高三数学考试万能解题法

合集下载

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法高中数学解答题是每一位学生都要面对的考试难题,要想在考场上取得好成绩,就需要掌握一些答题模板和技巧。

本文将为大家分享一些高中数学解答题的8个答题模板以及做大题的方法。

一、直接套公式有些题目只需要把已知条件代入公式求解即可。

例如:已知正方形的一条对角线长度为10,求正方形面积。

解答:根据正方形对角线公式可知,正方形的边长等于对角线长度的平方除以2,即$a=\frac{\sqrt{2}}{2} \times 10=5\sqrt{2}$正方形面积为$a^2=50$。

二、代数相加减有些题目需要转换成代数式,通过相加减化简后求解。

例如:已知$\frac{x+2}{a}=\frac{4}{x-2}$,求$\frac{x^2+2x}{a^2}$的值。

解答:将已知条件转换为代数式,得到$x+2=\frac{4a}{x-2}$将$x^2+2x$用$x+2$和$x-2$表示出来,可得:$x^2+2x=(x+2)(x-2)+6$代入上式可得:$\frac{x^2+2x}{a^2}=\frac{(x+2)(x-2)+6}{a^2}=\frac{4a^2+6}{ a^2}=4+\frac{6}{a^2}$三、代数移项有些题目需要进行代数移项以消去未知量,例如:已知2x-3y=9,求y。

解答:将未知量y移至等式左侧,可得$2x-9=3y$将等式两侧同时除以3,即得y的值:$y=\frac{2x-9}{3}$。

四、因式分解有些题目需要通过因式分解来求解,例如:已知$x^2+3x-10=0$,求x。

解答:将$x^2+3x-10$进行因式分解,可得$(x+5)(x-2)=0$因此,$x=-5$或$x=2$。

五、有理化有些题目涉及分数,需要进行有理化操作,例如:已知$\frac{1}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}=a+b\sqrt{3}$,求a和b的值。

解答:分别对两个分数进行有理化,可得:$\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$,$\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$将上式代入原式,可得:$a+b\sqrt{3}=\frac{\sqrt{3}+1}{2}+\sqrt{3}-1=2\sqrt{3}-\frac{ 1}{2}$因此,a= -1/2,b= 2。

高考数学答题万能模板

高考数学答题万能模板

高考数学答题万能模板一、问题分析在高考数学答题过程中,我们常常遇到各种类型的题目,而每个题目又有不同的解题思路和方法。

为了提高答题效率和准确性,我们可以使用以下的万能模板来辅助解答。

二、万能模板1. 解决方案模板当遇到复杂的数学问题时,我们可以使用以下的解决方案模板来有条理地解答问题:- 问题陈述:清晰地陈述题目所给的条件和要求。

问题陈述:清晰地陈述题目所给的条件和要求。

- 思路分析:分析问题的关键点和难点,明确解题思路。

思路分析:分析问题的关键点和难点,明确解题思路。

- 公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。

公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。

- 计算过程:按照步骤进行计算,注意每一步的细节和注意事项。

计算过程:按照步骤进行计算,注意每一步的细节和注意事项。

- 最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。

最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。

2. 图形解析模板当遇到涉及图形的题目时,我们可以使用以下的图形解析模板来进行问题分析和解答:- 给定图形的特点描述。

- 根据特点分析,确定所需解题的步骤和方法。

- 运用几何相关定理和公式,进行计算和推理。

- 最后给出答案及解答的过程。

3. 数据分析模板当遇到涉及数据分析的题目时,我们可以使用以下的数据分析模板来进行问题分析和解答:- 给定数据的描述和要求。

- 理清问题的思路和逻辑,确定解题的步骤。

- 运用统计学知识和相关公式,进行数据分析和计算。

- 最后给出答案及解答的过程。

三、总结高考数学答题万能模板可以提供一个结构化的解题方法和思路,帮助我们更有效地解答各种类型的数学题目。

在使用模板时,我们要根据实际题目的要求和题型,灵活运用模板的内容,以达到解题的目的。

希望这份高考数学答题万能模板能对您有所帮助!。

高中数学万能解题法奥拓莱斯

高中数学万能解题法奥拓莱斯

高中数学万能解题法
①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学万能答题模板

高考数学万能答题模板

高考数学万能答题模板数学是一个让许多同学头痛的学科,那么,怎么应对数学考试呢?下面是我整合的高考数学万能答题模板,一起来看看吧,确定对你有所关心的。

高考数学万能答题模板选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础学问点记忆,避开由于学问点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集状况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2.答题(方法):选择题十大速解方法:排解法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特别化法、数形结合法、等价转化法。

