高中数学必修五第一章 解三角形测试题
人教版高中数学必修5第一章解三角形测试题及答案
必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
高中数学必修5第一章《解三角形》综合测试
高中数学必修5第一章《解三角形》综合测试一、选择题(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.某三角形的两个内角为o45和o60,若o45角所对的边长是6,则o60角所对的边长是【 】A .B .C .D .2.在ABC ∆中,已知a =10c =,o30A =,则B 等于 【 】 A .o105 B .o60 C .o15 D .o 105或o153.在ABC ∆中,三边长7AB =,5BC =,6AC =,则AB BC ⋅的值等于 【 】A .19B .14-C .18-D .19-4.在ABC ∆中,sin <sin A B ,则 【 】 A .<a b B .>a b C .a b ≥ D .a 、b 的大小关系不确定5.ABC ∆满足下列条件:①3b =,4c =,o 30B =;②12b =,9c =,o60C =;③b = 6c =,o 60B =;④5a =,8b =,o30A =.其中有两个解的是 【 】A .①②B .①④C .①②③D .②③6.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是【 】A B C .2 D .3 7.设a 、1a +、2a +是钝角三角形的三边长,则a 的取值范围为 【 】 A .0<<3a B .1<<3a C .3<<4a D .4<<6a8.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,且4a =,5b c +=,tan tan A B +t a n t a nA B =⋅,则ABC ∆的面积为 【 】A .32 B . C .2D .52 10.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形二、填空题(每小题5分,共30分)9.在ABC ∆中,1sin 3A =,cos B =1a =,则b =______.10.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若c =b =o 120B =,则a =______.11.如果ABC ∆的面积是222S =C =____________.12.ABC ∆的三内角A 、B 、C 的对边分别为a 、b 、c ,若o60A =,1b =,三角形的面积S =sin sin sin a b cA B C++++的值为_________.13.一蜘蛛沿正北方向爬行x cm 捉到一只小虫,然后向右转o105,爬行10cm 捉到另一只小虫,这 时它向右转o135爬行回它的出发点,那么x =_________.14.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,向量1)m =- ,(cos ,sin )n A A =,若m n ⊥,且cos cos sin a B b A c C +=,则B =_________.三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)在ABC ∆中,已知2a =,c =o 45A =,解此三角形.16.(本题满分12分)如图,在四边形ABCD 中,已知BA AD ⊥,10AB =,BC = o60BAC ∠=,o135ADC ∠=,求CD 的长.17.(本题满分14分)a 、b 、c 是ABC ∆的内角A 、B 、C 的对边,S 是ABC ∆的面积,若4a =, 5b =,S =c .18.(本题满分14分)在ABC ∆中,sin sin cos B A C =,其中A 、B 、C 是ABC ∆的三个内角, 且ABC ∆最大边是12,最小角的正弦值是13. (1)判断ABC ∆的形状; (2)求ABC ∆的面积.BDA19.(本题满分14分)海上某货轮在A 处看灯塔B 在货轮的北偏东o75,距离为A处看灯塔C 在货轮的北偏西o30,距离为A 处行驶到D 处时看灯塔B 在货轮的北偏东o 120.求 (1)A 处与D 处之间的距离; (2)灯塔C 与D 处之间的距离.20.如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=, 3cos 5ADC ∠=. (1)求sin ABD ∠的值; (2)求BD 的长.21.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知.cos cos cos 2C b B c A a += (1)求A cos 的值; (2)若23cos cos ,1=+=C B a ,求边c 的值.● 以下两题任选一题作答20.(本题满分14分)在锐角ABC ∆中,边a 、b 是方程220x -+=的两根,A 、B 满足2sin()A B +0=,解答下列问题: (1)求C 的度数;(2)求边c 的长度; (3)求ABC ∆的面积.20.(本题满分14分)ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若AB AC BA BC ⋅=⋅1=.解答下列问题:(1)求证:A B =; (2)求c 的值;(3)若||AB AC +=ABC ∆的面积.。
人教版高中数学必修5测试题及答案全套(20200731141056).pdf
16.在△ ABC中, a, b, c 分别是角 A,B, C的对边,且 cosB cosC
(1) 求角 B 的值;
b
.
2a c
(2) 若 b= 13 ,a+ c= 4,求△ ABC的面积 .
第二章 数列
测试三 数列
Ⅰ 学习目标
1.了解数列的概念和几种简单的表示方法 ( 列表、图象、通项公式 ) ,了解数列是一种特殊的函数 .
7.在等差数列 { an} 中,已知 a1+a2= 5, a3+ a4= 9,那么 a5+ a6= ________.
8.设等差数列 { an} 的前 n 项和是 Sn,若 S17= 102,则 a9=________. 9.如果一个数列的前 n 项和 Sn= 3n2+ 2n,那么它的第 n 项 an=________. 10.在数列 { an} 中,若 a1= 1, a2= 2, an+ 2-an= 1+ ( -1) n( n∈ N*) ,设 { an} 的前 n 项和是 Sn,则 S10= ________.
三、解答题
11.已知数列 { an} 是等差数列,其前 n 项和为 Sn, a3=7, S4= 24.求数列 { an} 的通项公式 .
12.等差数列 { an} 的前 n 项和为 Sn,已知 a10=30, a20= 50. (1) 求通项 an; (2) 若 Sn= 242,求 n.
13.数列 { an} 是等差数列,且 a1=50, d=-. (1) 从第几项开始 an< 0; (2) 写出数列的前 n 项和公式 Sn,并求 Sn 的最大值 .
②cos( A+ B) = cos C ③ sin A
B
C cos
2
2
高中数学必修5第一章测试题
解三角形练习题 一、选择题1. 满足条件a=4,b=32,A=45°的ABC ∆的个数是( )A .一个B .两个C .无数个D .零个2.如果满足60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( ) A .38=k B .120≤<k C .12≥k D .120≤<k 或38=k3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),则k 的取值范围为( ) A .(2,+∞) B .(-∞,0) C .(-21,0) D .(21,+∞) 4.已知锐角三角形三边分别为3,4,a ,则a 的取值范围为( )A .15a <<B .17a << C5a << D7a << 5.ABC ∆ 中,1,2==c a 则C 角的取值范围是( )A .⎥⎦⎤ ⎝⎛6,0π B. ⎥⎦⎤⎢⎣⎡3,6ππ C. ⎪⎭⎫⎢⎣⎡2,3ππ D. ⎪⎭⎫⎝⎛ππ,2 6.在ABC ∆中,已知()()()a c a c b b c +-=+,则A ∠为( ) A .300B .450C .600D .12007.已知钝角ABC ∆的三边的长是3个连续的自然数,其中最大角为A ∠,则cos A =_____8.在ABC ∆中,若2sin sin cos 2A B C =,则ABC ∆是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形 9.在ABC ∆中,若2sin()sin()sin A B A B C +-=,则此三角形形状是_______. 10.在△ABC 中,若B A sin sin >,则A 与B 的大小关系为( )A. B A >B. B A <C. A ≥BD. A 、B 的大小关系不能确定 11.锐角三角形ABC ∆中,若2A B =,则下列叙述正确的是( ).①sin3sin B C = ②3tan tan 122B C = ③64B ππ<<④ab∈A.①②B.①②③C.③④D.①④ 12.在ABC ∆中,3A π=,3BC =,则ABC ∆的周长为( )A.)33B π++B.)36B π++ C.6sin()33B π++ D.6sin()36B π++ 13.在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B,则角B 的值为( )A.6πB.3π C.6π或56π D.3π或23π14.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于( )A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-a C .)sin(cos cos βαβα-a D .)cos(cos cos βαβα-a二、填空题15.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差数列,30,B =ABC ∆的面积为32,则b =____.16.若△ABC 中,∠C =60°,a +b =1,则面积S 的取值范围是________.17.在ABC ∆中,已知60A =,1b =,ABC S ∆=sin sin sin a b cA B C++=++_______.三、解答题18.在△ABC 中,求证:)cos cos (a A b B c a b b a -=-19、在ABC ∆中,,,a b c 分别是角A ,B ,C 所对边的长,S 是ABC ∆的面积.已知22()S a b c =--,求tan A 的值.20.半径为R 的圆外接于△ABC ,且2R (sin 2A -sin 2C )=(3a -b )sin B .(1)求角C ; (2)求△ABC 面积的最大值.21.在ABC ∆中,c o s,s i n ,c o s ,s i n 2222C C CC ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭m n ,且m 和n 的夹角为3π. (1)求角C ;(2)已知72C =,三角形的面积s =,求.a b +22.在ABC ∆中,已知22()a a b c -=+,223a b c +=-.(1)若sin :sin 4C A =,,a b c ;(2)求ABC ∆的最大角的弧度数.。
