注塑模具参考文献
塑料模具设计参考文献
参考文献
[1] 伍先明王群庞佑霞等编著.塑料模具设计指导(第一版)[M].国防工业出版社,2006.
[2] 王旭主编.塑料模结构图册[M].机械工业出版社,1999.
[3] 王文广田宝山田雁晨主编.塑料注射模具设计技巧与实例[M].北京:化学化工出版社,2004.
[4]屈华昌主编.塑料成型工艺与模具设计[M].机械工业出版社,2004.
[5] 蒋继宏王效岳编.注塑模具典型结构100例[M].中国轻工业出版社,2002.
[6] 张晓黎李海梅主编.塑料加工和模具专业英语(第一版)[M].化学工业出版社,2005.
[7] 许鹤峰陈言秋编著.注塑模具设计要点与图例[M].化学化工出版社,1999.
[8] 朱光力万金保等编著.塑料模具设计[M].清华大学出版社,2003.
[9] 高锦张主编.塑性成形工艺与模具设计[M].机械工业出版社,200.
[10] 夏江梅主编. 塑料成型模具与设备.机械工业出版社,2005.
[11] 王孝培主编. 塑料成型工艺及模具简明手册.机械工业出版社,2000.
[12] 张孝民主编. 塑料模具技术.机械工业出版社,2003.
[13] 屈华昌主编. 塑料成型工艺及模具设计.高等教育出版社,2001.
[14] 叶久新王群主编. 塑料成型工艺及模具设计.机械工业出版社,2008.
[15] 中国模具设计大典编委会. 中国模具设计大典. 江西科学技术出版社,2003.。
模具设计-参考文献
模具设计-参考文献参考文献[1]黄虹主编.塑料成型加工与模具.北京:化学工业出版社.2002 [2]王善勤主编.塑料注射成型工艺与设备.北京:中国轻工出版社.2000.3 [3]屈华昌.塑料成型工艺与模具设计.北京:机械工业出版社1996.4 [4]塑料模具技术手册编委会.塑料技术手册.北京:机械工业出版社.1997.6 [5]何忠保等编.典型零件模具图册.北京:机械工业出版社.2000.11.机械制图.北京:高等教育出版社.2003.6 [6]钱可强[7]廖念钊,古莹庵等.互换性与技术测量.北京:中国计量出版社.2000.1 [8]伍先明,王群等.塑料模具设计指导书.国防工业出版社.2008.2 [9]廖月莹,何冰强主编.塑料模具设计指导与资料汇编.大连理工大学出版社.2OO7.8[1O]张玉龙主编.塑料品种与性能手册.北京:化学工业出版社.2006.7 1.《塑料成型工艺与模具设计》(第一版).屈华昌编. 高等教育出版社出版. 2005年。
第14章参考文献【1】黄虹主编.塑料成型加工与模具.北京:化学工业出版社.2008.12 【2】冯爱新主编.塑料成型技术.北京:化学工业出版社2004.7 【3】何忠保等编.典型零件模具图册.北京:机械工业出版社.2000.11 【4】赵大兴主编.工程制图.北京:高等教育出版社.2004.7 【5】徐学林主编.互换性与测量技术基础.长沙:湖南大学出版社.2009.7】冯新爱主编.塑料模具工程师手册.北京:机械工业出版社.2009.1 【6【7】张玉龙主编.塑料品种与性能手册.北京:化学工业出版社.2006.7 【8】北京意达利技术开发有限责任公司编.塑料模具设计与制造过程仿真.北京:化学工业出版社.2007.1表1-1 塑件主要尺寸的公差要求部位尺寸尺寸公差55 ?0.37外形尺寸 9 ?0.143 ?0.1249 ?0.32内形尺寸 6 ?0.14。
注塑模具设计文献综述
毕业设计(论文)文献综述(2012届)题目电话机三维造型与注塑模具设计指导教师院系班级学号姓名二〇一一年十二月五日[塑料模具的发展] 文献综述摘要模具是塑料成型加工的一种重要的工艺装备,模具生产的最终产品的价值往往是模具自身价值的几十倍、上百倍,因此模具工业是国民经济的基础工业,模具的生产技术水平的高低,已成为衡量一个国家产品制造业水平高低的重要标志。
由于塑料模具工业快速发展及上述各方面差距的存在,因此我国今后塑料模具的发展必将大于模具工业总体发展速度。
塑料模具生产企业在向着规模化和现代化发展的同时,专和精仍旧是一个必然的发展趋势。
关键字:塑料模具、发展、标准化、CAD/CAM 、差距塑料模具是成型塑料制品的工艺装备或工具。
根据塑料成型工艺方法的不同,通常将塑料模具分为注射模具、压缩模具、传递模具、挤出模具、中空吹塑模具、热成型模具等。
合理的加工工艺、高效的设备、先进的模具是实现现代塑料制品生产必不可少的三大重要因素。
尤其是塑料模具对实现塑料成型工艺要求、保证塑料制件质量、降低生产成本起着重要的作用。
一副品质优良的塑料模具可成型几十万次,甚至上百万次。
这与模具设计、选材、制造和使用维护有着很大关系。
对塑料模具设计的要求是:能生产出在尺寸精度、外观、物理性能、力学性能等各方面均能满足使用要求的优质制件。
在模具使用时,力求生产效率高、自动化程度高、操作简便、寿命长;在模具制造方面,要求结构合理、制造容易、成本低廉。
我国塑料模具的发展现状整体来看,中国塑料模具无论是在数量上,还是在质量、技术和能力等方面都有了很大进步,但与国民经济发展的需求、世界先进水平相比,差距仍很大。
一些大型、精密、复杂、长寿命的中高档塑料模具每年仍需大量进口。
在总量供不应求的同时,一些低档塑料模具却供过于求,市场竞争激烈,还有一些技术含量不太高的中档塑料模具也有供过于求的趋势。
近年来,塑料模具工业迅速发展,体现在模具产品向着大型、精密、复杂的方向发展,综合技术含量不断提高,模具制造周期不断缩短。
注塑模具_参考文献
[1] 赵蓓蓓. 初探塑料模具材料现状及发展方向[J]. 科技资讯, 2009, (34).[2] 孙安垣, 闫烨, 杨超谈, 桂春. 我国改性塑料行业的发展前景[M].《工程塑料应用》杂志社, 2010, 11(2):83-87.[3] 伍先明,王群. 塑料模具设计指导[M]. 北京: 国防工业出版社, 2006.[4] 朱光力, 万金保. 塑料模具设计[M]. 北京: 清华大学出版社, 2003.[5] 杨明锦, 陆长征. 结构型与复合型导电塑料研究进展[J]. 塑料, 2005, 34(3); 15-18.[6] 陈勇, 官建国, 谢洪泉. 导电塑料的研究进展[J]. 弹性体, 2008, 18(2).[7] 彭竹琴. 塑料导电改性原理及应用[J]. 绝缘材料, 2004(06).[8] 赵幸, 王立新. 复合型导电塑料的发展[J]. 塑料科技, 2002(2).[9] 韩小雪, 季静. 纤维增强塑料(FRP)在混凝土结构中的应用——FRP材料性能与发展[J]. 华南理工大学学报(自然科学版), 2002, 30(2).[10] 田水, 朱墩. 纤维增强塑料(FRP)在结构加固工程中的应用[J]. 建筑结构, 2000(03).[11] 金秀莲. 浅谈注塑工艺的影响因素[J]. 商品与质量·前沿观察, 2010, (2).[12] 刘松年, 崔怡. 水辅助注塑工艺介绍[J]. 模具技术, 2009, (2).[13] 马俊彪. 微发泡注塑成型设备的改造[J]. 农机使用与维修, 2009, (3).[14] 几种新型注塑设备的简单介绍[J]. 中国液压机械网, 2009.[15] 刘钵, 陈利民. 热塑性塑料注塑工艺参数优化设计[J]. 工程塑料应用, 2005,36(4): 8-11.[16] 翁其金. 塑料模塑成型技术[M]. 北京:机械工业出版社, 2001.[17] 许发樾. 实用模具设计与制造手册[M]. 北京: 机械工业出版社, 2005[18] 申树义. 塑料模具设计[M]. 北京: 机械工业出版社, 2005.[19] 盛晓敏, 邓朝晖主编. 先进制造技术[M]. 北京: 机械工业出版社, 2000.[20] 唐志玉主编. 注塑模具设计师指南[M]. 北京: 国防工业出版社, 1996[21] 华希俊, 张培耘. 模具工业先进制造技术特点及发展概况[J]. 金属成形工艺,2001, 18(2): 3-5.[22] 申开智. 塑料成型模具[M]. 北京: 中国轻工业出版社, 2002.[23] 李发致编著. 模具先进制造技术[M]. 北京: 机械工业出版社, 2003.[24] 林慧国, 火树鹏, 马绍弥. 模具材料应用手册[M]. 北京: 机械工业出版社, 2004.[25] 陈再枝, 马党参. 塑料模具应用手册[M]. 北京: 化学工艺出版社,2005.[26] 屈华昌主编. 塑料成型工艺与模具设计[M]. 北京: 机械工艺出版社,2004.[27] 黄虹主编. 塑料成型加工与模具[M]. 北京: 化学工业出版社,2003.[28] 曹宏深主编. 塑料成型工艺与模具设计[M]. 北京: 机械工业出版社,1993.[29] 陈嘉真主编. 塑料成型工艺与模具设计[M]. 北京: 机械工业出版社,1995.[30] 李秦蕊主编. 塑料模具设计[M]. 西安: 西北工业大学出版社, 1991.[31] 侯洪生, 董国耀. 机械工程图学[M]. 北京: 科学出版社, 2001.[32] 齐晓杰. 塑料成型工艺及模具设计[M]. 北京: 机械工业出版社, 2005.[33] 刘英俊. 我国改性塑料行业“十一·五”期间发展概况及“十二·五”展望[M]. 中国塑料, 2011, 3(3):1-6.[34] 张臣.我国改性塑料的发展趋势及热点分析[M].合成材料老化与应用, 2010, (1):34-38.[35] 卫兵工作室. Moldflow注塑流动分析案例导航[M]. 北京: 清华大学出版社, 2001.[36] 党根茂. 模具设计与制造[M]. 西安: 西安电子科技大学出版社, 2007[37] 田学军. 注塑过程分析及工艺参数设定[J]. 机械工程师, 2005, 8(58): 2- 10[38] 黄虹. 塑料成型加工与模具[M]. 上海: 学林工业出版社, 2002[39] 刘昌祺. 塑料模具设计[M]. 北京: 机械工业出版社, 1998. 10[40] 孙凤琴. 模具制造工艺与设备[M]. 北京: 中国轻工业出版社, 2003.[41] 廖念钊, 李硕根. 互换性与技术测量[M]. 北京: 中国计量出版社, 2007.[42] 冯炳尧. 模具设计与制造简明手册[M]. 上海: 上海科学技术出版社, 2005.[43] 梅伶. 模具课程设计指导[M]. 北京: 机械工业出版社, 2006.[44] 任天娟. 中小型注塑模标准模架的选用[J]. 广西轻工业, 2009, 8(30): 5- 7[45] 孙玲. 注塑成型工艺与模具设计[M]. 北京: 清华大学出版社, 2008[46] 焦永和, 林宏. 画法几何及工程制图[M]. 北京: 北京理工大学出版社, 1996.[47] 陈志刚. 塑料模具设计[M]. 北京: 机械工业出版社, 2002.[48] 贾润礼, 程志远主编. 实用注射模设计手册[M]. 中国轻工业出版, 2000.[49] 唐志玉. 塑料模具设计师指南[M]. 国防工业出版社, .[50] 许鹤峰, 陈言秋主编. 注射模具设计要点与图例[M]. 化学工业出版社, 1998.[51] 朱家诚. 机械设计课程设计[M]. 合肥: 合肥工业大学出版社, 2002.[52] 濮良贵. 机械设计[M]. 北京: 高等教育出版社, 2003.[53] 毛昕. 画法几何及机械制图[M]. 北京: 高等教育出版社, 2004.[54] 宋玉恒. 塑料注塑模具设计实用手册[M] . 北京: 航空工业出版社, 1994.[55] 王永平. 注塑模具设计经验点评[M]. 北京: 机械工业出版社, 2005.[56] 洪慎章. 实用注塑模具结构图册[M]. 上海: 上海交通大学出版社, 2006.[57] 李德群, 肖祥芷. 模具CAD/CAE/CAM的发展概况及趋势[J]. 模具工业. 2005, 7[58] 倪雪峰.. 基于Pro/E模具设计中拆模方法的研究与现实[J]. 模具工程, 2005, 21(3): 16-19.[59] 张克惠. 塑料材料学[M]. 西北工业大学出版社. 2000, 5[60] 翁其金. 塑料模具成型技术[M] . 北京: 机械工业出版社, 2001.[61]郑大中, 房金妹, 谭平宇.模具结构图册[M]. 北京:机械工业出版社, 1998.[62]张正修. 模具产业的现状及发展对策[J]. 五金科技, 2005, 20(8): 30-35.[63]丁闻. 实用塑料成型模具设计手册[M]. 西安:西安交通大学出版社, 1993.[64] 赵素渊, 李爱军. 基于Solid Works注塑模具的塑件结构设计[J]. 煤矿机械, 2005, 36(4): 38-45[65] 刘岩. 面向制造的注塑模具结构设计[J]. 高科技通讯,2002, 12(10) : 50-53.[66] 罗宇玲, 曹辉, 刘好. 大型注塑模具使用寿命影响因素分析及改进方法[J]. 茂名学院学报, 2006, 16(4): 25-30.[67] 刘平平. 注塑模自动分模技术研究[D]. 上海: 同济大学, 2009.[68] 唐合存. 基于层次分析法的注塑模方案设计系统研究[D]. 大连: 大连理工大学.[69] 傅建军 . 模具制造工艺[M]. 北京: 机械工业出版社, 2005.[70] 刘航 . 模具制造技术[M]. 西安: 西安电子科技大学出版社, 2006.[71] 张荣清. 模具设计与制造[M]. 北京: 高等教育出版社, 2006.[72] 郭广思. 注塑成型技术[M]. 北京: 机械工业出版社, 2005.[73] 邓明. 现代模具制造技术[M]. 北京: 化学工业出版社, 2005.[74] 张清辉 . 模具材料及表面处理 [M]. 北京: 电子工业出版社, 2005.[75] 王华山. 塑料注塑技术与实例[M]. 北京: 化学工业出版社, 2006.[76] :王兴天. 注塑技术与注塑机[M]. 北京: 化学工业出版社, 2005.[77] 李群. 模具CAD/CAE的发展概况及趋势[J]. 模具工业, 2005, 12(3): 27-30.[78] 田学军. 注塑过程分析及工艺参数设定[J]. 机械工程师, 2005,16(2): 12-16.[79] 潘振鹏. 塑料模具材料的研制与应用[J]. 金属热处理, 1999, 1.[80] 徐慧民. 模具制造工艺学[M]. 北京理工大学出版社, 2007, 8[81] Autodesk Co Ltd. Moldflow insight 2010 help System [G]. MA: Autodesk Co Ltd, 2009.[82] Wynne H, Irene M. Current research in the conceptual design of mechanical products[J]. Computer-Aided Design, 1998, 3(7): 377-389. [83] Dr M. S. Gadala, J. Wang. A practical procedure for mesh motion inarbitraryLagrangian-Eulerian method[J]. Engineering with Computers, 1998, 14(3): 91-96.[84] CHIN, KWAI-SANG and T. N. WONG, Knowledge-based evaluation for theconceptual[J]. Computer-Aided Design, 2003, 6(7): 12-22.[85] Li Pang, Kamath G M, Wereley N M, Dynamic Characterisation And Analysis Of Magnetorheological Damper Behaviour[J]. SPIE Conference on Passive Damping and Isolation SPIE 1998, 7(2): 284-302.[86] G. M. Kim, P. J. Cho, C. N .Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International journal of machine tools& manufacture, 2000, 3(2): 277- 291.[87] MOK, C. K, K. S. CHIN and JOHN K. L. HO, An interactive knowledge-based CAD system for mould design in injection molding processes[J]. The International Journal of Advanced Manufacturing Technology, 2001, 8(1): 27-38.[88] Sang C H, Wong T N. Knowledge-based evaluation for the Conceptual design development of injection molding pans[J]. Engin. Appl. 1998, 9(5): 359-366.[89] C. L. LI, S. T. TAN, K. W. CHAN. A Qualitative and Heuristic Approach to the Conceptual Design of Mechanisms, Engng Applic. Artif. Intell. 9, 1996: 17-31.。