解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h 的性质,写出结果。

④(反思):反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。

以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。

2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。

3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。

4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。

5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。

6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。

7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。

8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。

9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。

10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。

以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。

这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。

高考数学选择题的十大万能解题方法

高考数学选择题的十大万能解题方法

高考数学选择题的十大万能解题方法1、特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2、极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3、剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4、数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5、递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6、顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7、逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

高考数学选择题的万能解题方法归纳

高考数学选择题的万能解题方法归纳

高考数学选择题的万能解题方法归纳
1、特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,那么它在一般情况下不真这一原理,到达去伪存真的目的。

2、极端性原那么:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而到达迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3、剔除法:利用条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而到达正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4、数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5、递推归纳法:通过题目条件进行推理,规律,从而归纳出正确答案的方法。

6、顺推破解法:利用数学定理、公式、法那么、定义和题意,通过直接演算推理得出结果的方法。

7、逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否认错误选择支而得出正确选择支的方法。

8、正难那么反法:从题的正面解决比拟难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9、特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比拟、推算,从面得出正确判断的方法。

高考数学解题最佳方法_数学拿高分技巧

高考数学解题最佳方法_数学拿高分技巧

高考数学解题最佳方法_数学拿高分技巧数学高考解题可以用方程解题法,数学题目中的各种数量关系大都具有紧密联系,所以可以利用方程解题法建立多种数量关系,简化解题步骤,更好解决数学问题。

下面我给大家带来高考数学解题最佳方法,期望大家宠爱!高中数学解题有效方法一、数形结合法数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简洁的数量关系,挂念我们更好解决数学问题。

高中数学题目对我们的规律思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必需严谨推导各种数量关系。

很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

二、排解解题法排解解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的精确率。

排解解题法一般用于解决数学选择题,当我们应用排解法解决问题时,需把握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排解,从而有效解决数学问题。

当我们在解决选择题时,必需将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排解,从而选择正确的答案。

高三数学成绩怎么提高1.对数学的认知。

由于成绩长期没有提升,很多学生觉得数学本身就难,或者觉得自己不具备某种天赋、某种方法,于是对自己怀疑,甚至对自己没有信念,那么这样的话很简洁挫伤学习数学的乐观性。

2.备考的方向。

很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永久都做不完题,结果是成绩没有提升上去。

那么这个方向,当然也有一些考生走向了另一个极端,不宠爱做题甚至很少做题,这些考生有的觉得自己很聪慧,应当能学好理科,特殊是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。

50个高考数学解题技巧

50个高考数学解题技巧

50个高考数学解题技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。

高考数学万能公式口诀大全

高考数学万能公式口诀大全

高考数学万能公式口诀大全高考数学,一直是众多学子心中的难题。

要在高考数学中取得优异成绩,掌握各种公式和口诀是必不可少的。

下面就为大家整理一份高考数学万能公式口诀大全,希望能对大家有所帮助。

一、函数部分1、函数性质口诀函数奇偶看对称,奇函数关于原点,偶函数关于 y 轴;单调递增与递减,导数正负来判断;周期函数看规律,最小正周期要牢记。

2、反函数口诀反函数,要互换,原函数的定义域,是反函数的值域;原函数的值域,是反函数的定义域,两者关系要理清。

3、幂函数口诀幂指函数最常见,性质众多要分辨;指数大于零,图象过原点,在第一象限内,函数为增函;指数小于零,图象不过点,在第一象限内,函数为减函。

4、指数函数口诀指数函数底数分,大于一为增函数,小于一为减函数;底数若是大于零,图象经过一、二象限,且在 y 轴右侧;底数若是小于零,图象经过二、三象限,且在 y 轴左侧。