人教版高中数学必修5练习 第一章《解三角形》综合检测
第一章综合检测一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的.)1.在△ABC 中,a =80,b =100,A =45°,则此三角形解的情况是( ) A .一解 B .两解 C .一解或两解 D .无解[答案] B[解析] ∵b sin A =100×22=502<80, ∴b sin A <a <b , ∴此三角形有两解.2.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A .31010B .-31010C .55D .-55[答案] D[解析] BC 2=AC 2+AB 2-2AC ·AB cos A =16+2-82cos45°=10,∴BC =10, cos B =AB 2+BC 2-AC 22AB ·BC =-55.3.在△ABC 中,b =3,c =3,B =30°,则a 的值为( ) A . 3 B .2 3 C .3或2 3 D .2[答案] C[解析] ∵sin C =sin B b ·c =32,∴C =60°或C =120°, ∴A =30°或A =90°, 当A =30°时,a =b =3; 当A =90°时,a =b 2+c 2=2 3.故选C .4.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形[答案] C[解析] 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ),∴12(cos A ·cos B +sin A ·sin B )=12,∴cos(A -B )=1, ∴A -B =0,∴A =B ,∴△ABC 为等腰三角形,故选C .5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④ [答案] A[解析] ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的有①②,故选A .6.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15°[答案] A[解析] 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B . ∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°.7.在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( ) A .725B .-725C .±725D .2425[答案] A[解析] 由b sin B =c sin C 及8b =5c ,C =2B 得,5sin2B =8sin B ,∴cos B =45,∴cos C =cos2B =2cos 2B-1=725.8.△ABC 中,|AB →|=5,|AC →|=8,AB →·AC →=20,则|BC →|为( ) A .6 B .7 C .8 D .9 [答案] B[解析] ∵AB →·AC →=20, ∴|AB →||AC →|cos A =20,∴cos A =12,由余弦定理,得|BC →|2=|AB →|2+|AC →|2-2|AB →||AC →|cos A =49, ∴|BC →|=7.9.已知钝角三角形的三边长分别为2、3、x ,则x 的取值范围是( ) A .1<x <5 B.5<x <13C .1<x <5或13<x <5D .1<x < 5 [答案] C[解析] 当x 为最大边时⎩⎨⎧3<x <5x 2>32+22,∴13<x <5;当3为最大边时⎩⎨⎧1<x <332>x 2+22,∴1<x < 5.∴x 的取值范围是:1<x <5或13<x <5.10.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( )A .154B .1534C .2134D .3534[答案] B[解析] ∵三边不等,∴最大角大于60°, 设最大角为α,故α对的边长为a +2. ∵sin α=32,∴α=120°, 由余弦定理,得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,解得a =5,∴三边长为3,5,7, S △ABC =12×3×5×sin120°=1534.11.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC →,则AD 的长为( )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3)[答案] C[解析] 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1),因为BD →=3-12BC →,所以BD =3-12BC .又BC =8,所以BD =4(3-1). 在△ABD 中, AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).12.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20n mile ,随后货轮按北偏西30°的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(2+6)n mile/hB .20(6-2)n mile/hC .20(3+6)n mile/hD .20(6-3)n mile/h [答案] B[解析] 由题意可知∠SMN =15°+30°=45°,MS =20,∠MNS =45°+(90°-30°)=105°,设货轮每小时航行x n mile ,则MN =12x ,∴∠MSN =180°-105°-45°=30°, 由正弦定理,得12x sin30°=20sin105°,∵sin105°=sin(60°+45°) =sin60°cos45°+cos60°sin45°=6+24, ∴x =20(6-2),故选B.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.在△ABC 中,已知b =1,sin C =35,b cos C +c cos B =2,则AC →·BC →=________.[答案] 85或-85[解析] 由余弦定理的推论,得cos C =a 2+b 2-c 22ab ,cos B =a 2+c 2-b 22ac .∵b cos C +c cos B =2,∴a 2+b 2-c 22a +a 2+c 2-b 22a =2,∴a =2,即|BC →|=2. ∵sin C =35,0°<C <180°,∴cos C =45,或cos C =-45.又∵b =1,即|AC →|=1, ∴AC →·BC →=85,或AC →·BC →=-85.14.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .若△ABC 的面积为16sin C ,则C =________.[答案] 60°[解析] ∵sin A +sin B =2sin C . ∴a +b =2C .又∵a +b +c =2+1,∴c =1,a +b = 2. 又S △ABC =12ab sin C =16sin C .∴ab =13,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,∴C =60°.15.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.[答案]102[解析] ∵tan A =13,∴sin A =1010,由正弦定理,得AB =BC ·sin C sin A =102.16.在△ABC 中,cos 2A 2=b +c2c ,则△ABC 的形状为________.[答案] 直角三角形 [解析]∵cos 2A 2=1+cos A 2=b +c 2c =12+b2c,∴cos A =bc.由余弦定理的推论,得 cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =b c ,∴a 2+b 2=c 2.∴△ABC 为直角三角形.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2014·新课标Ⅱ文,17)四边形ABCD 的内角A 与C 互补,AB =1,BC =3, CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. [解析] (1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =12-12cos C . ①BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C . ②由①,②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积 S =12AB ·DA sin A +12BC ·CD sin C =(12×1×2+12×3×2)sin60° =2 3.18.(本题满分12分)在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且3a =2c sin A . (1)确定角C 的大小;(2)若c =7,且△ABC 的面积为332,求a +b 的值.[解析] (1)由3a =2c sin A 及正弦定理得,3sin A =2sin C sin A .∵sin A ≠0,∴sin C =32. ∵△ABC 是锐角三角形,∴C =π3.(2)∵C =π3,△ABC 面积为332,∴12ab sin π3=332,即ab =6.① ∵c =7,∴由余弦定理得a 2+b 2-2ab cos π3=7,即a 2+b 2-ab =7.②由②变形得(a +b )2=3ab +7.③ 将①代入③得(a +b )2=25,故a +b =5.19.(本题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1km 内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约3km 有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12km/h 的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?