模具实习报告书参考文献
[1] 张伟,李明. 模具设计与应用[M]. 北京:机械工业出版社,2019.[2] 王刚,陈丽. 模具制造工艺[M]. 北京:化学工业出版社,2017.[3] 刘伟,张华. 模具设计与制造技术[M]. 北京:高等教育出版社,2015.[4] 李丹,张晓燕. 模具制造技术[M]. 北京:中国劳动社会保障出版社,2018.[5] 陈晓东,黄艳芳. 模具设计与制造工艺[M]. 北京:机械工业出版社,2016.[6] 赵志刚,刘强. 模具制造工艺学[M]. 北京:化学工业出版社,2019.[7] 李永生,王志勇. 模具设计与制造[M]. 北京:机械工业出版社,2017.[8] 郭丽华,张磊. 模具设计与制造技术[M]. 北京:高等教育出版社,2016.[9] 刘建,陈丹阳. 模具制造工艺学[M]. 北京:化学工业出版社,2018.[10] 胡建忠,李华. 模具设计与制造[M]. 北京:中国劳动社会保障出版社,2015.[11] 陈晓东,黄艳芳. 模具制造技术[M]. 北京:机械工业出版社,2016.[12] 刘伟,张华. 模具制造工艺[M]. 北京:高等教育出版社,2018.[13] 赵志刚,刘强. 模具制造工艺学[M]. 北京:化学工业出版社,2017.[14] 李丹,张晓燕. 模具设计与制造技术[M]. 北京:中国劳动社会保障出版社,2016.[15] 郭丽华,张磊. 模具设计与制造[M]. 北京:高等教育出版社,2015.[16] 王刚,陈丽. 模具制造工艺[M]. 北京:化学工业出版社,2016.[17] 张伟,李明. 模具设计与应用[M]. 北京:机械工业出版社,2017.[18] 刘建,陈丹阳. 模具制造工艺学[M]. 北京:化学工业出版社,2018.[19] 胡建忠,李华. 模具设计与制造[M]. 北京:中国劳动社会保障出版社,2016.[20] 陈晓东,黄艳芳. 模具制造技术[M]. 北京:机械工业出版社,2015.以上参考文献涵盖了模具设计、制造工艺、技术等方面的内容,对模具实习报告书的撰写具有很好的参考价值。
注塑模具文献综述
毕业设计(论文)文献综述注塑模具的现状与发展趋势综述1 塑料制品发展概况塑料制品是采用塑料为主要原料加工而成的生活用品、工业用品的统称。
塑料的出现给人类带来了极大地便利,由于其有成本低廉、抗腐蚀能力强、可塑眭强、还可用于制备燃料油和燃料气,降低原油消耗等无可替代的优点,自发明之日起就广受欢迎,随着加工工艺的进步和技术的突破,塑料制品渗透进我们生活的方方面面,成为最重要的必需品[ 1 ]。
根据中国塑料加工工业协会统计数据,我国塑料制品行业塑料用量从2006 年的2802 万吨快速增长到2012 年的5782 万吨。
2013 年1 月~12 月,我国塑料制品行业累计完成产量6188 万吨。
在“十二五”期间,我国塑料产业要推进产业结构优化升级,努力提高产业技术水平,使塑料制品总产量的年增长率为13-15%。
2015年,预计塑料制品总产量可达到8000万吨。
塑料模具工业近20年来发展十分迅速,早在7年前塑料的年产量按体积计算已经超过钢铁和有色金属年产量的总和,塑料制品在汽车、机电、仪表、航天航空等国家支柱产业及与人民日常生活相关的各个领域中得到了广泛的应用。
近年来,人们对各种设备和用品轻量化及美观和手感的要求越来越高,这就为塑料制品提供了更为广阔的市场。
塑料制品要发展,塑料模具是塑料零部件及其制品行业的重要支撑装备,那么必然要求塑料模具随之发展。
绝大部分塑料制品的成型都依赖于塑料模具,因此塑料制品行业的快速发展对塑料模具行业形成了旺盛的市场需求。
尤其是近年来,我国汽车、家电等主机行业快速发展,产能持续增加,同时随着技术进步,塑料零部件使用比例持续上升,直接推动了我国塑料模具行业的快速发展。
塑料制品成形的方法虽然很多,其主要方法是注射、挤出、压制、压铸和气压成型等,但最主要的方法是注塑成形,世界塑料模具市场中塑料成形模具产量中约半数以上是注塑模具,而其中注射模约占成型总数的60%以上。
由于塑料产品应用前景可观,更新换代较快,也就要求注塑模也应跟上时代发展的步伐。
塑料注塑模相关文献
塑料注塑模相关文献
塑料注塑模是热塑性塑料成型的一种重要方法,它能一次成型形状复杂、尺寸精确、带有金属或非金属嵌件的塑料,具有成型周期短、生产效率高、易实现自动化生产等特点。
以下是一些关于塑料注塑模的文献资料:
- 赵蓓蓓《初探塑料模具材料现状及发展方向》:探讨了塑料模具材料的现状和未来发展方向。
- 孙安垣等《我国改性塑料行业的发展前景》:讨论了中国改性塑料行业的发展趋势。
- 伍先明、王群《塑料模具设计指导》:介绍了塑料模具的设计方法和技巧。
- 朱光力、万金保《塑料模具设计》:阐述了塑料模具的设计原则和设计思路。
国外注塑模具发展现状文献
国外注塑模具发展现状文献
随着现代工业的不断发展,注塑模具已成为了现代工业生产的重
要部件之一。
国外注塑模具发展现状方面,主要表现在以下几个方面:
一、发展趋势
现代注塑模具在结构、制造工艺、材料运用和管理等方面已呈现出较
为完善的发展状态。
近年来,随着CAD/CAM和数控技术在模具制造中
的广泛应用,注塑模具生产效率和产品品质得到了进一步提高。
同时,先进的注塑加工设备的应用也为注塑模具的快速制造提供了重要支持。
二、技术要求
注塑模具的制作需要具备较高的技术水平和专业技能。
一方面,需要
有较高的设计能力,充分了解产品的使用环境和材料特性,并根据产
品要求设计合理的模具结构。
另一方面,需要精湛的制造工艺,包括
金属加工和表面处理等方面的技术。
三、品质保证
注塑模具是生产过程中不可或缺的部分,其质量直接影响着产品的质
量和生产效率。
因此,注塑模具的品质要求非常高,需要严格遵循工
艺要求,采用先进的生产工艺和材料,确保模具的精度和稳定性,并
进行严格的检测和测试,确保模具性能符合要求。
四、创新与发展
随着需求不断变化和市场的竞争加剧,注塑模具行业正面临着更加广
阔的发展前景和挑战。
未来,注塑模具制造企业需要进一步注重技术
研发和创新,加强与客户和供应商的沟通,引入更加先进的制造技术
和生产设备,不断提高生产效率和产品品质,从而为企业的可持续发
展打下更加坚实的基础。
总之,国外注塑模具行业正经历着快速的发展和变革,在技术、
品质、管理等方面不断创新和提高,为注塑行业的发展和进步做出了
积极的贡献。
双层齿轮注塑模具设计 文献综述
题目:双层齿轮注塑模设计一、前言1.课题研究的意义,国内外研究现状和发展趋势1.1 课题研究的意义模具行业是现代工业里面必不可少的部分,又是高新技术领域的重要组成部分。
机械、电子、轻工、汽车、纺织、航空、航天、等等领域都需要模具,使得模具成为最主要的工艺装备,它承担了 60%~90% 的产品零件,组件和部件的加工生产。
随着现代材料技术和模具技术的飞速发展,尤其是塑料凭借着优良的加工性、品种的多样性,已经成为当前人类使用的四大材料(木材、水泥、钢铁、塑料)中发展最快的一类。
由于塑料齿轮具有传动噪声低、可以或者许吸振、自润滑、生产模型加工生产效率高等优点,塑料齿轮在齿轮行业的应用会愈来愈多,成为一个世界性趋势。
日常生活中的塑料制品越来越多,例如:手机、塑料盆、塑料杯、塑料笔、电脑等等。
本课题研究的塑料齿轮也将是未来轻化、量化齿轮的一个具有发展潜力的内容,如何使得塑料齿轮寿命更长,精度更高,效果更好,啮合更准确,等等,一系列的问题都值得我们去探讨。
1.2 国内外的研究现状1.2.1 国内概况整体来看,中国塑料模具无论是在数量上,还是在质量、技术和能力等方面都有了很大进步,但与国民经济发展的需求、世界先进水平相比,差距仍很大。
一些大型、精密、复杂、长寿命的中高档塑料模具每年仍需大量进口。
在总量供不应求的同时,一些低档塑料模具却供过于求,市场竞争激烈,还有一些技术含量不太高的中档塑料模具也有供过于求的趋势。
近年来,中国塑料模具制造水平已有较大提高。
大型塑料模具已能生产单套重量达到50t 以上的注塑模,精密塑料模具的精度已达到 2μm,制件精度很高的小模数齿轮模具及达到高光学要求的车灯模具等也已能生产,多腔塑料模具已能生产一模 7800 腔的塑封模,高速模具方面已能生产挤出速度达 6m/min 以上的高速塑料异型材挤出模具及主型材双腔共挤、双色共挤、软硬共挤、后共挤、再生料共挤出和低发泡钢塑共挤等各种模具。
注塑模具制造技术文献综述
注塑模具制造技术摘要:高分子材料成型加工技术是一种国家经济发达程度旳标志之一。
由于最终体现材料作用旳是其制品旳品种、数量和质量,材料只有通过多种成型加工手段,形成最终产品(制品),才能体现其功能和价值。
而新材料、新产品、新技术旳产生在某种意义上取决于成型加工工艺技术和成型加工机械旳突破。
注塑成型是塑料制品成型旳一种重要措施。
几乎所有旳热塑性塑料、多种热固性塑料和橡胶都可用此法成型。
在中国,目前注塑制品约占塑料制品总量旳30%左右,注塑机占塑料机械总产值旳38%左右。
注塑成型可制造多种形状、尺寸、精度、性能规定旳制品。
注塑制品包括小到几克甚至几毫克旳多种仪表小齿轮、微电子元件、医疗微器械等,大到几公斤旳电视机、洗衣机外壳、汽车用塑料件,甚至几万克旳制品。
关键词:高分子材料/注塑成型/形状/尺寸/精度/性能1注塑模具制造技术旳发展趋势运用注塑模具CAX软件,设计与工程人员可完毕注塑制品构造模具概念设计、CAE 分析、模具评价、模具构造设计和CAM等虚拟与现实工作,运用注塑模流分析技术,能预先分析模具设计旳合理性减少试模次数,加紧产品研发,提高企业效率。
注射模旳重要性:1)塑料具有质量轻、比强度大、绝缘性好、成型生产率高和价格低廉等长处。
塑料已成为金属旳良好代用材料,出现了金属材料塑料化旳趋势。
2)由于汽车轻量化、低能耗旳发展规定,汽车零部件旳材料构成发生明显旳以塑代钢旳变化。
从国内外汽车塑料应用旳状况看,汽车塑料旳用量已成为衡量汽车生产技术水平旳重要标志。
3)注塑成型由于可以一次成型多种构造复杂、尺寸精密和带有金属嵌件旳制品,并且成型周期短,可以一模多腔,大批生产时成本低廉,易于实现自动化生产,因此在塑料加工行业中占有非常重要旳地位。
1.2C AX技术旳必要性1)老式旳塑料注射成型开发措施重要是尝试法,根据设计者有限旳经验和比较简朴旳计算公式进行产品和工艺开发。
因此开发过程中要反复试模和修模,导致生产周期长、费用高,产品质量难以得到保证对于成型大型制品和精密制品。
塑料模具设计参考文献
塑料模具设计参考文献
参考文献
[1] 伍先明王群庞佑霞等编著.塑料模具设计指导(第一版)[M].国防工业出版社,2006.
[2] 王旭主编.塑料模结构图册[M].机械工业出版社,1999.
[3] 王文广田宝山田雁晨主编.塑料注射模具设计技巧与实例[M].北京:化学化工出版社,2004.
[4]屈华昌主编.塑料成型工艺与模具设计[M].机械工业出版社,2004.
[5] 蒋继宏王效岳编.注塑模具典型结构100例[M].中国轻工业出版社,2002.
[6] 张晓黎李海梅主编.塑料加工和模具专业英语(第一版)[M].化学工业出版社,2005.
[7] 许鹤峰陈言秋编著.注塑模具设计要点与图例[M].化学化工出版社,1999.
[8] 朱光力万金保等编著.塑料模具设计[M].清华大学出版社,2003.
[9] 高锦张主编.塑性成形工艺与模具设计[M].机械工业出版社,200.
[10] 夏江梅主编. 塑料成型模具与设备.机械工业出版社,2005.
[11] 王孝培主编. 塑料成型工艺及模具简明手册.机械工业出版社,2000.
[12] 张孝民主编. 塑料模具技术.机械工业出版社,2003.
[13] 屈华昌主编. 塑料成型工艺及模具设计.高等教育出版社,2001.
[14] 叶久新王群主编. 塑料成型工艺及模具设计.机械工业出版社,2008.
[15] 中国模具设计大典编委会. 中国模具设计大典. 江西科学技术出版社,2003.。
注塑模具毕业设计论文
前言塑料模具技术的发展日新月异,在现代工业、餐具、玩具等行业中的应用很广泛,模具是生产各种产品的重要工艺装备。
此次毕业设计的题目是塑料成型模具的设计。
塑料模具的分类很多,按照塑料制件的不同可分为:注射模、压缩模、压注模、挤出模、气动成型模等。
注塑模具又称注塑成型,是热塑性塑料制品生产的一种重要的方法。
除少数塑料制品外,几乎所有的热塑性塑料都可以用注射成型方法生产塑料制品。
注塑模具不仅用于热塑性塑料的成型,而且成功用于热固性塑料的成型。
模具以其特定的形状通过一定的方式使原料成型。
模具的制造精度越高,制造成本越高,因此应延长模具的使用寿命,尽量缩短模具的制造周期,来降低生产成本。
塑料制品以其密度小、质量轻的优点在工业中的应用日益普遍,大有“以塑代钢”的趋势。
塑料模具可以满足塑料的加工工艺要求和使用要求,可以很好的降低塑料制品的生产成本。
塑料的质量要靠模具的正确结构和模具成型零件的正确形状,精确尺寸几较低的表面粗糙度来保证。
本次设计的模具用于有机玻璃制品的生产制造。
聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃,属于热塑性刚性硬质无色的透明材料,具有良好的综合力学性能及电绝缘性,制品尺寸稳定,容易成型,有一定的耐热性、耐寒性和耐气候性,表面硬度不够,容易擦伤,易溶于有机溶剂,又可以软化熔融,可再次成型为一定形状的制品,如此可反复多次。
因此选用该塑料有助于废料和旧弃塑件的二次回收,循环利用。
有一定的环保效应,减少了现实中的“白色污染”。
第一章塑件成型工艺分析第1.1节塑件分析1.1.1 塑件二维工作图如图1-1所示图1-11.1.2 塑件1.塑件材料名称有机玻璃(PMMA);2.色调无色透明;3.生产纲领大批量;4.塑件结构该塑件外形为长方体类零件,但内有凹腔和凸台,塑件壁厚均约为2mm,其脱模斜度为30/~1°30/(取1°),采用一般精度等级MT5级。
第1.2节塑件原料(PPMA)的工艺性能1.2.1 支架底托的原料聚甲基丙烯酸甲酯(PMMA)1.物料性能聚甲基丙烯酸甲酯是刚性硬质无色的透明材料,具有良好的综合力学性能及电绝缘性,制品尺寸稳定,容易成型,有一定的耐热性、耐寒性和耐气候性,易溶于有机溶剂,表面硬度不够,容易擦伤。
注塑模具 外文文献
International Journal of Automotive Technology , Vol. 13, No. 2, pp. 273−277 (2012)DOI 10.1007/s12239−012−0024−5Copyright ©2012KSAE/063−11pISSN 1229−9138/eISSN 1976-3832273DESIGN OPTIMIZA TION OF AN INJECTION MOLD FOR MINIMIZING TEMPERA TURE DEVIA TIONJ.-H. CHOI 1), S.-H. CHOI 1), D. PARK 2), C.-H. PARK 2), B.-O. RHEE 1)* and D.