5、对数函数口诀对数函数真数大,底数大于一为增,底数小于一为减;对数函数真数小,底数大于一为减,底数小于一为增。

二、三角函数部分1、诱导公式口诀奇变偶不变,符号看象限。

解释:对于形如kπ/2 ± α 的角,当 k 为奇数时,函数名要改变(正弦变余弦,余弦变正弦);当 k 为偶数时,函数名不变。

然后根据角所在的象限确定符号。

2、两角和与差公式口诀正余同余正,余余反正正;和差化积与积化和差,同名相乘用余弦,异名相乘用正弦。

解释:正弦和余弦的两角和与差公式中,“正余同余正”指的是正弦加正弦、余弦加余弦都用余弦公式,“余余反正正”指的是余弦减余弦、正弦减正弦都用正弦公式。

3、倍角公式口诀二倍角公式很重要,正弦余弦要记牢;正弦二倍角,一减余弦二倍半;余弦二倍角,余弦平方减正弦平方。

4、辅助角公式口诀辅助角公式要记清,提出根号二化同形;正余弦前面系数平,和为一才能行。

解释:对于形如 asinx + bcosx 的式子,可以化为√(a²+ b²)sin(x+φ) 的形式,其中φ 的值由tanφ = b/a 确定。

高考数学万能解题技巧总结

高考数学万能解题技巧总结

高考数学万能解题技能总结由于考试比较容易紧张,不仅速度慢,还可能会把自己本来会做的题做错,因此掌控一些数学的解题方法尤为重要。

下面是作者为大家整理的关于高考数学万能解题技能总结,期望对您有所帮助!高考数学万能解题方法1.思路思想提炼法催生解题灵感。

“没有解题思想,就没有解题灵感”。

但“解题思想”对很多学生来说是既熟悉又陌生的。

熟悉是由于教师每天挂在嘴边,陌生就是说不请它究竟是什么。

建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌控。

2. 典型题型精熟法抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的成效,而80%的琐碎工作只产生20%的成效。

数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的奉献。

因此,提高数学成绩,必须优先抓住那20%的题目。

针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,到达每个章节的典型题型都成竹在胸时,解题时就会得心应手。

3. 逐渐深入纠错法巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。

学数学也是这样,数学考试成绩常常会由于某些薄弱环节大受影响。

因此,巩固某个薄弱环节,比做对一百道题更重要。

高考数学万能解题技能高考数学万能解题法——熟悉基本的解题步骤和解题方法解题的进程,是一个思维的进程。

对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一样只要顺着这些解题的思路,遵守这些解题的步骤,常常很容易找到习题的答案。

高考数学万能解题法——审题要认真仔细对于一道具体的习题,解题时最重要的环节是审题。

审题的第一步是读题,这是获取信息量和摸索的进程。

读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些学生没有养成读题、摸索的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。

高考数学万能做题技巧

高考数学万能做题技巧

高考数学万能做题技能数学这个学科是很多人心中的惧怕,由于它复杂难知道,特别是对于文科生来说,需要强大的逻辑思维才能理顺一道数学题。

下面是作者为大家整理的关于高考数学万能做题技能,期望对您有所帮助!高中数学解题方法一、分析条件和结论的联系解完题后,要摸索题目触及了哪些知识点,各已知条件之间是怎样深化和联系的,有哪些条件的运用方式是以前题目中没有显现过的,条件和结论是怎样联系的,求得的结果与题意或实际生活是否相符。

通过这样的摸索可使我们清楚题目的背景,促使我们进行大胆探索,进而发觉规律,激发创造性思维。

二、体会数学方法和思想解题后,要注意摸索所解题目运用的是那一种数学方法,渗透了什么数学思想,以到达举一反三、触类旁通的目的。

常用的数学方法主要有:(1) 配方法 (2) 换元法 (3) 待定系数法 (4 ) 定义法 (5 ) 数学归纳法( 6 ) 参数法( 7) 反证法 (8)构造法 ( 9) 分析与综合法 (10) 特例法 (11 ) 类比与归纳法。

高中数学常用的数学思想有:(1)数形结合思想(2 )分类讨论思想(3 ) 函数与方程思(4 ) 转化与化归的思想。

常常进行这样的摸索和分析,有利于对知识的深入知道和运用,提高知识的迁移能力。

高中数学做题技能1.先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惶恐失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳固,对全卷整体掌控之后,就可实行先熟后生的方法,即先做那些内容掌控比较到家、题型结构比较熟悉、解题思路比较清楚的题目。