[解析] 如图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1km. 在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32, ∴∠ACB =120°(∠ACB =60°不合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1. ∵BC12×60=5, ∴在BC 上需要5min ,CD 上需要5min.∴最长需要5min 检查员开始收不到信号,并至少持续5min 该考点才算合格.20.(本题满分12分)(2014·辽宁理,17)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3,求:(1)a 和c 的值; (2)cos(B -C )的值.[解析] (1)由BA →·BC →=2得c ·a cos B =2. 又cos B =13,所以ac =6.由余弦定理得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.因为a >c ,所以a =3,c =2. (2)在△ABC 中, sin B =1-cos 2B =1-(13)2=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-(429)2=79.于是cos(B -C )=cos B cos C +sin B sin C =13·79+223·429=2327.21.(本题满分12分)如图,已知半圆O 的半径为1,点C 在直径AB 的延长线上,BC =1,点P 是半圆O 上的一个动点,以PC 为边作正三角形PCD ,且点D 与圆心分别在PC 两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示成θ的函数; (2)求四边形OPDC 面积的最大值.[解析] (1)设∠POB =θ,且0°≤θ≤180°.在△OPC 中,OP =1,OC =2,由余弦定理,得PC 2=OP 2+OC 2-2OP ·OC ·cos θ=5-4cos θ,∴S OPDC =S △OPC +S △PDC =12OP ·OC ·sin θ+34PC 2=sin θ+34(5-4cos θ)=sin θ-3cos θ+534,即y =sin θ-3cos θ+543.(2)由(1)得y =sin θ-3cos θ+543=2sin(θ-60°)+534.∵0°≤θ≤180°,-60°≤θ-60°≤120°,∴当sin(θ-60°)=1,即θ-60°=90°,也即θ=150°时,S OPDC 有最大值,且为2+534,故当∠POC =150°时,四边形OPDC 的面积最大,最大值为2+534.22.(本题满分14分)如图所示,A 、B 两个小岛相距21n mile ,B 岛在A 岛的正南方,现在甲船从A 岛出发,以9n mile /h 的速度向B 岛行驶,而乙船同时以6n mile/h 的速度离开B 岛向南偏东60°方向行驶,问行驶多少时间后,两船相距最近,并求出两船的最近距离.[解析] 设行驶t 小时后,甲船行驶了9t n mile 到达C 处,乙船行驶了6t n mile 到达D 处. 当9t <21,即t <73时,C 在线段AB 上,此时BC =21-9t ,在△BCD 中,BC =21-9t ,BD =6t ,∠CBD =180°-60°=120°, 由余弦定理,得CD 2=BC 2+BD 2-2BC ·BD ·cos120° =(21-9t )2+(6t )2-2×(21-9t )·6t ·(-12)=63t 2-252t +441=63(t -2)2+189. ∴当t =2时,CD 取得最小值189=321.当t =73时,C 与B 重合,此时CD =6×73=14>321.当t >73时,BC =9t -21,则CD 2=(9t -21)2+(6t )2-2×(9t -21)×6t ×cos60°=63t 2-252t +441=63(t -2)2+189>189.综上可知,t =2时,CD 取最小值321n mile ,故行驶2h 后,甲、乙两船相距最近为321n mile.高中数学-打印版精校版。
高中数学必修五第一章《解三角形》单元测试题(含答案)
高中数学必修五第一章单元测试题《解三角形》一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,下列等式不成立的是()A.c=a2+b2-2ab cos CB.asin A=bsin BC.a sin C=c sin AD.cos B=a2+c2-b22abc2.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为()A.75°B.60°C.45°D.30°3.已知△ABC中,c=6,a=4,B=120°,则b等于()A.76 B.219C.27 D.274.已知△ABC中,a=4,b=43,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°5.已知三角形的三边长分别为a,b,a2+ab+b2,则三角形的最大内角是()A.135°B.120°C.60°D.90°6.△ABC的三内角A,B,C所对边的长分别为a,b,c设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为()A.π6 B.π3C.π2 D.2π37.在△ABC 中,已知a =2b cos C ,那么△ABC 的内角B 、C 之间的关系是( )A .B >CB .B =C C .B <CD .关系不确定8.在△ABC 中,B =60°,b 2=ac ,则这个三角形是( )A .不等边三角形B .等边三角形C .等腰三角形D .直角三角形9.在△ABC 中,cos A cos B >sin A sin B ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形10.△ABC 中,已知sin B =1,b =3,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定11.在△ABC 中,若A <B <C ,b =10,且a +c =2b ,C =2A ,则a 与c 的值分别为( )A .8,10B .10,10C .8,12D .12,812.已知平面上有四点O ,A ,B ,C ,满足OA →+OB →+OC →=0,OA →·OB →=OB →·OC →=OC →·OA →=-1,则△ABC 的周长是( )A .3B .6C .3 6D .9 6二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.在△ABC 中,A =30°,C =105°,b =8,则a =________.14.在△ABC 中,若∠A =120°,AB =5,BC =7,则AC =________.15.在△ABC 中,已知CB =8,CA =5,△ABC 的面积为12,则cos2C =________.16.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m ,乙楼高为________m.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C-sin B sin C =12.(1)求A ;(2)若a =23,b +c =4,求△ABC 的面积.18.(12分)在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.19.(12分)如图,在△ABC中,AC=2,BC=1,cos C=3 4.(1)求AB的值;(2)求sin(2A+C)的值.20.(12分)已知△ABC顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).(1)若c=5,求sin A的值;(2)若∠A是钝角,求c的取值范围.21.(12分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60 °,AC=0.1 km.试探究图中B,D间距离与另外两点间距离哪个相等,然后求B,D的距离(计算结果精确到0.01 km,2=1.414,6≈2.449).22.(12分)设函数f(x)=cos(2x+π3)+sin2x.(1)求函数f(x)的最大值和最小正周期;(2)设A,B,C为△ABC的三个内角,若cos B=13,f(C2)=-14,且C为锐角,求sin A.高中数学必修五第一章单元测试题《解三角形》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,下列等式不成立的是()A.c=a2+b2-2ab cos CB.asin A=bsin BC.a sin C=c sin AD.cos B=a2+c2-b22abc答案 D解析很明显A,B,C成立;由余弦定理,得cos B=a2+c2-b22ac,所以D不成立.2.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为() A.75°B.60°C.45°D.30°答案 B解析由S△ABC=33=12×3×4sin C,得sin C=32,又角C为锐角,故C=60°.3.已知△ABC中,c=6,a=4,B=120°,则b等于() A.76 B.219C.27 D.27答案 B解析由余弦定理,得b2=a2+c2-2ac cos B=76,所以b=219. 4.已知△ABC中,a=4,b=43,A=30°,则B等于() A.30°B.30°或150°C.60°D.60°或120°答案 D解析由正弦定理,得asin A=bsin B.所以sin B=ba sin A=434sin30°=32.又a<b,则A<B,所以B=60°或120°.5.已知三角形的三边长分别为a,b,a2+ab+b2,则三角形的最大内角是()A.135°B.120°C.60°D.90°答案 B解析a2+ab+b2>a,a2+ab+b2>b,则长为a2+ab+b2的边所对的角最大.由余弦定理,得cosα=a2+b2-(a2+b2+ab)2ab=-12,所以三角形的最大内角是120°.6.△ABC的三内角A,B,C所对边的长分别为a,b,c设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为()A.π6 B.π3C.π2 D.2π3答案 B解析由p∥q,得(a+c)(c-a)=b(b-a),则b2+a2-c2=ab.由余弦定理,得cos C=a2+b2-c22ab=12,所以C=π3.7.在△ABC中,已知a=2b cos C,那么△ABC的内角B、C之间的关系是() A.B>C B.B=CC.B<C D.关系不确定答案 B8.在△ABC中,B=60°,b2=ac,则这个三角形是()A.