-H. CHOI 2)1)Graduate School of Mechanical Engineering, Ajou University, Gyeonggi 443-740, Korea 2)Graduate School of Mechanical Engineering, Hanynag University, Seoul 133-791, Korea(Received 24 January 2011; Revised 15 June 2011; Accepted 17 June 2011)ABSTRACT −The quality of an injection molded part is largely affected by the mold cooling. Consequently, this makes it necessary to optimize the mold cooling circuit when designing the part but prior to designing the mold. V arious approaches of optimizing the mold cooling circuit have been proposed previously. In this work, optimization of the mold cooling circuit was automated by a commercial process integration and design optimization tool called Process Integration, Automation and Optimization (PIAnO), which is often used for large automotive parts such as bumpers and instrument panels. The cooling channels and baffle tubes were located on the offset profile equidistant from the part surface. The locations of the cooling channels and the baffle tubes were automatically generated and input into the mold cooling computer-aided engineering program, Autodesk Moldflow Insight 2010. The objective function was the deviation of the mold surface temperature from a given design temperature. Design variables in the optimization were the depths, distances and diameters of the cooling channels and the baffle tubes. For a more practical analysis, the pressure drop and temperature drop were considered the limited values. Optimization was performed using the progressive quadratic response surface method. The optimization resulted in a more uniform temperature distribution when compared to the initial design, and utilizing the proposed optimization method, a satisfactory solution could be made at a lower cost.KEY WORDS :Injection molding, Cooling channel, Cooling analysis, PQRSM, Design optimization1. INTRODUCTIONThe cooling stage is the longest stage during the cycle time of the injection molding process. Therefore, the most effective method to reduce the cycle time is to reduce the cooling time. The cooling time is fundamentally determined by the part thickness and mold temperature, which creates a cooling time limitation. If the mold temperature and part thickness are uniform over a whole part, the cooling time is not a concern; however, non-uniform part thickness and mold temperature distribution lengthen the overall cooling time. A longer cooling time means poor temperature uniformity, which can cause the part to warp. This is especially true for large products, such as automotive bumpers and instrument panels. It is for these types of parts that temperature uniformity becomes the most important factor in mold design.We developed an automated optimization of the cooling circuit for an early part design in order to check the design validity. Usually the early part design is checked by the filing/packing and warpage analyses without a cooling analysis. This is because the assumption is that the mold temperature is uniform, which is not actually true.Providing a rapidly optimized cooling circuit for the designed part would help part designers correct their design (Koresawa and Suzuki, 1999).The optimization was designed to minimize the part temperature deviation using design variables such as the diameters and distances of the cooling channels and baffle tubes and the depths of the part from the mold surface of the cooling channels and baffle tubes. A commercial computer-aided engineering (CAE) tool, Autodesk Moldflow Insight,was used for the cooling analysis. We successfully obtained an optimized cooling circuit in a time much shorter than can be achieved in a manual design. In order to develop the automated optimization of the cooling circuit for the practical mold design, practical design parameters such as the pressure drop limit and the coolant temperature rise were considered in the optimization.The performance of the optimization technique can be affected by numerical noise in the responses. To find an optimum solution effectively when numerical noise exists,we performed an optimization by applying a regression-based sequential approximate optimizer known as the Progressive Quadratic Response Surface Method (PQRSM)(Hong e t al ., 2000), which was part of a commercial process integration and design optimization (PIDO) tool known as the Process Integration, Automation and Optimization (PIAnO) (FRAMAX, 2009).*Corresponding author . e-mail: rhex@ajou.ac.kr274J.-H. CHOI et al.2. MODEL AND CHANNEL CONFIGURATION2.1. Model ConfigurationThe model used for the optimization and CAE analysis was an automotive front bumper (FB). The size of the part was 1,800×600 mm, the element type was triangular and the number of elements in the model was approximately 26,000, with an average aspect ratio of 1.5. The model is shown in Figure 1.2.2. Cooling Channel ConfigurationThe cooling circuit for the automotive bumper mold is typically designed to have a horizontal plane of line cooling channels and to install baffle tubes from the line cooling channels. However, in this design, unnecessarily long baffle tubes attached at a line cooling channel may cause a high pressure drop in the cooling channel. The line cooling channels may not contribute to mold cooling due to their large distance from the part surface. In order to improve the design, the line cooling channels were located along the offset profile of the part surface as shown in Figure 2. The end points of the baffle tubes were also located on the offset profile along a line cooling channel.Either the line cooling channels or baffle tubes were located on the offset profiles with equal arc distances between them.3. FORMULATION3.1. Design ConstraintsThe limitation of the pressure drop and the temperature rise between the inlet and outlet of cooling channel should also be considered in the design of the mold cooling circuit. A high pressure drop usually occurs in a needlessly longcooling circuit. In a long cooling circuit, the flow rate of coolant is low, which results in a high mold temperature and a high temperature rise at the outlet. The design defect could eventually be found in the cooling analysis; however,the optimization is already time consuming, so it is better to instead apply the limits as constraints in the optimization. In this work we assumed that 4 line cooling channels were connected in series as a cluster, as shown in Figure 3.Clusters are connected in parallel by a manifold. Usually,the maximum pressure drop in a cluster is limited to 200kPa, and the maximum temperature rise at the outlet is 5o C (Menges e t al ., 2001). In the cooling analysis, each line cooling channel is regarded as a separate independent circuit for convenience. Because there were 4 line cooling channels in a circuit, the limits on the pressure drop and the temperature rise in each line cooling channel were 50 kPa and 1.25o C, respectively. We also have an additional constraint due to the fact that the diameter of the baffle tube must be greater than or equal to the diameter of the cooling channel because the baffle tube has lower heat removal efficiency than the cooling channel. These three design constraints can be expressed as Equations (1), (2) and (3) ,(1),(2),(3)where G 1 is the constraint on pressure drop, G 2 is the constraint on temperature rise, and G 3 represents the subtraction of the diameter of the baffle tube from the diameter of the cooling channel.3.2. Design V ariablesIn this work, the diameters, distances and depths of the line cooling channels and baffle tubes were chosen as design variables for optimization. The total number of design variables was 6 as shown in Table 1. Typically, the diameters of the cooling channels and baffle tubes are determined by the mold designer according to their rule of0 Pa G 150000 pa ≤≤0 C oG 2 1.2 C o≤≤G 30 mm≤Figure 1. Finite element model of the product used for theoptimization.Figure 2. Configuration of cooling channels located alongthe offset profiles.Figure 3. Clusters consisting of 4 cooling channels with baffle tubes.DESIGN OPTIMIZATION OF AN INJECTION MOLD