这样,在拿下熟题的同时,可以使思维流畅、超常发挥,到达拿下中高级题目的目的。

3.先同后异。

先做同科同类型的题目,摸索比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。

高中数学万能解题模板

高中数学万能解题模板

高中数学万能解题模板高中数学万能解题模板 1①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

⑩⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高中数学万能解题模板 2模板1 三角函数计算问题第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板2 对称轴、距离第一步找到周期和对称轴第二步确定对称轴距离第三步写出关系式模板3 拼凑计算问题第一步化简第二步通过拼凑,写出我们想要的诱导公式第三步求出结果模板4 三角等式的证明第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板5 求三角函数的定义域第三步结合定义域求出最值模板7 二次函数求最值第一步化简成二次函数的形式第二步配方第三步考虑定义域求出最值模板8 均值求最值第一步化简第二步转化为均值不等式的形式第三步当且仅当求出最值模板9 构造函数求最值第一步化简第二步构造函数第三步转化成见过的形式模板10 放缩求最值第一步找到或者创造放缩点第二步转化为我们见过的形式第三步搞定模板11 解三角形求最值第一步利用解三角形,一般是余弦定理第二步均值不等式第三步搞定模板12 向量问题第一步把向量问题转化为三角函数问题第二步利用三角函数解决模板13 判断形状第一步正弦或余弦定理第二步角化边或边化角第三步判断形状模板14 求面积第一步化简第二步求出夹角和临边第三步利用公式计算面积模板15 找规律第一步观察,找到见过的或会做的形式第二步利用见过的东西写出规律第三步生疏不可怕,只要计算对,肯定没问题模板16 实际问题第一步将实际问题转化为数学问题第二步利用三角函数,求出结果第三步将数学问题转化为实际问题。

高考数学万能解题方法有哪些

高考数学万能解题方法有哪些

高考数学万能解题方法有哪些数学的答题时间是两小时,但每次考试总有考生出现时间不够用的情况,那高考数学应该怎么答才节省时间呢?高考数学答题有什么好的使用方法呢?以下是我整理的高考数学万能解题方法,仅供考生参考。

高考数学从卷首依次开始答题高考数学大致是先易后难的排列,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。

有的考生愿意从卷末难题开始做,他们认为自己前面的题没有问题,好坏成败就看卷末的难题做得怎么样,开始时头脑最清醒,先做最难的题成功率高、效果好,想以攻坚胜利保证全局的胜利。

这种想法看似有理,实际是错误的。

一般高考数学卷末的题比较难,除了个别水平特别高的考生,都没有做好该题的把握。

很可能花了不少时间,也没有把这个题满意地做完。

你这时的思绪多半已经被搅得很乱,又由于花了不少时间,别的题一点没有做,难免心里发慌,以慌乱之心做前面的题,效果也会大打折扣。

数学审题要认真仔细高考数学中解题最重要的环节是审题。

审题的第一步是读题,这是获取信息量和思考的过程。

读题要慢,一边读一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些考生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。

所以,在高考数学的实际解题时,应特别注意,审题要认真仔细。

高考数学解题时要创新考生在高考数学解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。

建议考生在分类高考数学讨论解题时,要做到标准统一不重不漏。

高考数学解题时要把问题简单化当考生面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,用新的解题思路,解出原题。

50条高考数学秒杀公式方法

50条高考数学秒杀公式方法

50条高考数学秒杀公式方法高考数学是高中阶段最重要的科目之一,也是考生们普遍感到困难的科目之一、而掌握一些高考数学的秒杀公式,不仅可以在考场上提高效率,还可以帮助考生更好地理解和解题。