不等边三角形B.等边三角形C.等腰三角形D.直角三角形答案 B9.在△ABC中,cos A cos B>sin A sin B,则△ABC是()A.锐角三角形B.直角三角形C .钝角三角形D .等边三角形答案 C 10.△ABC 中,已知sin B =1,b =3,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定答案 D11.在△ABC 中,若A <B <C ,b =10,且a +c =2b ,C =2A ,则a 与c 的值分别为( )A .8,10B .10,10C .8,12D .12,8 答案 C解析 ∵C =2A ,∴sin C =sin2A =2sin A ·cos A .由正弦定理,余弦定理可得c =2a ·100+c 2-a 22×10c, 将a =20-c 代入上式整理,得c 2-22c +120=0,解得∴c =10(舍去)或c =12.∴a =8.12.已知平面上有四点O ,A ,B ,C ,满足OA →+OB →+OC →=0,OA →·OB →=OB →·OC →=OC →·OA →=-1,则△ABC 的周长是( )A .3B .6C .3 6D .9 6 答案 C解析 由已知得O 是△ABC 的重心,由OA →·OB →=OB →·OC →,得OB →·(OA →-OC →)=0.∴OB →·CA →=0.∴OB ⊥CA .同理,OA ⊥BC ,OC ⊥AB .∴△ABC 为等边三角形.故∠AOB =∠BOC =∠COA =2π3,|OA →|=|OB →|=|OC →|= 2.在△AOB 中,由余弦定理,得AB2=OA2+OB2-2OA·OB cos 2π3=6.∴AB=6,故△ABC的周长是3 6.讲评本题是以向量的数量积给出条件,通过计算得出三角形中的一些量,再利用余弦定理可解.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.在△ABC中,A=30°,C=105°,b=8,则a=________.答案4 2解析B=180°-30°-105°=45°,由正弦定理,得a=sin Asin B b=sin30°sin45°×8=4 2.14.在△ABC中,若∠A=120°,AB=5,BC=7,则AC=________. 答案 3解析在△ABC中,由余弦定理,得cos A=cos120°=AB2+AC2-BC22×AB×AC,即25+AC2-492×5×AC=-12.解得AC=-8(舍去)或AC=3.15.在△ABC中,已知CB=8,CA=5,△ABC的面积为12,则cos2C=________.答案725解析由题意,得S=12CA×CB sin C,则12=12×5×8sin C.所以sin C=35.则cos2C=1-2sin2C=725.16.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m,乙楼高为________m.答案203403 3解析如下图所示,甲楼高为AB,乙楼高为CD,AC=20 m.则在△ABC 中,∠BAC =90°,AC =20(m),所以AB =AC tan60°=203(m),在△BCD 中,BC =40(m),∠BCD =90°-60°=30°,∠CBD =90°-30°-30°=30°,则∠BDC =180°-30°-30°=120°.由正弦定理,得BC sin ∠BDC =CDsin ∠CBD ,所以CD =sin ∠CBD sin ∠BDC BC =4033. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C-sin B sin C =12.(1)求A ; (2)若a =23,b +c =4,求△ABC 的面积.思路分析 (1)转化为求cos A ;(2)求出bc 的值即可.解析 (1)∵cos B cos C -sin B sin C =12,∴cos(B +C )=12.∵A +B +C =π,∴cos(π-A )=12.∴cos A =-12.又∵0<A <π,∴A =2π3.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A .则(23)2=(b +c )2-2bc -2bc ·cos 2π3.∴12=16-2bc -2bc ·(-12).∴bc =4.∴S △ABC =12bc ·sin A =12×4×32= 3.18.(12分)在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.解析 (1)由C -A =π2和A +B +C =π,得2A =π2-B,0<A <π4.故cos2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63.又由正弦定理,得BC sin A =AC sin B ,BC =sin A sin B AC =3 2.所以S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A =3 2.19.(12分)如图,在△ABC 中,AC =2,BC =1,cos C =34.(1)求AB 的值;(2)求sin(2A +C )的值.解析 (1)由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C=4+1-2×2×1×34=2.∴AB = 2.(2)由cos C =34且0<C <π,得sin C =1-cos 2C =74.由正弦定理,得AB sin C =BC sin A ,解得sin A =BC sin C AB =148.所以cos A =528.由倍角公式,得sin2A =2sin A cos A =5716,且cos2A =1-2sin 2A =916.故sin(2A +C )=sin2A cos C +cos2A sin C =378.20.(12分)已知△ABC 顶点的直角坐标分别为A (3,4)、B (0,0)、C (c,0).(1)若c =5,求sin A 的值;(2)若∠A 是钝角,求c 的取值范围.解析 (1)方法一 ∵A (3,4)、B (0,0),∴|AB |=5,sin B =45.当c =5时,|BC |=5,|AC |=(5-3)2+(0-4)2=2 5.根据正弦定理,得|BC |sin A =|AC |sin B ⇒sin A =|BC ||AC |sin B =255.方法二 ∵A (3,4)、B (0,0),∴|AB |=5.当c =5时,|BC |=5,|AC |=(5-3)2+(0-4)2=2 5. 根据余弦定理,得cos A =|AB |2+|AC |2-|BC |22|AB ||AC |=55.sin A =1-cos 2A =255.(2)已知△ABC顶点坐标为A(3,4)、B(0,0)、C(c,0),根据余弦定理,得cos A=|AB|2+|AC|2-|BC|22|AB||AC|.若∠A是钝角,则cos A<0⇒|AB|2+|AC|2-|BC|2<0,即52+[(c-3)2+42]-c2=50-6c<0,解得c>25 3.21.(12分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60 °,AC=0.1 km.试探究图中B,D间距离与另外两点间距离哪个相等,然后求B,D的距离(计算结果精确到0.01 km,2=1.414,6≈2.449).解析在△ABC中,∠DAC=30°,∠ADC=60°-∠DAC=30°,所以CD=AC=0.1.又∠BCD=180°-60°-60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA.在△ABC中,ABsin∠BCA=ACsin∠ABC,即AB=AC sin60°sin15°=32+620,因此,BD=32+620≈0.33 km.故B、D的距离约为0.33 km22.(12分)设函数f(x)=cos(2x+π3)+sin2x.(1)求函数f(x)的最大值和最小正周期;(2)设A,B,C为△ABC的三个内角,若cos B=13,f(C2)=-14,且C为锐角,求sin A.解析(1)f(x)=cos2x cos π3-sin2x sin π3+1-cos2x2=12cos2x-32sin2x+12-12cos2x=12-32sin2x.所以当2x=-π2+2kπ,即x=-π4+kπ(k∈Z)时,f(x)取得最大值,f(x)最大值=1+32,f(x)的最小正周期T=2π2=π,故函数f(x)的最大值为1+32,最小正周期为π.(2)由f(C2)=-14,即12-32sin C=-14,解得sin C=32,又C为锐角,所以C=π3.由cos B=13,求得sin B=223.由此sin A=sin[π-(B+C)]=sin(B+C)=sin B cos C+cos B sin C=223×12+13×32=22+36.。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
苏教版高中数学必修五第一章《解三角形》综合测试题(学生版).docx
高中数学学习材料马鸣风萧萧*整理制作一、填空题(共14题,每题4分共70分)1.在△ABC 中,A =45°,B =60°,a =10,则b =________.2.在△ABC 中,若S △ABC =14(a 2+b 2-c 2),那么角C =________. 3.在△ABC 中,a =6,B =30°,C =120°,则△ABC 的面积是________.4. 轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是________n mile.5. 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若sin A =3sin C ,B =30°,b =2,则△ABC 的面积是________.6.在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为________. 7. 在一个塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔底沿直线行走了30 m ,测得塔顶的仰角为2θ,再向塔底前进10 3 m ,又测得塔顶的仰角为4θ,则塔的高度为________ m.图88.如图8,已知A ,B 两点的距离为100 n mile ,B 在A 的北偏东30°方向,甲船自A 以50 n mile/h 的速度向B 航行,同时乙船自B 以30 n mile/h 的速度沿方位角150°方向航行,航行________ h ,两船之间的距离最小.9.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为________.10.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为 n mile/h.图1111.