FOR MINIMIZING TEMPERATURE DEVIATION 275thumb (Rhee et al ., 2010). However, it has been examined in great detail among the mold designers. Table 1 shows the design variables with their ranges and initial values.The minimum values for the cooling channel distance,baffle distance and baffle depth were determined by the constraints of the machining requirement. The maximum values of cooling channel distance and baffle distance were determined by the empirical maximum obtained from the mold designers. The baffle distance was a discrete variable due to a restriction in the automated use of the CAE software. In this work, the baffle distances for optimization were 60, 90 and 120 mm.3.3. Objective FunctionA principal purpose of the mold cooling circuit optimization is to achieve uniform temperature distribution over the part. The uniform temperature distribution means that the temperature deviation caused by the cooling channels is minimized, as shown in Figure 4. The objective function in the optimization was the standard deviation of part temperature as shown in Equation (4). The part temperature was an arithmetic average of the upper and the lower surfaces of the mold halves. The mold surface temperature was calculated from the finite element of the part. min ,(4)whereσ is the standard deviation of the part temperature, E i is the temperature of i -th element, E w is the average temperature of the entire triangular elements, and N is the number of elements.4. OPTIMIZATION4.1. Parametric StudyIn order to examine the effects of the design variables on the objective function, pressure drop and temperature rise,parametric studies were carried out. A parametric study was performed by changing a variable in a certain range while keeping all other variables fixed. Figures 5-7 showthe results of parametric studies for the objective function,pressure drop temperature rise, respectively. In each figure,the x-axis indicates the levels of design variables. Every design variable was divided into 11 levels from its lower bound to its upper bound. -5 and 5 mean the lower and upper bounds, respectively.When examining the temperature deviation, the diameter of the cooling channels shows little influence to the objective function (see Figure 5.). This result was predictable because the cooling channel affects the parttemperature to a lesser degree than the baffle tubes in theautomotive bumper mold. The automotive bumper mold has a deep core so that the mold cooling depends upon the baffle tubes rather than the cooling channels. Another reason of the lack of influence can be that the flow state in the cooling channel remains turbulent in the range of the parametric study. The cooling channel usually has a smaller diameter than the baffle tube. When the flow in the baffle tube is kept in the turbulent state, the flow in the cooling channel will be in the turbulent state.The diameters of the baffle tubes show a tangible influence when it increases above a certain value.Increasing of the diameter changes the flow in the tube to a laminar flow state. This is the cause for the lower heat transfer coefficient when compared to the turbulent flow state. This is why the temperature deviation becomes larger when the baffle tube diameter increases.σE i E w –()2N --------------------i 1=N∑=Figure 4. Scheme of the temperature field by the cooling channels.Table 1. Lower and the upper bounds for design variables and the initial values for the optimization (unit: mm).DescriptionLower Initial Upper X 1Channel diameter 103040X 2Baffle diameter 103040X 3Channel distance 6090120X 4Baffle distance 6060120X 5Channel depth 306090X 6Baffle depth306090Figure 5. Parametric study result of temperature deviation (objective function).276J.-H. CHOI et al.Among all parameters, the baffle depth shows the largest influence on the objective function, as shown in Figure 5.As the baffle depth increases, the objective function increases. This means that the deeper location of the baffle tubes causes the temperature deviation to increase. Also, it confirms that the cooling of the automotive bumper mold depends upon the baffle tubes.The diameters of the cooling channels and the baffle tubes have the highest influence on the pressure drop in the cooling circuit, while the other variables show little influence (see Figure 6.). As the diameters increase, the pressure drop decreases after a certain value. This is also a predictable result as a larger diameter decreases the pressure drop.The influences of the temperature rise at the outlet are shown in Figure 7. The most influential parameters are the baffle diameter and the channel distance. The influence of the baffle diameter shows the highest values in the range from -1 to 3. In the case of the smaller baffle diameter, the reduced surface area for the heat transfer may cause a smaller temperature rise, while the larger baffle diameter may cause the lower heat transfer coefficient due to the lower flow rate.The increased channel distance means that each cooling channel takes up a larger area of the part surface with a larger amount of heat removal. This may give a physical explanation to why the increase of the temperature rise increases with channel distance. The fluctuations shown inFigure 7 are supposed to be numerical noise.4.2. Optimization ResultsThe largest increase in the temperature rise (Figure 7) is approximately 0.15o C. This value is much less than the constraint. The influence of the variables on the temperature rise is not tangible.The baffle distance was considered the discrete variable in this work; hence, it was difficult to apply a general optimization method. Because there were three values,optimizations were carried out 3 times with the 5 design parameters. The baffle distance was fixed in each optimization.Figures 8 and 9 show the temperature deviations as the channel diameter, x 1 and the channel distance, x 3 change by 0.1% using the perturbation method around their initial design values. From these results we recognized that the variations in the temperature deviations as x 1 and x 3 varied included numerical noise.Therefore, we chose PQRSM as the optimization method that could effectively optimize the response withnumerical noise. The PQRSM equipped in a commercialFigure 6. Parametric study result of the pressure drop.Figure 7. Parametric study result of the temperature rise.Figure 8. V ariation of the temperature deviation w.r.t. x 1observed by using 0.1% perturbation method.Figure 9. V ariation of the temperature deviation w.r.t. x 3observed by using 0.1% perturbation method.DESIGN OPTIMIZATION OF AN INJECTION MOLD FOR MINIMIZING TEMPERATURE DEVIATION277PIDO tool, PIAnO, approximates the objective function and constraints with quadratic functions in the trust region, and it sequentially moves and reduces the trust region until it finds the optimum solution.The results of the optimization using the PQRSM are shown in Table 2. Baseline represents the standard condition before applying the optimization. After the optimizations were carried out for the 3 cases of the baffle distance (x4), the lowest temperature deviation was obtained in the case of a baffle distance of 60 mm. Therefore we conclude that a baffle distance of 60 mm is our optimized result.At this optimized result, the