数学仿真 时间:动态仿真模型和静态仿真模型 状态变量的取值:连续性模型和离散性模型 模型参数:确定性仿真和随机性仿真 仿真输出结果:数字仿真与图像仿真 交通系统描述细节程度:宏观仿真、中观仿真和微观
仿真
宏观交通仿真
宏观交通仿真不对某具体车辆的运动过程进行描述,即不 考虑个别车辆的运动,而是从统计意义上成批地考虑车辆 的运动。例如,交通流可以通过流量、密度、速度关系等 一些集聚性的宏观模型来描述,而象车辆的车道变换之类 的细节行为可能根本就不予以描述。
宏观交通仿真模型适用于描述系统的总体特性,并试图通 过真实反映系统中的所有个体特性来反映系统的总体特性。 对计算机资源要求较低,仿真速度很快。宏观仿真模型的 重要参数是速度、密度和流量。
宏观交通仿真模型对交通系统的要素及行为的细节描述程 度较低。同微观仿真相比其精度低,应用的范围也小。
用于研究基础设施的新建、扩建及宏观管理措施等。如大 规模的路网范围内进行交通宏观仿真。
中观交通仿真
在宏观交通网络的基础上,将个体车辆放入宏观交通流中 进行分析,根据模拟的需要,对特定车辆的速度、位置及 其它属性进行标识,或对个体车辆分组,再对每组车辆的 速度、位置及其它属性进行标识。
微观交通仿真对计算机资源要求较高,它的仿真速度慢, 用于研究交通流与局部的道路设施的相互影响(如车道划 分、道路宽度、弯道、坡度及公交站的设置等),也用于 交通控制仿真(如交通信号灯控制、让路停车等)。
二、 道路交通系统仿真模型的发展
20世纪60年代:英国的D. L.罗伯逊于1968年提出 TRANSYT(宏观仿真)交通仿真软件是当时最具代表性 的成果,用以确定定时交通信号参数的最优值。
能够产生进入路网的不同种类的车辆以及车长、初速 度等,获得交通流的各种统计数据;
能够处理车辆在路网上的运行情况,准确地反映出车辆 间的相互作用,如跟驰、车道变换时的相互作用,以及 驾驶员的行为;
能够处理网络内部对车流产生影响的发生点和吸纳点 能够跟踪路网内行驶的任何一辆车,真实地模拟交通控
三、微观交通仿真模型
微观交通仿真模型基本上由两大部分组成: 一部分是路网几何形状的精确描述,包括信号灯、检
测器、可变信息标示等交通设施。 另一部分是每辆车动态交通行为的精确模拟,这种模
拟要考虑驾驶员的行为并根据车型加以区分。
1 交通流微观仿真系统的功能要求
能够建立和处理不同形式的路网,清晰地表现路网的 几何形状,包括交通设施,如信号灯,车辆检测器等;
80年代初已形成了CORQ、FREQ、INTRAS、MACK和 源自文库COT等五大仿真模型,用于高速公路匝道控制和事故 研究。主要以优化城市道路的信号设计为应用目的,多 采用宏观模型。
90年代一些比较知名的交通仿真软件有FRESIM[FHWA (1994)]、CORSIM[FHWA(1996)]等先后相继推出。德 国PTV公司也推出模拟城市道路与城市间高速公路交通 流的微观交通仿真软件VISSIM及用于城市和乡村道路网 短期交通预测的中观交通仿真软件DYNEMO。
制策略(定周期、自适应、匝道控制等);
1 交通流微观仿真系统的功能要求
能够模拟先进的交通管理策略,如路径重定向、速度控 制和车道控制等;
能够提供与外部应用程序交互的接口; 能够模拟动态车辆诱导,再现被诱导车辆和交通中心
的信息交换; 能够应用于一般的路网,包括城市道路和城市间的高
速公路; 能够仿真路网交通流的状况,如交通需求的变化等; 能够模拟公共交通; 提供结果分析的工具和图形化的交互界面。
中观交通仿真模型对交通系统的要素及行为的细节描述程 度较高。其对交通流的描述往往以若干辆车构成的队列为 单元,能够描述队列在路段和节点的流入流出行为,对车辆 的车道变换之类的行为也可用简单的方式近似描述。
这一仿真系统可以用来拟定、评价在较大范围内进行交通 控制和干预的措施和方法,从而对交通流进行最优控制。 根据目前计算机硬件的发展水平,可以在较大规模的路网 范围内进行交通中观仿真,如ITS中面向诱导的交通仿真。
车辆的生成与到达
车辆的到达在某种程度上具有随机性,统计规律可用 车头时距的分布来描述
当描述有充分超车机会的单列车流和密度不大的多列 车流的车头时距分布时,常选用负指数分布
P(ht >t)=exp(-Qt/3600)
描述不能超车的单列车流的车头时距分布和车流量低 的车流的车头时距分布时,常选用移位的负指数分布
交通仿真的发展趋势
目前交通微观仿真模型已有一百多个。其中,多数模 型使用时间步长扫描法,只有少数几种模型采用事件 扫描法。
在现有的交通仿真模型中,以时间扫描作为计算进程 控制的随机性微观仿真模型是当前交通仿真研究的热 点
随着智能运输系统ITS的发展与应用,如何开发支持 ITS影响评价的仿真模型已成为国际流行的发展趋势。
2 微观交通仿真基本模型
微观交通仿真模型的基本构成
车辆行驶行为模型 交通控制状态模型 交通管理状态模型 道路几何状态模型
车辆行驶行为模型通过对车辆在各种约束条件下行驶 行为的描述反映路网交通状态,是模型体系的核心。
后三者侧重于对各类方案的描述,并确定车辆行驶行 为模型的约束条件。
微观交通仿真
微观交通仿真把每辆车作为一个研究对象,对所有个体车 辆都进行标识和定位。在每一扫描时段,车辆的速度、加 速度及其它车辆特性被更新。
微观交通仿真能模拟出短时段内交通流的波动情况。跟驰 模型、超车模型及变换车道模型是微观仿真的基本模型。
对交通流的描述是以单个车辆为基本单元的,进入路网的 时间、车种、车速的设定及路口的转向都是随机确定的。 微观仿真模型的重要参数是每辆车的速度和位置。