如图11所示,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40 m 的C 、D 两点,测得∠ACB =60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则A 、B 间的距离是________ m.12.某海岛周围38 n mile 有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30 n mile 后测得此岛在东北方向.若不改变航向,则此船________触礁的危险(填“有”或“无”).13.在△ABC 中,若AB =AC ,则cos A +cos B +cos C 的取值范围为________.14.在三角形ABC 中,A ,B ,C 是其三个内角,内角A ,B ,C 对边的边长分别是a ,b ,c ,c =2,C =π3,记m =(sin C +sin(B -A ),2),n =(sin2A,1),若m 与n 共线,则△ABC 的面积为________.二、解答题(本题共6题,共90分)15.(14分)在△ABC 中,C -A =π2,sin B =13. (1)求sin A 的值;(2)设AC =6,求△ABC 的面积.16.(14分)如图16,某河段的两岸可视为平行,为了测量该河段的宽度,在河的一边选取两点A 、B ,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,且AB =100 m.(1)求sin75°;(2)求该河段的宽度.图1617.(15)在△ABC中,a、b、c分别为内角A、B、C的对边,且2a sin A=(2b+c)sin B+(2c +b)sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.18.(5分)如图18,在一条海防警戒线上的点A、B、C处各有一个水声监测点,B、C两点到点A的距离分别为20 km和50 km.某时刻,B收到发自静止目标P的一个声波信号,8 s后A、C同时接收到该声波信号,已知声波在水中的传播速度是1.5 km/s.设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;图1819.(16分)在△ABC中,已知角A,B,C的对边分别为a,b,c,且(a+b+c)(b+c-a)=3bc.(1)求A;(2)若B-C=90°,c=4,求b.(结果用根式表示)20.(16分) 已知a,b,c分别为△ABC的三内角A,B,C的对边,且a cos C+c cos A=2b cos B.(1)求角B的大小;(2)求sin A+sin C的取值范围.。
高中数学必修五第一章《解三角形》单元测试卷及答案
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
新课标教材高中数学测试题组(必修5)第一章 解三角形(基础训练题共3组)含详细解答
(数学必修5)第一章 解三角形 [基础训练A 组]一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于A .1B .1-C .32D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是A .A sinB .A cosC .A tanD .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是=A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为A .2B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于A .006030或B .006045或C .0060120或D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_____________. 2.在△ABC 中,若=++=A c bc b a 则,222_____________. 3.在△ABC 中,若====a C B b 则,135,30,20_____________.4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________. 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是_____________.三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
高中数学必修五第一章解三角形测试题
章末检测一、选择题1.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若A +C =2B ,a =1,b =3,则S △ABC 等于( ) A. 2 B. 3 C.32D .2 答案 C解析 由A +C =2B ,解得B =π3.由余弦定理得(3)2=1+c 2-2c cos π3, 解得c =2或c =-1(舍去).于是S △ABC =12ac sin B =12×1×2sin π3=32.2.在△ABC 中,下列关系式①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C ,一定成立的有( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 由正弦定理知①正确,由余弦定理知③正确;②中由正弦定理得sin A =sin B cos C +cos B sin C ,显然成立;④中由正弦定理得sin B =2sin A sin C ,未必成立. 3.在△ABC 中,若B =120°,则a 2+ac +c 2-b 2的值( ) A .大于0 B .小于0 C .等于0 D .不确定 答案 C解析 ∵B =120°,∴cos B =-12=a 2+c 2-b 22ac ,∴a 2+c 2-b 2+ac =0.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C 等于( ) A.725 B .-725 C .±725 D.2425答案 A解析 由b sin B =c sin C 及8b =5c ,C =2B ,得5c sin 2B =8c sin B ,所以cos B =45,所以cos C =cos 2B =2cos 2B -1=725.5.在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC 等于( ) A. 3 B.7 C .2 2 D.23 答案 A解析 由AB →·BC →=1可得2BC cos(180°-B )=1,即2BC cos B =-1, 又由余弦定理可得32=BC 2+22-2×2BC cos B , 把2BC cos B =-1代入,得9=BC 2+4+2, 解得BC = 3.6.在△ABC 中,若tan A sin 2B =tan B sin 2A 成立,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 答案 D解析 ∵tan A sin 2B =tan B sin 2A , ∴sin A cos A sin 2B =sin Bcos B·sin 2A , ∴sin B cos B =sin A cos A ,即sin 2A =sin 2B .又∵A ∈(0,π),B ∈(0,π),∴2A =2B 或2A +2B =π, ∴A =B 或A +B =π2,即△ABC 是等腰三角形或直角三角形.7.在△ABC 中,A =π3,a =6,b =4,则满足条件的△ABC ( )A .不存在B .有一个C .有两个D .不确定 答案 A解析 由正弦定理a sin A =bsin B,∴sin B =b sin Aa =4·326=2>1,∴B 不存在.8.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点D 测得水柱顶端的仰角为45°,沿点D 向北偏东30°前进100 m 到达点C ,在C 点测得水柱顶端的仰角为30°,则水柱的高度是( ) A .50 m B .100 m C .120 m D .150 m 答案 A解析 如图,AB 为水柱,高度设为h ,D 在A 的正西方向,C 在D 的北偏东30°方向.且CD =100 m ,∠ACB =30°,∠ADB =45°. 在△ABD 中,AD =h , 在△ABC 中,AC =3h . 在△ACD 中,∠ADC =60°,由余弦定理得cos 60°=1002+h 2-(3h )22·100·h =12,∴h =50或-100(舍).9.在锐角△ABC 中,BC =1,B =2A ,则AC 的取值范围是( ) A .[-2,2] B .[0,2] C .(0,2] D .(2,3) 答案 D解析 由题意得⎩⎨⎧0<π-3A <π2,0<2A <π2⇒π6<A <π4,由正弦定理AC sin B =BCsin A 得AC =2cos A .∵A ∈⎝⎛⎭⎫π6,π4,∴AC ∈(2,3).10.设a ,b ,c 是△ABC 的三条边,对任意实数x ,f (x )=b 2x 2+(b 2+c 2-a 2)x +c 2,有( ) A .f (x )=0 B .f (x )>0 C .f (x )≤0 D .f (x )<0 答案 B解析 ∵Δ=(b 2+c 2-a 2)2-4b 2c 2=(b 2+c 2-a 2)2-(2bc )2 =[(b +c )2-a 2]·[(b -c )2-a 2]=(b +c +a )(b +c -a )(b -c +a )(b -c -a ), b +c +a >0,b +c -a >0,b -c +a >0,b -c -a <0, ∴Δ<0,又b 2>0,∴f (x )>0. 二、填空题11.在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =________. 答案2解析 在△ABC 中,利用正弦定理得AC sin 45°=BC sin 60°⇒AC sin 45°=3sin 60°⇒AC =3·sin 45 °sin 60°= 2.12.在△ABC 中,M 是线段BC 的中点,AM =3,BC =10,AB →·AC →=________. 答案 -16解析 方法一 AB →·AC →=(AM →+MB →)·(AM →+MC →)=|AM →|2-|MB →|2=9-5×5=-16. 方法二 特例法,假设△ABC 是以AB ,AC 为腰的等腰三角形,如图所示,AM =3,BC =10,则AB =AC =34,cos ∠BAC =34+34-1002×34=-817,AB →·AC →=|AB |·|AC →|·cos ∠BAC =-16.13.在△ABC 中,已知cos A =35,cos B =513,b =3,则c =________.答案145解析 在△ABC 中,∵cos A =35>0,又∵A ∈(0,π),∴sin A =45.