temperature deviation was reduced by 19.2% compared to that of the baseline design while satisfying all other design requirements. Among the design variables, the channel diameter, x1, the baffle diameter, x2 and the channel distance, x3 remained close to their initial values while the channel depth, x5 moved toward the upper bound and the baffle depth, x6 toward the lower bound. Thus, we expect a better result if the bounds of the baffle distance, x4, channel depth, x5 and baffle depth, x6 can be relaxed.5. CONCLUSIONIn this study, we carried out the optimization of the cooling circuit for an automotive front bumper. The design objective was to minimize the temperature deviation while satisfying all constraints. There were three design constraints that included the pressure drop, temperature rise and aspect ratio, in addition to side constraints on six design variables.Among the six design variables, the baffle distance was the discrete design variable. Thus, we carried out optimizations for the three cases of baffle distances being 60, 90 and 120 mm. The lowest temperature deviation was obtained in the case of a baffle distance of 60 mm. In this case, the temperature deviation was reduced by 19.2% compared to the baseline design while satisfying all design requirements. It is believed that the design optimization approach of employing CAE and PIDO tools adopted in this study can be applied for the design of many industrial manufacturing processes.REFERENCESFRAMAX Inc (2009). PIAnO Tutorial.FRAMAX Inc(2009). PIAnO User’s Manual.Hong, K. ., Choi, D. H. and Kim, M. S. (2000). Progressive quadratic approximation method for effective constructing the second-order response surface models in the large scaled system design. The Kore an Socie ty of Me chanical Engine e rs(A)24, 12/12, 3040−3052.Koresawa, H. and Suzuki, H. (1999). Autonomous arrangement of cooling channels layout in injection molding. Proc. 1999 Annual Technological Conf. Society of Plastics Engineers, 1073−1077.Menges, G., Michaeli, W. and Mohren, P. (2001). How to MakeInjection Molds. 3rd Edn. Hanser Gardner Publications, Inc.. Ohio. 298−302.Rhee, B. O., Park, C. S., Chang H. K., Jung, H. W. and Lee, Y. J. (2010). Automatic generation of optimum cooling circuit for large injection molded parts. Int. J. Precision Eng. and Manufacturing, 11, 439−444.Table 2. Optimization results summary.Lower Baseline X4=60 X4=90 X4=120 Upperx1 10.00 30.00 29.67 28.39 30.00 40.00 x2 10.00 30.00 30.36 28.39 30.00 40.00 x3 60.00 90.00 89.37 90.29 88.13 120.00 x4 60.00 60.00 60.00 90.00 120.00 120.00 x5 30.00 60.00 87.63 88.81 90.00 90.00 x6 30.00 60.00 30.00 30.00 30.00 90.00 OBJ 6.62 5.35 5.60 5.46G1 016790 16904 16610 8758 50000G2 00.36 0.43 0.33 0.38 1.20G3 0.00 -0.69 0.00 0.00 0.00。
机械设计制造注塑模具文献资料
***大学文献资料专业机械设计制造及其自动化学生姓名班级学号指导教师第1章前言1.1模具行业及模具技术发展趋势[1]汽车、摩托车行业的发展大大地推动模具工业的高速增长,特别是汽车覆盖件模具、塑料模具和压铸模具的发展。
例如, 2005 年汽车行业需要各种塑料件 45. 5 万吨,到 2010 年需求将达 72. 2 万吨,发展空间十分广阔。
家用电器,如彩电、冰箱、洗衣机、空调等,在国内的市场很大。
目前,我国的彩电的年产量已超过 4000 万台,电冰箱、洗衣机和空调的年产量均超过了 1500 万台。
电子、通讯和建筑材料等行业对模具的需求,都将对中国模具工业和技术的发展产生巨大的推动作用。
未来我国模具行业的趋势是:1). 越来越多的新技术地运用到模具生产中去。
高速加工(High Speed Machining,简称 HSM)技术引入模具行业。
高速切削是以高切削速度、高进给速度和高加工质量为主要特征的加工技术,其加工效率比传统的切削工艺要高几倍,甚至十几倍。
目前,欧美模具企业在生产中广泛应用数控高速铣 . 三轴联动的比较多,也有一些是五轴联动的,转数一般在 1.5 万~ 3 万 r/min。
采用高速铣削技术,可大大缩短制模时间。
同时,工件在高速加工过程中温升低、切削力小、加工平稳、加工质量好,提高了模具精度。
研究表明,对于一般复杂程度的模具,经高速铣削精加工后的模具型面 . 仅需略加抛光便可使用,节省了大量修磨、抛光的时间, HSM 加工时间可减少 30% 以上。
更新和增加数控高速铣床,是模具企业设备投资的重点之一。
2). 标准件的应用将日益广泛。
模具标准化及模具标准件的应用将极大地影响模具制造周期,还能提高模具的质量和降低模具制造成本。
3). 大力开展并行工程,快速响应市场需要。
在国际上 . 模具工业是公认的关键工业,目前我国已成为世贸组织的新成员,各类产品都需要提高质量降低成本,首先要解决模具设计制造周期,最大限度地缩短各生产环节间的时间。
塑料模具材料选用参考文献
塑料模具材料选用参考文献塑料模具材料的选用是塑料模具设计中至关重要的一环。
合理选择材料不仅可以提高模具的使用寿命和性能,还能够提高生产效率和产品质量。
本文将从不同角度探讨塑料模具材料的选用,并介绍一些常见的参考文献。
一、材料的物理性能塑料模具材料的物理性能直接关系到模具的使用寿命和性能。
常见的物理性能指标包括强度、硬度、韧性、耐磨性等。
材料的强度决定了模具的抗压能力,硬度影响了模具的耐磨性,韧性则决定了模具的抗冲击性能。
因此,在选择塑料模具材料时,需要综合考虑不同物理性能指标的要求,以及具体应用场景的需求。
二、材料的化学性能塑料模具在使用过程中往往会接触到各种化学物质,如溶剂、酸碱等。
因此,材料的化学性能也是选用塑料模具材料时需要考虑的重要因素。
常见的化学性能指标包括耐腐蚀性、耐溶剂性、耐酸碱性等。
选用耐腐蚀性好的材料可以延长模具的使用寿命,选用耐溶剂性好的材料可以保证模具在接触溶剂时不会发生膨胀或变形。
三、材料的加工性能塑料模具的加工性能直接影响到模具的制造过程和质量。
材料的加工性能包括熔融流动性、热稳定性、热传导性等指标。
熔融流动性好的材料可以保证模具在注塑过程中填充性能良好,热稳定性好的材料可以保证模具在高温环境下不会发生变形或熔化,热传导性好的材料可以提高模具的散热能力。
四、材料的经济性和可靠性在选用塑料模具材料时,还需要考虑材料的经济性和可靠性。
经济性包括材料的价格和可用性,可靠性则包括材料的稳定性和可靠性。
选用价格适中且易于获得的材料可以降低模具的制造成本,选用稳定性好且经过验证的材料可以提高模具的可靠性。
在进行塑料模具材料选用时,可以参考一些相关的文献。
例如《塑料模具材料选用手册》、《塑料模具材料选用与应用》等,这些文献对不同材料的性能、特点、应用等进行了详细介绍,可以为塑料模具材料的选用提供参考。
塑料模具材料的选用是一个综合考虑多个因素的过程。
通过合理选择材料,可以提高模具的使用寿命和性能,提高生产效率和产品质量。
注塑模具英文文献
Employing current design approaches for plastic parts will fail to produce the true minimum manufacturing cost in these cases.
Minimizing manufacturing costs for thin injection
molded plastic components
1. Introduction
In most industrial applications, the manufacturing cost of a plastic part is mainly governed by the amount of material used in the molding procend the part deformation after molding [12], analyzing the effects of wall thickness and the flow length of the part [13], and analyzing the internal structure of the plastic part design and filling materials flows of the mold design [14]. Reifschneider [15] has compared three types of mold filling simulation programs, including Part Adviser, Fusion, and Insight, with actual experimental testing. All these approaches have established methods that can save a lot of time and cost. However, they just tackled the design parameters of the plastic part and mold individually during the design stage. In addition, they did not provide the design parameters with minimum manufacturing cost. Studies applying various artificial intelligence methods and techniques have been found that mainly focus on optimization analysis of injection molding parameters [16,17]. For in-stance He et al. [3] introduced a fuzzy- neuro approach for automatic resetting of molding process parameters. By contrast , Helps et al. [18,19] adopted artificial neural networks to predict the setting of molding conditions and plastic part quality control in molding. Clearly, the development of comprehensive molding process models and computer-aided manufacturing provides a basis for realizing molding parameter optimization [3 , 16,17]. Mok et al. [20] propose a hybrid neural network and genetic algorithm approach incorporating Case-Based Reasoning (CBR) to derive initial settings for molding parameters for parts with similar design features quickly and with acceptable accuracy. Mok’s approach was based on past product processing data, and was limited to designs that are similar to previous product data. However, no real R&D effort has been found that considers minimizing manufacturing costs for thin plastic components. Generally, the current practical approach for minimizing the manufacturing cost of plastic components is to minimize the thickness and the dimensions of the part at the product design stage, and then to calculate the costs of the mold design and molding process for the part accordingly, as shown in Fig. 1. The current approach may not be able to obtain the real minimum manufacturing cost when handling thin plastic components. 1.2Manufacturing requirements for a typical thin plastic component As a test example, the typical manufacturing requirements for a thin square plastic part with a center hole, as shown in Fig. 2, are given in Table 1.