下面是50条高考数学秒杀公式方法:一、二次函数1. 一般式:y=ax^2+bx+c,顶点是(-b/2a, -△/4a),对称轴是x=-b/2a;2.抛物线开口情况:a>0时,开口向上;a<0时,开口向下;3. 零点判别式:△=b^2-4ac,当△>0时,零点有2个;当△=0时,零点有1个;当△<0时,零点没有;4.顶点坐标:(-b/2a,c-b^2/4a);5. 切线方程:y=kx+b,k=2a;6. 直线与抛物线交点:求解方程ax^2+bx+c=y;7.最值:y=a最大值的时候,x=-b/2a;y=a最小值的时候,x=-b/2a;二、三角函数1. 正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a,b,c为三角形的边长,A,B,C为对应的角度,R为外接圆半径;2. 余弦定理:c^2=a^2+b^2-2abcosC,其中a,b,c为三角形的边长,C为对应的角度;3. 正弦函数的性质:-1≤sinx≤1;4. 余弦函数的性质:-1≤cosx≤1;5. 三角函数的周期性:sin(x+2kπ)=sinx,cos(x+2kπ)=cosx,其中k为整数;6. 诱导公式:sin(A±B)=sinAcosB±cosAsinB,cos(A±B)=cosAcosB∓sinAsinB;7. 一些特殊角的值:sin30°=1/2,cos30°=√3/2,sin45°=cos45°=1/√2,sin60°=√3/2,cos60°=1/2;8. 三角函数图像:y=Asin(Bx+C)+D,A为振幅,B为周期,C为横向平移量,D为纵向平移量;三、数列与数列的和1.等差数列:an=a1+(n-1)d,Sn=(a1+an)n/2;2.等比数列:an=a1*q^(n-1),Sn=a1(q^n-1)/(q-1),其中q为公比;3. 通项和前n项和的换算:an=Sn-S(n-1);4.等差数列前n项和的推导:n=(an-a1)/d+1,Sn=(a1+an)n/2=(a1+an)/2*n;5.等比数列前n项和的推导:Sn=a1(1-q^n)/(1-q),当,q,<1时,Sn=a1/(1-q);四、导数与微分1. 导数的定义:f'(x)=lim(x→0)(f(x+h)-f(x))/h;2. 基本初等函数的导数:常数函数的导数为0,x^n的导数为nx^(n-1),sinx的导数为cosx,cosx的导数为-sinx,e^x的导数为e^x,lnx的导数为1/x;3. 乘法法则:(u·v)'=u'v+uv';4. 除法法则:(u/v)'=(u'v-uv')/v^2;5.链式法则:[f(g(x))]'=f'(g(x))·g'(x);6.整除法:P(x)=D(x)·G(x)+R(x),R(x)为余数;7. 幂函数的导数:y=x^n,y'=nx^(n-1);8. 指数函数的导数:y=a^x,y'=a^x·lna;9. 对数函数的导数:y=log_a(x),y'=1/(x·lna);五、空间几何1.平面方程:Ax+By+Cz+D=0;2.直线方程:(x-x0)/m=(y-y0)/n=(z-z0)/p,其中(x0,y0,z0)为直线上一点的坐标,m,n,p分别为直线在x,y,z轴上的方向比例;3.平面与平面的交线:先通过向量积求得交点的一个坐标,再带入两个平面方程解出其他两个坐标;4.立体图形的体积:长方体的体积为V=a·b·c,正方体的体积为V=a^3,圆柱的体积为V=πr^2h,圆锥的体积为V=1/3πr^2h,球体的体积为V=4/3πr^3以上是50条高考数学的秒杀公式方法,希望对你备考高考数学有所帮助!。

高考数学常用经典解题方法

高考数学常用经典解题方法

高考数学常用经典解题方法高考数学常用经典解题方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用非常非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的根底,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用非常广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比拟复杂的数学式子中,用新的变元去代替原式的一个局部或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来断定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,假设先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析^p ,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

高考数学解题的12种方法

高考数学解题的12种方法

高考数学解题的12种方法
1. 找准问题的关键点,归纳问题的要点和条件,分析问题的结构和性质,选择合适的解题方法。

2. 利用同种题目的解题思路、解题技巧,加速解题过程。

3. 运用代数方法,通过建立方程或不等式来解决问题。

4. 运用几何方法,通过画图、利用几何性质等方式解决问题。

5. 运用数列和级数的性质,通过数学归纳法或递推公式来解决问题。

6. 运用函数的性质,通过函数的图像、函数的变换等方式解决问题。

7. 运用概率和统计的方法,通过计算概率、分析统计数据等方式解决问题。

8. 运用数论的方法,通过分解因式、最大公约数、最小公倍数等方式解决问题。

9. 运用组合数学的方法,通过排列组合、选择判断等方式解决问题。

10. 运用解析几何的方法,通过坐标轴、向量等几何工具解决问题。

11. 运用微积分的方法,通过求导、求积分等方式解决问题。

12. 运用图论的方法,通过图的模型、路径分析等方式解决问题。

高考数学选择题的十大万能解题方法,选择题正确率低的要看!

高考数学选择题的十大万能解题方法,选择题正确率低的要看!

高考数学选择题的十大万能解题方法,选择题正确率低的要看!1、特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2、极端性原则:极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3、剔除法:剔除利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4、数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5、递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6、顺推破解法:顺利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7、逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8、正难则反法:8、正从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9、特征分析法:特对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019—2019高三数学考试万能解题法
数学是学习和研究现代科学技术必不可少的基本工具。

以下是查字典数学网为大家整理的高三数学考试万能解题法,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归
纳出正确答案的方法。

⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”
一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

最后,希望小编整理的高三数学考试万能解题法对您有所帮助,祝同学们学习进步。

相关文档
最新文档