∵cos B =513>0,又∵B ∈(0,π),∴sin B =1213.∴sin C =sin[π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665.由正弦定理知b sin B =csin C,∴c =b sin Csin B =3×56651213=145.14.在△ABC 中,已知BC =3,AB =10,AB 边上的中线为7,则△ABC 的面积为________. 答案1523 解析 如图,设△ABC 中AB 边上的中线为CD . 则△BCD 中,BC =3,BD =5,CD =7, ∴cos B =32+52-722·3·5=-12,又∵B ∈(0°,180°),∴B =120°, ∴sin B =32, ∴S △BCD =12BC ·BD ·sin B =12·3·5·32=1543,∴S △ABC =2S △BCD =1523.15.在△ABC 中,A 满足3sin A +cos A =1,AB =2,BC =23,则△ABC 的面积为________. 答案3解析 由⎩⎨⎧3sin A +cos A =1,sin 2A +cos 2A =1,得⎩⎨⎧sin A =32,cos A =-12.∴A =120°,由正弦定理得2sin C =23sin A ,∴sin C =12.∴C =30°,∴B =30°,∴S =12AB ×BC ×sin B =12×2×23×sin 30°= 3.三、解答题16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos C =2c cos A ,tan A =13,求B .解 由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C ,因为tan A =13,所以cos C =2sin C ,tan C =12,所以tan B =tan[180°-(A +C )]=-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,又因为B ∈(0°,180°),所以B =135°.17.如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/时的速度追击,求我艇追上走私船所需要的时间. 解 设我艇追上走私船所需时间为t 小时,且我艇在C 处追上走私船,则BC =10t ,AC =14t ,在△ABC 中,∠ABC =180°+45°-105°=120°,AB =12, 根据余弦定理得(14t )2=(10t )2+122-2·12·10t cos 120°, ∴t =2小时(t =-34舍去).所以我艇追上走私船所需要的时间为2小时.18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,并且sin 2A 2=c -b2c .(1)试判断△ABC 的形状并加以证明; (2)当c =1时,求△ABC 周长的最大值. 解 (1)△ABC 为直角三角形.证明如下: 方法一 由已知可得,1-cos A 2=12-b2c ,即cos A =bc.又由余弦定理得cos A =b 2+c 2-a 22bc =bc.化简得c 2=a 2+b 2,由此知△ABC 为直角三角形. 方法二 由方法一知b =c cos A . 由正弦定理得sin B =sin C cos A . 由sin B =sin(A +C ),从而有sin A cos C +cos A sin C =sin C cos A ,即sin A cos C =0. 因为sin A ≠0,所以cos C =0,C ∈(0,π), 即C =π2,故△ABC 为直角三角形.(2)由(1)知c 为Rt △ABC 的斜边.当c =1时,两直角边长分别为sin A ,cos A ,则△ABC 的周长l =1+sin A +cos A =1+2sin(A +π4).而0<A <π2,当sin(A +π4)=1,即A =π4时,周长l 取得最大值为1+ 2.19.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若cos B =23,求cos C 的值.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以,A =2B .(2)解 由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2·cos B -sin(A -B )sin B+cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求BA →在BC →方向上的投影.解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35,则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,π2<A <π,得sin A =45.由正弦定理有a sin A =b sin B ,所以sin B =b sin A a =22.由题意知a >b ,则A >B ,故B =π4.根据余弦定理有(42)2=52+c 2-2×5×c ×(-35),解得c =1或c =-7(舍去). 又∵cos B =cosπ4=22, 故BA →在BC →方向上的投影为|BA →|cos B =22.21.已知函数f (x )=32sin 2x -1+cos 2x 2-12,x ∈R . (1)求函数f (x )的最小值和最小正周期;(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c =3,f (C )=0,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值. 解 (1)∵f (x )=32sin 2x -1+cos 2x 2-12=sin ⎝⎛⎭⎫2x -π6-1,∴函数f (x )的最小值是-2, 最小正周期是T =2π2=π.(2)由题意得f (C )=sin(2C -π6)-1=0,∴sin(2C -π6)=1,∵0<C <π,∴-π6<2C -π6<116π,∴2C -π6=π2,∴C =π3,∵m ∥n ,∴12=sin A sin B ,由正弦定理得a b =12,①由余弦定理得c 2=a 2+b 2-2ab cos π3, 即3=a 2+b 2-ab ,② 由①②解得a =1,b =2.。
(完整)新课标人教A版高中数学必修五第一章《解三角形》单元测试题
(完整)新课标⼈教A版⾼中数学必修五第⼀章《解三⾓形》单元测试题解三⾓形第Ⅰ卷(选择题共60分)⼀、选择题(共12⼩题,每⼩题5分,只有⼀个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23,则AC =( ) A .43 B .22 C .3 D .32.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .⾮钝⾓三⾓形 3.在△ABC 中,已知a =11,b =20,A =130°,则此三⾓形( )A .⽆解B .只有⼀解C .有两解D .解的个数不确定4. 海上有A 、B 两个⼩岛相距10海⾥,从A 岛望C 岛和B 岛成60ο的视⾓,从B 岛望C 岛和A岛成75ο视⾓,则B 、C 两岛的距离是()海⾥A. 65B. 35C. 25D. 5 5.边长为3、7、8的三⾓形中,最⼤⾓与最⼩⾓之和为 ( ) A .90° B .120° C .135° D .150°6.如图,设A ,B 两点在河的两岸,⼀测量者在A 的同侧,在所在的河岸边选定的⼀点C ,测出AC 的距离为502m ,45ACB ∠=?,105CAB ∠=?后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 1002mD. 200mB .2 C. 2 D. 38.如图,四边形ABCD中,B=C=120°,AB=4,BC=CD=2,则该四边形的⾯积等于( )A. 3 B.5 3C.6 3 D.7 39.在△ABC中,A=120°,AB=5,BC=7,则sin Bsin C的值为( )A.85B.58C.53D.3510.某海上缉私⼩分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°⽅向航⾏,进⾏海⾯巡逻,当⾏驶半⼩时到达B处时,发现北偏西45°⽅向有⼀艘船C,若C船位于A处北偏东30°⽅向上,则缉私艇B与船C的距离是( )A.5(6+2) km B.5(6-2) kmC.10(6+2) km D.10(6-2) km11.△ABC 的周长为20,⾯积为A =60°,则BC 的长等于( ) A .5 B.6 C .7D .812.在ABC △中,⾓A B C 、、所对的边分别为,,a b c ,若120,C c ∠=?=,则() A .a b > B .a b <C .a b =D .a 与b 的⼤⼩关系不能确定第Ⅱ卷(⾮选择题共90分)⼆、填空题(共4⼩题,每⼩题5分):13.三⾓形的两边分别是5和3,它们夹⾓的余弦值是⽅程06752=--x x 的根,则此三⾓形的⾯积是。
高中数学必修5第一章《解三角形》综合测试
第3页 共 4页
● 以下两题任选一题作答 20. (本题满分 14 分) 在锐角 ABC 中,边 a 、 b 是方程 x2 2 3x 2 0 的两根, A 、 B 满足
2sin( A B ) 3 0 ,解答下列问题: ( 1)求 C 的度数; ( 2)求边 c 的长度; ( 3)求 ABC 的面积 .
3 ,则
abc
的值为 _________.
sin A sin B sin C
13. 一蜘蛛沿正北方向爬行 x cm 捉到一只小虫,然后向右转 105o ,爬行 10 cm 捉到另一只小虫,这
时它向右转 135o 爬行回它的出发点,那么 x _________.
14. ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,向量 m ( 3, 1) , n (cos A,sin A) ,
高中数学必修 5 第一章《解三角形》综合测试
一、选择题 (每小题 5 分,共 40 分 . 在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 某三角形的两个内角为 45o 和 60o ,若 45o 角所对的边长是 6 ,则 60o 角所对的边长是【
】
A. 3 6 2. 在 ABC 中,已知 a
且 ABC 最大边是 12,最小角的正弦值是 . 3
( 1)判断 ABC 的形状; ( 2)求 ABC 的面积 .
必修 5 第一章综合测试题
第2页 共 4页
19. (本题满分
14 分) 海上某货轮在
A 处看灯塔 B 在货轮的北偏东
o
75 ,距离为
12
6 海里;在
A
处看灯塔 C 在货轮的北偏西
o
30 ,距离为
若 m n ,且 a cosB b cos A c sin C ,则 B _________.