注塑模具国外文献1
Numerical analysis offlow mark surface defectsin injection moldingflowAnne M.Grillet,a)Arjen C.B.Bogaerds,and Gerrit W.M.Peters,andFrank P.T.Baaijens b)Dutch Polymer Institute,Department of Mechanical Engineering,Eindhoven University of Technology,Postbus513,5600MB Eindhoven,The NetherlandsMarkus BultersDSM Research,P.O.Box18,6160MD Geleen,The Netherlands(Received30May2001;final revision received7January2002)SynopsisIn order to elucidate the mechanism offlow mark surface defects,the stability of injection molding flow is investigated numerically using a transientfinite element method.Experiments performed by Schepens and Bulters͓Bulters,M.,and A.Schepens,‘‘The origin of the surface defect‘slip-stick’on injection moulded products,’’Paper IL-3-2,in Proceedings of the16th Annual Meeting of the Polymer Processing Society,Shenghai,China,2000a,pp.144–145͔using a novel two color injection molding technique are summarized and they indicate that surface defects are caused by a flow instability near the free surface duringfilling of the mold.Steadyfinite element calculations of a model injection moldingflow using a single mode,exponential Phan-Thien–Tanner constitutive equation supply information about the base state streamlines and polymer stresses.By varying the parameters of the model,the degree of strain hardening in the extensional viscosity can be controlled.Then a linear stability analysis is used to determine the most unstable eigenmode of the flow and the dependence on the extensional properties of the polymer.For strain softening materials,the injection moldingflow is predicted to be stable up to a Weissenberg number offive. However,the most unstable disturbance is consistent with the swirlingflow near the interface observed experimentally.For strain hardening rheologies,an instability is observed in the channel flow far from the interface,in agreement with calculations performed by Grillet et al.͓Grillet,A. M.,A.C.B.Bogaerds,G.W.M.Peters,and F.P.T.Baaijens,‘‘Stability analysis of constitutive equations for polymer melts in viscometricflows,’’J.Non-Newt.Fluid Mech.͑accepted,2001͔͒on planar Poiseuilleflow of a Phan-Thien–Tannerfluid.©2002The Society of Rheology.͓DOI:10.1122/1.1459419͔I.INTRODUCTIONFlow instabilities during injection molding can cause nonuniform surface reflectivity on a plastic product.Our research focuses on a specific surface defect that is character-ized by shiny dull bands roughly perpendicular to theflow direction which alternate on the upper and lower surfaces of the mold as shown in Fig.1.These defects,which are a͒Current address:Sandia National Laboratories,P.O.Box5800,MS0834,Albuquerque,NM87185.b͒Author to whom all correspondence should be addressed;Electronic mail:baaijens@wfw.wtb.tue.nl©2002by The Society of Rheology,Inc.J.Rheol.46͑3͒,651-669May/June͑2002͒0148-6055/2002/46͑3͒/651/19/$25.00651referred to as flow marks,tiger stripes,or ice lines,have been observed in a variety of polymer systems including polypropylene ͓Bulters and Schepens ͑2000a ͔͒,acrylonitrile-styrene-acrylate ͑ASA ͓͒Chang ͑1994͔͒,ethylene-propylene block copolymers ͓Monasse et al.͑1999͔͒and polycarbonate ͑PC ͒/acrylonitrile butadiene-styrene ͑ABS ͒blends ͓Hobbs ͑1996͒;Hamada and Tsunasawa ͑1996͔͒.The occurrence of these defects can limit the use of injection molded parts,especially in unpainted applications such as car bumpers.The nature of the alternating bands depends on the polymer material.With polypro-pylene and ASA injection molding,flow marks appear as dull,rough bands on a normally smooth,shiny surface ͓Bulters and Schepens ͑2000a ͒;Chang ͑1994͔͒.Scanning electron micrographs show that the region with flow marks has a striated surface topology that shows hills and valleys oriented in the flow direction ͓Chang ͑1994͔͒.For polymer blend systems,Hamada and Tsunasawa ͑1996͒suggested that the differences in reflectivity can also be associated with differences in the blend composition at the flow marks.During steady injection molding of PC/ABS blends,the authors noted that the polycarbonate phase seems to preferentially coat the mold wall,leaving a shiny surface ͓Hamada and Tsunasawa ͑1996͔͒.By contrast,the flow mark bands were found to contain a higher concentration of ABS and were cloudy.By selectively etching the ABS component,approximate streamline patterns could be observed on cross sections of the injection molded product ͓Hamada and Tsunasawa ͑1996͔͒.When the smooth,PC rich surface was being deposited,the blend morphology showed a symmetrically smooth flow pattern near the free surface.However,when the flow front passed through the region where flow marks were being deposited on the mold surface,the steady flow pattern near the free surface had been disrupted and was no longer symmetric ͓Hamada and Tsunasawa ͑1996͔͒.Other recent experimental findings have also concluded that the surface defects are the result of an unstable flow near the free surface similar to that shown in Fig.2͓BultersandFIG.1.Characteristic pattern for flow mark surfacedefects.FIG.2.Unstable flow may cause surface defects.652GRILLET ET AL.Schepens ͑2000a ͒;Chang ͑1994͒;Hobbs ͑1996͒;Hamada and Tsunasawa ͑1996͒;Mo-nasse et al.͑1999͔͒.The two most common mechanisms that have been proposed for unstable flow are slip at the wall ͓Chang ͑1994͒;Hobbs ͑1996͒;Monasse et al.͑1999͔͒or instability at the point of stagnation ͓Bulters and Schepens ͑2000a ͒;Monasse et al.͑1999͔͒.Due to the limited availability of rheological data,there is no clear understand-ing of the rheological dependence of the instability,although Chang ͑1994͒found that materials with a higher recoverable shear strain (S R ϭN 1/2xy )had less severe flow mark surface defects.A similar unstable flow was postulated to explain the transfer of pigments during injection molding of high density polyethylene ͓Reilly and Price ͑1961͔͒.If a small amount of red pigment or crayon were placed on one mold surface,a transfer mark would be present on the opposite wall downstream of the original mark.The transfer was attributed to an ‘‘end-over-end’’flow pattern which was found to depend on the injection speed and mold thickness.The type of polymer was also important because transfer marks were not observed for a cellulose acetate or a polystyrene polymer ͓Reilly and Price ͑1961͔͒.Wall slipping has been proposed as a possible mechanism for the transfer marks ͓Denn ͑2001͔͒,but they may also have been caused by the same flow instability that causes flow mark surface defects ͓Wissbrun ͑2001͔͒.Because of the complexity of the industrial injection molding process ͑three-dimensional,nonisothermal flow;fully elastic material rheology with many time scales;crystallization;fiber or particulate reinforcement ͒it is not possible to address every aspect fully ͓Isayev ͑1987͔͒.There has been a large amount of work that has focused on different components of the complete injection molding process.For example,the kine-matics of injection molding of inelastic shear thinning materials are fairly well under-stood ͓Isayev ͑1987͔͒.Whereas no simulations have been performed to specifically in-vestigate flow mark surface defects,the fountain flow near the advancing free surface ͑where stagnation point instability has been postulated ͒has been investigated,initially by Rose in 1961.As fluid elements move towards the advancing interface,they ‘‘spill over towards the wall region being vacated by the advancing interface’’͓Rose ͑1961͔͒as illustrated in Fig.3͑a ͒.The effect of fountain flow on quenched stresses in injection molded products was examined in detail by Tadmor ͑1974͒and more recently by Mavridis et al.͑1988͒.The deformation history of the fluid elements in the fountain flow can have a significant impact on the molecular orientation and trapped stresses in an injection molded product.This is especially true in the surface layer since material which is deposited on the mold’s surface with the polymers in a stretched state will rapidly be cooled and create a ‘‘skin layer’’with high residual stress.Material in the core region cools more slowly so the polymer stretch and orientation can relax ͓Mavridis et al.͑1988͒;Tadmor ͑1974͔͒.Since it is the skin layer which determines surface reflectivity,the uniformity of the elonga-tional flow at the point of stagnation will have a direct impact on surfacequality.FIG.3.Kinematics of the fountain flow region:reference frame of ͑a ͒the mold and ͑b ͒the moving interface.653FLOW MARK SURFACE DEFECTS654GRILLET ET AL.There can be significant difficulties in incorporating elasticity into simulations of freesurfaceflow because of the geometric‘‘stick–slip’’singularity that exists at the point ofcontact where the free surface intersects the mold wall,as summarized by Shen͑1992͒.Elastic constitutive equations are known to make geometric singularities more severe ͓Grillet et al.͑1999͒;Hinch͑1993͔͒.In order to make elastic injection molding simula-tions tractable,many researchers have incorporated slip along the wall near the singular-ity͓Sato and Richardson͑1995͒;Mavridis et al.͑1988͔͒.Various formulations for a slipcondition do not seem to have a strong effect on the kinematics in the free surface,but allseem to ease the difficulties associated with numerical calculations,especially for elasticconstitutive equations͓Mavridis et al.͑1986͒;Mavridis et al.͑1988͒;Shen͑1992͔͒.Perhaps due to the difficulties associated with the geometric singularity,there havebeen few fully elastic simulations of injection moldingflow͑i.e.,coupled velocity andstress calculations with an elastic constitutive equation͓͒Kamal et al.͑1988͔͒.Mostsimulations have instead assumed Newtonianflow or otherwise used constitutive modelswhich incorporated shear thinning,but not elastic effects such as the power law model ͓Tadmor͑1974͒;Mavridis et al.͑1986͔͒.The few studies which have used more realistic constitutive equations such as the Leonov model͓Mavridis et al.͑1988͔͒;the White–Metzner model͓Kamal et al.͑1986͒͑1988͔͒,and the Oldroyd-B model͓Sato and Rich-ardson͑1995͔͒mostly focused on modeling the deformation of tracer particles by the fountainflow or predicting quenched elastic stresses in thefinal product;they unfortu-nately did not investigate the stresses in fountainflow.As for other complexflows such asflow around a cylinder,there have been numerous studies using various numerical methods and viscoelastic constitutive equations and they are summarized in a recent review by Baaijens͑1998͒.We have performed steady,transientfinite element simulations of a viscoelasticfluidin a simplified injection moldingflow to investigate the occurrence offlow mark surfacedefects.A fully implicit DEVSS-G/SUPG method which was thoroughly tested on planarflows of viscoelastic materials͓Grillet et al.͑in press͔͒is applied to the modelflow.Theexponential version of the Phan-Thien–Tanner constitutive equation was chosen becauseit can qualitatively capture the rheology of polymer melts͓Larson͑1988͔͒.By varyingthe parameters of the model,melts ranging from strain hardening to strain softening inextensionalflow can be investigated for their effect on fountainflow.Before discussingdetails of the simulations,we review some recent experiments onflow mark surfacedefects which were instrumental in the design of the simulations͓Bulters and Schepens ͑2000a,2000b͔͒.II.EXPERIMENTAL RESULTSA series of injection molding experiments were carried out on several commercial, impact modified polypropylene compounds͑DSM͒.The tests were performed on a stan-dard bar shaped ruler mold with a length of300mm long,30mm wide,and3mm thick. The frequency and severity of theflow mark surface defects were recorded as a function of several molding parameters including the mold and melt temperatures and the mold design as well as geometric factors such as the mold width,the injection screw diameter, and the buffer size.From the results,several potential mechanisms which had been proposed to explain the occurrence offlow marks were discarded.Because the defects did not depend on the buffer size or screw and nozzle geometry,the possibility of upstream instability in the nozzle or gate was ruled out.The mold surface was modified by coating the mold with a very thin layer of silicone oil or coating one side of the mold with fluoropolymer,but this had no effect on the frequency of the surface defect so slip at thewall was discarded as the cause of the flow marks.That left the possibility of an insta-bility during filling of the mold.To further investigate this as a possible mechanism,a new two color injection molding technique was developed.The ruler mold was filled with a polymer whose bottom 47%had been dyed black.If the flow is stable,white material should flow along the symmetry line in the center towards the free surface where it will be split by the point of stagnation,leaving a thin coating on the top and bottom surfaces of the bar.Instead,the surface of the bar displayed alternating black and white strips which corresponded both in location and frequency to the surface defects in the original experiments ͑Fig.4͒.This technique allows investigation of the causes of surface defects,independent of the crystallization behavior,once the polymer begins to solidify on the cold mold wall.Short-shot experiments were also performed using the two color injection molding technique.Fittings were placed in the mold that allowed the ruler mold to be filled only partially.These experiments were carried out using a block of white polymer with a thin strip of black polymer along its centerline.The results for a series of tests where the mold was filled to different volume fractions is shown in Fig.5.In a stable flow,the black material should coat both mold surfaces.However,instead of the symmetric fountain flow pattern expected at the interface,the black strip is first swept to the bottom then flipped around to the top.The alternating colors of the surface coating match exactly the black and white stripped pattern observed when the mold is completely filled.Theoscil-FIG.4.Two color injection molding experiment ͑above ͒compared with a traditional injection molded sample ͑below ͒.FIG.5.Short shots with two color injection molding of a filled polypropylene compound.655FLOW MARK SURFACE DEFECTSlatory flow pattern has also been confirmed using a high speed video of the mold filling process using a thin colored stripe injected along the centerline of a clear matrix.These results clearly strengthen the argument that surface defects are caused by instability in the fountain flow.The effects of the flow instability are only apparent in the fountain flow region and in the thin skin layer on the surface of the finished product.The channel flow far from the free surface remains free of instability.Using these two color injection molding experiments,the dependence of the instability on various parameters was reexamined.One surprising result is that the instability does not depend on the mold temperature.However,the visibility of the surface defects in traditional injection molding experiments is strongly dependent on the mold temperature.For high enough mold temperatures,the surface defect disappears because the polymers are able to relax before they solidify,but the two color injection molding shows that flow instability is not affected.These experimental results have led us to make several simplifying assumptions when designing the model injection molding problem for our numerical simulations.We will focus on two-dimensional injection molding flow.Since the instability does not depend on the temperature of the mold wall,isothermal calculations will be performed,neglect-ing temperature effects.Also,the interface is assumed to be a nondeformable semicircle.These are assumptions which we make so that transient simulations for an elastic con-stitutive equations are tractable with the computer resources which are available.III.FINITE ELEMENT SIMULATIONSFor inertialess,incompressible flows,the dimensionless equations of the conservation of mass and momentum can be written asٌ•u ϭ0,͑1ٌ͒•⌸ϭ0,͑2͒where u is the velocity vector.The components of the Cauchy stress tensor ⌸can be separated as ⌸ϭϪpI ϩin terms of the pressure p and the polymer stress .To complete the governing equations,a constitutive equation which relates the poly-mer stress to the rate of deformation must be defined.The dimensionless upper convected form of the exponential Phan-Thien–Tanner constitutive equation for a polymer melt isWi ٌϩexp ͓Wi tr ͔͑͒ϭD ,͑3͒where is a parameter,and D ϭٌu ϩ(ٌu )T is the rate of strain tensor.The upper convected derivative is defined asٌϭץץt ϩu •ٌϪ•ٌu Ϫٌ͑u ͒T •.͑4͒The Weissenberg number is based on the average shear rate across the channel far from the free surface asWi ϭU H ͑5͒in terms of the mean velocity U and the half channel height H .These equations have been nondimensionalized by H,U ,and the zero shear viscosity.We focus on the upper con-vected form of the Phan-Thien–Tanner model because the use of the full form that incorporates the Gordon–Schowalter derivative causes a maximum in the shear stress as a function of the shear rate for some parameter values.Such a maximum has never been656GRILLET ET AL.observed experimentally and results in a discontinuous velocity profile in Poiseuille flow ͓Alves et al.͑2001͒;Larson ͑1988͒;Saramito ͑1995͔͒.We examine several values of the adjustable parameter (ϭ0.05,0.3,0.9)which controls the degree of strain hardening in extension and also the onset of shear thinning of the shear properties as shown in Fig.6.The linear viscoelastic parameters were held fixed for the three rheologies.Although multiple modes are usually required to capture the rheology of real ͑polydisperse ͒poly-mer melts ͓Larson ͑1988͔͒,the present calculations to develop and test the numerical method use a single mode which admittedly can only qualitatively predict melt rheology.Multimode model calculations would be required to make quantitative comparison with experiments.For our finite element calculations,the governing equations are written in a weak formulation using the stabilized,consistent DEVSS-G/SUPG method ͓Brooks and Hughes ͑1982͔͒.We have chosen this method because it has been shown to have excel-lent convergence properties in steady flow calculations in complex geometries ͓Baaijens͑1998͒;Brooks and Hughes ͑1982͒;Grillet et al.͑in press ͒,Gue ´nette and Fortin ͑1995͒;King et al.͑1988͒;Talwar et al.͑1994͔͒.ͩϩh͉u ͉u •,Wi ٌϩexp ͓Wi tr ͔͑͒ϪD ͪϭ0,͑6͒͑v ,ϩD ϪG ϪG T ͒Ϫٌ͑•v ,p ͒ϭ0,͑7͒͑p ,ٌ•u ͒ϭ0,͑8͒͑G ,G Ϫٌu ͒ϭ0,͑9͒with h the characteristic element size and ͑a,b ͒denotes the L 2inner product over the problem domain ͐⍀abd ⍀.The polynomial spaces are chosen in the usual manner forlow order finite elements to satisfy the Babusˇka–Brezzi ͑inf-sup ͒condition and for com-patibility of the constitutive equation at stationary points:v is biquadratic whereas ,p ,and G are bilinear ͓King et al.͑1988͒;Talwar et al.͑1994͔͒.For steady base state flow calculations,the transient term in the upper convected derivative is ignored,and the equations are solved using a Newton iteration discussed earlier by others ͓Grillet et al.͑1999,in press ͒;King et al.͑1988͒;Talwar et al.͑1994͔͒.For the transient calculations,we treat the time derivative implicitly following Brown et al.͑1993͒.Both steadyand FIG.6.Rheology of several model Phan-Thien–Tanner fluids with different values of :͑a ͒steady shear and ͑b ͒planar extension.657FLOW MARK SURFACE DEFECTSstability parts of this numerical method have been benchmarked on two planar flows previously ͓Grillet et al.͑in press ͔͒.To determine the stability of the flow once the steady solution X ˜ϭ(u ˜,˜,p ˜,G˜)is attained,we employ a linear stability analysis.A small perturbation ␦ϭ(uˆ,ˆ,p ˆ,G ˆ)T is added to the discretized governing equations ͓Eqs.͑6͒–͑9͔͒and second order terms and higher are neglected.The resulting evolution equations for the perturbation variables are then solved as a function of time starting with a random initial perturbation to the polymer stresses.The transient calculations are continued until the L 2norm of the per-turbation variables displays a constant growth or decay rate,or the magnitude of the perturbation has decreased below 10Ϫ5.The constant growth or decay rate indicates that the transient calculation has isolated the most unstable eigenvalue or,more precisely,the eigenvalue with the largest ͑although not necessarily positive ͒real part of the eigenvalue.A typical mesh ͑M41͒used for the calculations is shown in Fig.7.Constant velocity boundary conditions are imposed on the mold walls:u ͑y ϭϮ1͒ϭϪU .͑10͒For the moderate Weissenberg numbers used in this study ͑up to Wi ϭ5͒,local slip boundary conditions near the point of contact were not needed for this constitutive equa-tion,perhaps because both the shear and extensional viscosities thin at high shear or strain rates.Other constitutive models such as the upper convected Maxwell model or the Giesekus model do exhibit difficulties with singularity in the form of a low limiting Weissenberg number (W i Ϸ2)beyond which calculations fail to converge and thus would require a local slip boundary condition.Also note that the mesh resolution in the neighborhood of the contact point is rather coarse since we have not attempted to resolve the singularity.Since the instability is believed to occur in the fountain flow upstream of the contact point,the behavior of the stability should not depend on the specific treatment of the contact point.The free surface is a nondeformable,impenetrable,semicircular slip surface ͑i.e.nor-mal velocity set to zero,but no boundary condition imposed on the tangential velocity ͒.In simulations in the literature that have a deformable interface it was found that,even for shear thinning or elastic constitutive equations,the free surface shape stays nearly semi-circular ͓Kamal et al.