高中数学必修5 第一章解三角形 单元测试题(含答案)
必修5第一章解三角形一、填空题1、中,,,,则_____________ .2、在中,,则___ ____.3、在△ABC中,AB=A=45°,C=60°,则BC= ______________4、在_______5、在中,∠A:∠B:∠C=1:2:3,则 =________.6、在△ABC中,A=120°,AB=5,BC=7,则的值为________.7、已知a,b,c为△ABC的三边,B=120°,则a2+c2+ac-b2=________.8、在中,已知,则的大小为.9、在中,内角所对的边分别是. 已知,,则的值为 .10、在中,,,,则的面积为____________11、若的面积为,则角=__________.12、在中,已知,则______________ 13、中,分别是角的对边,成等差数列,,的面积为,那么=________.14、在中,、、分别为角、、所对的边,若,则此三角形一定是三角形.15、在△ABC中,角A、B、C的对边分别是a、b.c,且,则B的大小为.16、在锐角中,分别为角所对的边,且,则角=________.二、选择题17、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于A.3 B. C.D.18、在△ABC中,角A,B,C的对边分别为a,b,c,若a=,b+c=4,∠B=30°,则c=( )A. B.C.3 D.19、在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若a cos B+b cos A=c sin C,S=(b2+c2-a2),则B=( )A.90°B.60°C.45°D.30°20、在△ABC中,角A,B,C的对边分别为a,b,c,ac=3,且a=3b sin A,则△ABC的面积等于( )A. B.C.1 D.21、在....22、等腰三角形一腰上的高是,这条高与底边的夹角为,则底边长为 ( )A .B .C .D .23、在△ABC中,已知sin B sin C=cos 2,则三角形的形状是( )A.直角三角形B.等腰直角三角形C.钝角三角形D.等腰三角形24、在中, 若,那么一定是()A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形25、若三角形ABC 的三条边长分别为,,,则( )A.29 B. 30 C.9 D.10三、计算题26、(2012年高考(安徽文))设的内角所对的边为,且有(Ⅰ)求角的大小; (II) 若,,为的中点,求的长.27、(2012年高考(浙江文))在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,求a,c的值.28、(2012年高考(辽宁理))在中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.(Ⅰ)求的值;(Ⅱ)边a,b,c成等比数列,求的值.29、(2012年高考(浙江理))在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=cosC.(Ⅰ)求tanC的值;(Ⅱ)若a=,求ABC的面积.30、(2012年高考(课标文))已知,,分别为三个内角,,的对边,. (Ⅰ)求;(Ⅱ)若=2,的面积为,求,.31、(2012年高考(天津文))在中,内角所对的分别是.已知.(I)求和的值; (II)求的值.参考答案一、填空题1、2、或3、4、3 或 65、6、7、08、9、-1/4;10、只写一个答案扣2分11、_12、;13、b=14、等腰15、16、二、选择题17、D18、A19、C20、A21、A22、D23、D24、B25、A三、计算题26、【解析】(Ⅰ)(II)在中,27、【命题意图】本题主要考查了正弦定理、余弦定理、三角形内角和定理,考查考生对基础知识、基本技能的掌握情况.【解析】(1)bsinA=acosB,由正弦定理可得,即得,. (2)sinC=2sinA,由正弦定理得,由余弦定理,,解得,.28、【答案及解析】(1)由已知(2)解法一:,由正弦定理得解法二:,,由此得得所以,【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果.29、【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ) ∵cosA=>0,∴sinA=,又cosC=sinB=sin(A+C)=sinAcosC+sinCcosA=cosC+sinC.整理得:tanC=.(Ⅱ)由图辅助三角形知:sinC=.又由正弦定理知:,故. (1)对角A运用余弦定理:cosA=. (2)解(1) (2)得: or b=(舍去).∴ABC的面积为:S=.【答案】(Ⅰ) ;(Ⅱ) .30、【命题意图】本题主要考查正余弦定理应用,是简单题.【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ) 的面积==,故=4,而故=8,解得=2.法二:解: 已知:,由正弦定理得:因,所以: ,由公式:得: ,是的内角,所以,所以:(2)解得:31、解:(1)在中,由,可得,又由及,,可得由,因为,故解得.所以(2)由,,得,所以。
必修5第一章解三角形测试题
错误!未定义书签。
错误!未定义书签。
错误!未定义书签。
必修5第一章解三角形测试题命题人:常志国一、选择题(本大题共12小题,每小题5分,共60分)1.在△ABC中,若a 2=b2+c2-bc,则角A为()A.错误! B。
错误!C。
错误! D.错误!或错误!2。
已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc=16错误!,则三角形的面积为()A. 22B。
8 错误!C。
错误!D。
错误!3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A. 错误!B.错误!C。
错误! D.错误!4.已知△ABC中,b=2,c=错误!,三角形面积S=错误!,则角A等于()A.30°B.60°C.30°或150°D.60°或120°5.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°6。
满足A=45°,c=错误!,a=2的△ABC的个数记为m,则a m的值为()A.4B.2C.1D.不确定7.△ABC中,下列结论:①a2>b2+c2,则△ABC为钝角三角形;②a2=b2+c2+bc,则∠A为60°;③a2+b2>c2,则△ABC为锐角三角形;④若∠A∶∠B∶∠C=1∶2∶3,则a∶b∶c=1∶2∶3,其中正确的个数为()A.1B.2 C.3D.48.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2cos 22A b c c+=,则△ABC 是 ( ) A 。
直角三角形 B.等腰三角形或直角三角形C.正三角形 D 。
等腰直角三角形9.在△ABC 中,内角A,B ,C 的对边分别是,,a b c ,若223a b bc -=,sin 23sin C B =, 则A 等于( )A.030B.060 C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 解三角形一、选择题1.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A ,C 两地的距离为( ). A .10 kmB .103kmC .105kmD .107km2.在△ABC 中,若2cosAa =2cosB b =2cosC c ,则△ABC 是( ).A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形3.三角形三边长为a ,b ,c ,且满足关系式(a +b +c )(a +b -c )=3ab ,则c 边的对角等于( ). A .15°B .45°C .60°D .120°4.在△ABC 中,三个内角∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a ∶b ∶c =1∶3∶2,则sin A ∶sin B ∶sin C =( ).A .3∶2∶1B .2∶3∶1C .1∶2∶3D .1∶3∶25.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ).A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形6.在△ABC 中,a =23,b =22,∠B =45°,则∠A 为( ). A .30°或150°B .60°C .60°或120°D .30°7.在△ABC 中,关于x 的方程(1+x 2)sin A +2x sin B +(1-x 2)sin C =0有两个不等的实 根,则A 为( ). A .锐角B .直角C .钝角D .不存在8.在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ).A .223B .233C .23 D .33 9.在△ABC 中,c b a c b a -+-+333=c 2,sin A ·sin B =43,则△ABC 一定是( ).A .等边三角形B .等腰三角形C .直角三角形D .等腰三角形或直角三角形10.根据下列条件解三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9.那么,下面判断正确的是( ). A .①只有一解,②也只有一解. B .①有两解,②也有两解. C .①有两解,②只有一解.D .①只有一解,②有两解.二、填空题11.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 .12.在△ABC 中,已知sin B sin C =cos 22A,则此三角形是__________三角形. 13.已知a ,b ,c 是△ABC 中∠A ,∠B ,∠C 的对边,S 是△ABC 的面积.若a =4, b =5,S =53,求c 的长度 .14.△ABC 中,a +b =10,而cos C 是方程2x 2-3x -2=0的一个根,求△ABC 周长的最小值 .15.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足sin A ∶sin B ∶sin C =2∶5∶6.若△ABC 的面积为4393,则△ABC 的周长为________________. 16.在△ABC 中,∠A 最大,∠C 最小,且∠A =2∠C ,a +c =2b ,求此三角形三边之比为 .三、解答题17.在△ABC 中,已知∠A =30°,a ,b 分别为∠A ,∠B 的对边,且a =4=33b ,解此三角形.18.如图所示,在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为15°,向山顶前进100米后到达点B ,又从点B 测得斜度为45°,建筑物的高CD 为50米.求此山对于地平面的倾斜角 .(第18题)19.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若b cos C =(2a -c )cos B , (Ⅰ)求∠B 的大小;(Ⅱ)若b =7,a +c =4,求△ABC 的面积.20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,求证:222c b a -=C B A sin sin )(-.参考答案一、选择题 1.D解析:AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=102+202-2×10×20cos 120° =700.AC =107. 2.B解析:由2cos A a=2cos B b=2cos C c及正弦定理,得2cos sin A A =2cos sin B B =2cos sin C C ,由2倍角的正弦公式得2sin A =2sin B =2sin C,∠A =∠B =∠C .3.C解析:由(a +b +c )(a +b -c )=3ab , 得 a 2+b 2-c 2=ab . ∴ cos C =ab c b a 2222-+=21.故C =60°. 4.D解析:由正弦定理可得a ∶b ∶c =sin A ∶sin B ∶sin C =1∶3∶2. 5.D解析:△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 若△A 2B 2C 2不是钝角三角形,由⎪⎪⎪⎩⎪⎪⎪⎨⎧)-(==)-(==)-(==1121121122πsin cos sin 2πsin cos sin 2πsin cos sin C C C B B B A A A ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧1212122π2π2πC C B B A A -=-=-=,那么,A 2+B 2+C 2=23π-(A 1+B 1+C 1)=2π,与A 2+B 2+C 2=π矛盾. 所以△A 2B 2C 2是钝角三角形. 6.C解析:由A a sin =B b sin ,得sin A =bBa sin =222232⨯=23,而b <a ,∴ 有两解,即∠A =60°或∠A =120°. 7.A解析:由方程可得(sin A -sin C )x 2+2x sin B +sin A +sin C =0. ∵ 方程有两个不等的实根, ∴ 4sin 2 B -4(sin 2 A -sin 2 C )>0. 由正弦定理A a sin =B b sin =Ccsin ,代入不等式中得 b 2-a 2+c 2>0, 再由余弦定理,有2ac cos A =b 2+c 2-a 2>0. ∴ 0<∠A <90°. 8.B解析:由余弦定理得cos A =21,从而sin A =23,则AC 边上的高BD =233.9.A解析:由cb ac b a -+-+333=c 2⇒a 3+b 3-c 3=(a +b -c )c 2⇒a 3+b 3-c 2(a +b )=0⇒(a +b )(a 2+b 2-ab -c 2)=0.∵ a +b >0,∴ a 2+b 2-c 2-ab =0. (1) 由余弦定理(1)式可化为a 2+b 2-(a 2+b 2-2ab cos C )-ab =0,得cos C =21,∠C =60°. 由正弦定理A asin =B b sin =︒60sin c ,得sin A =c a ︒60sin ,sin B =c b ︒60sin ,∴ sin A ·sin B =2260sin cab )(︒=43, ∴ 2cab=1,ab =c 2.将ab =c 2代入(1)式得,a 2+b 2-2ab =0,即(a -b )2=0,a =b .△ABC 是等边三角形.10.D解析:由正弦定理得sin A =bBa sin ,①中sin A =1,②中sin A =935.分析后可知①有一解,∠A =90°;②有两解,∠A 可为锐角或钝角.二、填空题 11.60°或120°. 解析:由正弦定理A a sin =B b sin 计算可得sin A =23,∠A =60°或120°. 12.等腰.解析:由已知得2sin B sin C =1+cos A =1-cos (B +C ), 即2sin B sin C =1-(cos B cos C -sin B sin C ), ∴ cos (B -C )=1,得∠B =∠C , ∴ 此三角形是等腰三角形. 13.21或61. 解:∵ S =21ab sin C ,∴ sin C =23,于是∠C =60°或∠C =120°.又c 2=a 2+b 2-2ab cos C ,当∠C =60°时,c 2=a 2+b 2-ab ,c =21; 当∠C =120°时,c 2=a 2+b 2+ab ,c =61. ∴ c 的长度为21或61. 14.10+53.解析:由余弦定理可得c 2=a 2+b 2-2ab cos C ,然后运用函数思想加以处理. ∵ 2x 2-3x -2=0, ∴ x 1=2,x 2=-21. 又cos C 是方程2x 2-3x -2=0的一个根, ∴ cos C =-21. 由余弦定理可得c 2=a 2+b 2-2ab ·(-21)=(a +b )2-ab ,则c 2=100-a (10-a )=(a -5)2+75, 当a =5时,c 最小,且c =75=53, 此时a +b +c =5+5+53=10+53, ∴ △ABC 周长的最小值为10+53. 15.13.解析:由正弦定理及sin A ∶sin B ∶sin C =2∶5∶6,可得a ∶b ∶c =2∶5∶6,于是可设a =2k ,b =5k ,c =6k (k >0),由余弦定理可得cos B =ab c b a 2-+222=))((k k k k k 62225-36+4222=85,∴ sin B =B 2cos -1=839. 由面积公式S △ABC =21ac sin B ,得 21·(2k )·(6k )·839=4393,∴ k =1,△ABC 的周长为2k +5k +6k =13k =13.本题也可由三角形面积(海伦公式)得)6213)(5213)(2213(213k kk k k k k ---=4393, 即4393k 2=4393,∴ k =1. ∴ a +b +c =13k =13. 16.6∶5∶4.解析:本例主要考查正、余弦定理的综合应用. 由正弦定理得c a =C A sin sin =CC sin 2sin =2cos C ,即cos C =c a2, 由余弦定理cos C =ab c b a 2-+222=abb c a c a 2+-+2))((.∵ a +c =2b ,∴ cos C =abc a b c a b 22++-2)(=aca c a 22++-2)(,∴ca 2=aca c a 22++-2)(.整理得2a 2-5ac +3c 2=0. 解得a =c 或a =23c . ∵∠A =2∠C ,∴ a =c 不成立,a =23c ∴ b =2c a +=223cc +=c 45,∴ a ∶b ∶c =23c ∶c 45∶c =6∶5∶4. 故此三角形三边之比为6∶5∶4. 三、解答题17.b =43,c =8,∠C =90°,∠B =60°或b =43,c =4,∠C =30°,∠B =120°. 解:由正弦定理知A asin =B b sin ⇒︒30sin 4=B sin 34⇒sin B =23,b =43.∠B =60°或∠B =120°⇒∠C =90°或∠C =30°⇒c =8或c =4. 18.分析:设山对于地平面的倾斜角∠EAD =θ,这样可在△ABC 中利用正弦定理求出BC ;再在△BCD 中,利用正弦定理得到关于θ 的三角函数等式,进而解出θ 角.解:在△ABC 中,∠BAC =15°,AB =100米, ∠ACB =45°-15°=30°. 根据正弦定理有︒30sin 100=︒15sin BC, ∴ BC =︒︒30sin 15sin 100.又在△BCD 中,∵ CD =50,BC =︒︒30sin 15sin 100,∠CBD =45°,∠CDB =90°+θ ,根据正弦定理有︒45sin 50=)(θ+90sin 30sin 15sin 100︒︒︒.解得cos θ =3-1,∴ θ ≈42.94°. ∴ 山对于地平面的倾斜角约为42.94°.19.解:(Ⅰ)由已知及正弦定理可得sin B cos C =2sin A cos B -cos B sin C , ∴ 2sin A cos B =sin B cos C +cos B sin C =sin (B +C ).(第18题)又在三角形ABC 中,sin (B +C )=sin A ≠0, ∴ 2sin A cos B =sin A ,即cos B =21,B =3π. (Ⅱ)∵ b 2=7=a 2+c 2-2ac cos B ,∴ 7=a 2+c 2-ac , 又 (a +c )2=16=a 2+c 2+2ac ,∴ ac =3,∴ S △ABC =21ac sin B , 即S △ABC =21·3·23=433.20.分析:由于所证明的是三角形的边角关系,很自然联想到应用正余弦定理. 解:由余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B 得 a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴ 2(a 2-b 2)=-2bc cos A +2ac cos B , 222-c b a =c Ba Ab cos +cos -.由正弦定理得 a =2R sin A ,b =2R sin B ,c =2R sin C , ∴222-c b a =c Ba Ab cos +cos -=CA B B A sin cos sin -cos sin=CB A sin -sin )(.故命题成立.。