͑1988͔͒.The stresses normal to the free surface are found to be small,although nonzero,except near the point of contact.Thus,we feel that the semicir-cular shape,while not perfect,is a reasonable assumption for our simplified model flow.The inlet boundary conditions are handled in a unique way.Instead of specifying the known velocity profile for Poiseuille flow of a Phan-Thien–Tanner fluid,we instead impose periodic boundary conditions over the part of the channel marked by the thick lines in Fig.7.To explain how this is implemented,we begin by writing the momentum equation for the nodes along the periodic boundary condition in an isolatedchannel.FIG.7.Typical finite element mesh containing 748elements.The locations of the periodic boundary conditions are shown by the thicker vertical lines.658GRILLET ET AL.͑v ,ϩD ϪG ϪG T ͒Ϫٌ͑•v ,p ͒ϩ͵⌳PBC v ⌸•n d ⌳ϭ0,͑11͒where ⌸ϭϪpI ϩis the total stress,and n is the outward pointing normal vector of the element boundary.The boundary integral is performed over both sides of the channel’s periodic boundary ⌳PBC .Because the velocities and stresses are identical across the periodic boundary,the boundary integral reduces to͵⌳PBC v ⌸•n d ⌳ϭ͑p outlet Ϫp inlet ͒͵⌳PBC v n d ⌳.͑12͒When one side of the periodic boundary condition ͑PBC ͒is inside the geometry like in our model injection molding flow,we must include an additional boundary integral over the inlet to the fountain flow section ͑i.e.,the sides of the elements along the right half of the internal periodic boundary ͒.Then the momentum equation is͑v ,ϩD ϪG ϪG T ͒Ϫٌ͑•v ,p ͒ϩ⌬p ͵⌳PBC v nd ⌳ϩ͵⌳internal v ⌸•nd ⌳ϭ0.͑13͒This would be sufficient if the flow were driven by specifying the pressure drop ⌬p between the periodic boundaries.However,to specify the driving force as a total flux through the channel,the pressure drop ⌬p is replaced by a Lagrange multiplier l and an additional equation is added for the flux Q across the inlet.͑v ,ϩD ϪG ϪG T ͒Ϫٌ͑•v ,p ͒ϩl ͵⌳PBC v ⌸•nd ⌳ϩ͵⌳internal v ⌸•nd ⌳ϭ0,͑14͒͵inlet u •nd ⌳ϭQ .͑15͒The Lagrange multiplier,and hence the pressure drop,is determined during the calcula-tion.This formulation was chosen to simplify future comparison to injection molding experiments where generally the injection speed is known and also to simplify the sta-bility calculations.To validate our calculations,meshes of different lengths and levels of refinement were used ͑Table I ͒.The coarsest mesh,M3,was not sufficient to resolve the steady flow of the shear thinning Phan-Thien–Tanner model at moderate Weissenberg numbers (Wi Ͼ2).Since the stability calculations are the most demanding,data demonstrating convergence for the more refined meshes will be shown in Sec.III B.Unless otherwise TABLE I.Characteristics of the meshes used in the finite element com-putations.MeshLength ⌬y No.of Elements M390.2172M4l120.1748M4ll140.1968M4lt220.11188M690.06671608659FLOW MARK SURFACE DEFECTS660GRILLET ET AL.stated,the results presented here were taken from our medium refined mesh͑M41͒except for the lowest value ofϭ0.05when a longer channel͑M4lt with lengthϭ22͒wasrequired for the stresses to fully develop between the fountainflow and the periodicboundary conditions at the highest Weissenberg numbers.A.Steady resultsWe begin by presenting steady results for a range ofparameters shown in Figs.8–10 for Wiϭ3.0.In Fig.8for the strain hardening material withϭ0.05,we note thestrong buildup of stress near the stagnation point on the free surface and also near thepoint of contact where the free surface intersects the moving wall.The relaxation of thestresses downstream of the interface enhances theflow near the free surface as shown bythe compression of the streamlines towards the wall relative to the fully developedflowfar from the free surface.Asis increased to0.3,the onset of shear thinning is shifted towards lower Weissen-berg numbers and the material also becomes more strain softening.These trends arereflected in both the stream function contours and the stresses.Due to the increased shearthinning,the velocity profile becomes more plugflow like in the pressure drivenflow farfrom the interface and the velocity gradients are concentrated near the walls.Looking attheflow near the free surface,we note that the streamlines are shifted away from theinterface and the strain rate near the stagnation point drops due to the strain softeningextensional viscosity.This shift is also reflected in the polymer stress components.The maximum in theyy stress has moved downstream of the stagnation point.As mentioned previously,the stresses downstream of the singularity decay more quickly for highervalues ofallowing the Poiseuilleflow in the channel to reach equilibrium in fewerchannel lengths.Hence the meshes used for this rheology are shorter than those required for the strain hardening material withϭ0.05.For the most strain softening rheology ofϭ0.9shown in Fig.10,the effects ofstrain softening and shear thinning are enhanced relative to those in the previous case of ϭ0.3,but the trends are entirely consistent.We note that the maximum in theyy component of the stress is almost a half channel height away from the free surface.Theflow is even more plug like,hence the almost equally spaced streamlines in the center ofthe channel.Observing the streamline patterns near the free surface,there is almost noneof the streamline compression near the wall that was observed for the strain hardeningrheology.These differences in extensional rheology can be summarized by examining thetangential velocity and its gradient along the free surface shown in Fig.11.For the strain hardening rheology(ϭ0.05),the strain rate along the free surface is almost constant near the stagnation point(⑀Ϸ0.3U/H)then increases close to the contact point(ϭ/2).For the strain softening rheologies,the effective shear and extensional viscosi-ties in the neighborhood of the singularity are very low,so the material along the inter-face is not effectively accelerated.The result is a lower strain rate along the interface and a large peak near the point of contact.Forϭ0.9the average strain rate near the stagnation point has dropped to⑀˙Ϸ0.1U/H.B.Stability resultsOnce steady results are obtained,a linear stability analysis is performed for each case. By tracking the norm of the perturbation as a function of time,demonstrated in Fig.12 forϭ0.90,the stability of theflow can be determined.For this case,the initial per-turbation introduced at time equals zero decays showing that theflow is stable͑i.e.,the real part of the eigenvalue is negative͒.The initial decay of the perturbation is very rapid。
注塑模具毕业论文(注塑模具)
注塑模具毕业论文(注塑模具)一、选题背景和意义注塑模具是现代工业中的重要组成部分之一,其应用领域非常广泛,涉及到塑料制品、橡胶制品、金属制品等多个方面。
如今,在各个行业都需要注塑模具来满足生产的需要。
因此,研究注塑模具相关的设计和制造技术具有非常重要的现实意义。
本文主要以注塑模具为研究对象,通过对注塑模具的设计、制造和应用等方面进行深入了解和研究,旨在为后续注塑模具的研究提供一定的理论依据和技术支持,也为相关行业的发展提供一定的参考和建议。
二、研究内容和方法1.研究内容本文主要研究注塑模具的设计和制造技术,具体包括以下方面:(1)注塑模具的基本原理和结构特点(2)注塑模具的设计原理和方法(3)注塑模具的制造工艺和工艺流程(4)注塑模具的应用领域和发展趋势2.研究方法本文采用文献资料法、实验方法和现场调查法相结合的研究方法。
首先通过收集相关的文献资料,对注塑模具的基本原理、结构、设计原理和制造工艺等方面进行深入了解。
其次,通过实验方法对注塑模具在实际生产中的应用进行测试和分析,以验证注塑模具的设计和制造技术的可靠性和有效性。
最后,结合现场调查的实践情况,探讨注塑模具发展的趋势和应用前景。
三、论文结构本文共分为五个部分,具体结构如下:第一部分:绪论该部分主要介绍注塑模具的意义和研究背景、选题意义和论文研究内容、方法和结构等。
第二部分:注塑模具的基本原理和结构特点该部分主要介绍注塑模具的基本原理、结构特点和组成部分,为后续的设计和制造奠定基础。
第三部分:注塑模具的设计原理和方法该部分主要介绍注塑模具的设计原理和方法,以供设计人员参考,确保设计的准确性和可靠性。
第四部分:注塑模具的制造工艺和工艺流程该部分主要介绍注塑模具的制造工艺和流程,探讨如何保证注塑模具的质量和性能。
第五部分:注塑模具的应用和发展趋势该部分主要介绍注塑模具的应用领域,以及其在未来的发展趋势和前景。
四、论文预期成果本文通过对注塑模具的设计、制造、应用等方面进行深入研究,旨在取得以下预期成果:(1)对注塑模具的基本原理和结构特点有更深入的了解(2)为注塑模具的设计和制造提供一定的理论依据和技术支持(3)探讨注塑模具发展的趋势和应用前景(4)为相关行业的发展提供参考和建议五、论文的参考文献[1] 王汉军.注塑模具的设计与制造.机械工业出版社,2008.[2] 张丽华.注塑模具零件加工工艺和质量控制.中国机械工业出版社,2004.[3] 李志中.注塑模具设计制造基础.机械工业出版社,2009.[4] 刁文博.注塑模具设计制造技术.化学工业出版社,2012.[5] 肖志强.注塑模具制造技术.机械工业出版社,2007.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考文献[1] 赵蓓蓓. 初探塑料模具材料现状及发展方向[J]. 科技资讯, 2009, (34).[2] 孙安垣, 闫烨, 杨超谈, 桂春. 我国改性塑料行业的发展前景[M].《工程塑料应用》杂志社, 2010, 11(2):83-87.[3] 伍先明,王群. 塑料模具设计指导[M]. 北京: 国防工业出版社, 2006.[4] 朱光力, 万金保. 塑料模具设计[M]. 北京: 清华大学出版社, 2003.[5] 杨明锦, 陆长征. 结构型与复合型导电塑料研究进展[J]. 塑料, 2005, 34(3); 15-18.[6] 陈勇, 官建国, 谢洪泉. 导电塑料的研究进展[J]. 弹性体, 2008, 18(2).[7] 彭竹琴. 塑料导电改性原理及应用[J]. 绝缘材料, 2004(06).[8] 赵幸, 王立新. 复合型导电塑料的发展[J]. 塑料科技, 2002(2).[9] 韩小雪, 季静. 纤维增强塑料(FRP)在混凝土结构中的应用——FRP材料性能与发展[J]. 华南理工大学学报(自然科学版), 2002, 30(2).[10] 田水, 朱墩. 纤维增强塑料(FRP)在结构加固工程中的应用[J]. 建筑结构, 2000(03).[11] 金秀莲. 浅谈注塑工艺的影响因素[J]. 商品与质量·前沿观察, 2010, (2).[12] 刘松年, 崔怡. 水辅助注塑工艺介绍[J]. 模具技术, 2009, (2).[13] 马俊彪. 微发泡注塑成型设备的改造[J]. 农机使用与维修, 2009,(3).[14] 几种新型注塑设备的简单介绍[J]. 中国液压机械网, 2009.[15] 刘钵, 陈利民. 热塑性塑料注塑工艺参数优化设计[J]. 工程塑料应用, 2005,36(4): 8-11.[16] 翁其金. 塑料模塑成型技术[M]. 北京:机械工业出版社, 2001.[17] 许发樾. 实用模具设计与制造手册[M]. 北京: 机械工业出版社, 2005[18] 申树义. 塑料模具设计[M]. 北京: 机械工业出版社, 2005.[19] 盛晓敏, 邓朝晖主编. 先进制造技术[M]. 北京: 机械工业出版社, 2000.[20] 唐志玉主编. 注塑模具设计师指南[M]. 北京: 国防工业出版社, 1996[21] 华希俊, 张培耘. 模具工业先进制造技术特点及发展概况[J]. 金属成形工艺,2001, 18(2): 3-5.[22] 申开智. 塑料成型模具[M]. 北京: 中国轻工业出版社, 2002.[23] 李发致编着. 模具先进制造技术[M]. 北京: 机械工业出版社, 2003.[24] 林慧国, 火树鹏, 马绍弥. 模具材料应用手册[M]. 北京: 机械工业出版社, 2004.[25] 陈再枝, 马党参. 塑料模具应用手册[M]. 北京: 化学工艺出版社,2005.[26] 屈华昌主编. 塑料成型工艺与模具设计[M]. 北京: 机械工艺出版社,2004.[27] 黄虹主编. 塑料成型加工与模具[M]. 北京: 化学工业出版社,2003.[28] 曹宏深主编. 塑料成型工艺与模具设计[M]. 北京: 机械工业出版社,1993.[29] 陈嘉真主编. 塑料成型工艺与模具设计[M]. 北京: 机械工业出版社,1995.[30] 李秦蕊主编. 塑料模具设计[M]. 西安: 西北工业大学出版社, 1991.[31] 侯洪生, 董国耀. 机械工程图学[M]. 北京: 科学出版社, 2001.[32] 齐晓杰. 塑料成型工艺及模具设计[M]. 北京: 机械工业出版社, 2005.[33] 刘英俊. 我国改性塑料行业“十一·五”期间发展概况及“十二·五”展望[M]. 中国塑料, 2011, 3(3):1-6.[34] 张臣.我国改性塑料的发展趋势及热点分析[M].合成材料老化与应用, 2010, (1):34-38.[35] 卫兵工作室. Moldflow注塑流动分析案例导航[M]. 北京: 清华大学出版社, 2001.[36] 党根茂. 模具设计与制造[M]. 西安: 西安电子科技大学出版社, 2007[37] 田学军. 注塑过程分析及工艺参数设定[J]. 机械工程师, 2005, 8(58): 2- 10[38] 黄虹. 塑料成型加工与模具[M]. 上海: 学林工业出版社, 2002[39] 刘昌祺. 塑料模具设计[M]. 北京: 机械工业出版社, 1998. 10[40] 孙凤琴. 模具制造工艺与设备[M]. 北京: 中国轻工业出版社, 2003.[41] 廖念钊, 李硕根. 互换性与技术测量[M]. 北京: 中国计量出版社, 2007.[42] 冯炳尧. 模具设计与制造简明手册[M]. 上海: 上海科学技术出版社, 2005.[43] 梅伶. 模具课程设计指导[M]. 北京: 机械工业出版社, 2006.[44] 任天娟. 中小型注塑模标准模架的选用[J]. 广西轻工业, 2009, 8(30): 5- 7[45] 孙玲. 注塑成型工艺与模具设计[M]. 北京: 清华大学出版社, 2008[46] 焦永和, 林宏. 画法几何及工程制图[M]. 北京: 北京理工大学出版社, 1996.[47] 陈志刚. 塑料模具设计[M]. 北京: 机械工业出版社, 2002.[48] 贾润礼, 程志远主编. 实用注射模设计手册[M]. 中国轻工业出版, 2000.[49] 唐志玉. 塑料模具设计师指南[M]. 国防工业出版社, 1996.6.[50] 许鹤峰, 陈言秋主编. 注射模具设计要点与图例[M]. 化学工业出版社, 1998.[51] 朱家诚. 机械设计课程设计[M]. 合肥: 合肥工业大学出版社, 2002.[52] 濮良贵. 机械设计[M]. 北京: 高等教育出版社, 2003.[53] 毛昕. 画法几何及机械制图[M]. 北京: 高等教育出版社, 2004.[54] 宋玉恒. 塑料注塑模具设计实用手册[M] . 北京: 航空工业出版社, 1994.[55] 王永平. 注塑模具设计经验点评[M]. 北京: 机械工业出版社, 2005.[56] 洪慎章. 实用注塑模具结构图册[M]. 上海: 上海交通大学出版社, 2006.[57] 李德群,肖祥芷. 模具CAD/CAE/CAM的发展概况及趋势[J]. 模具工业. 2005, 7[58] 倪雪峰.. 基于Pro/E模具设计中拆模方法的研究与现实[J]. 模具工程, 2005, 21(3): 16-19.[59] 张克惠. 塑料材料学[M]. 西北工业大学出版社. 2000, 5[60] 翁其金. 塑料模具成型技术[M] . 北京: 机械工业出版社, 2001.[61]郑大中,房金妹,谭平宇.模具结构图册[M]. 北京:机械工业出版社, 1998.[62]张正修. 模具产业的现状及发展对策[J]. 五金科技, 2005, 20(8): 30-35.[63]丁闻. 实用塑料成型模具设计手册[M]. 西安:西安交通大学出版社, 1993.[64] 赵素渊, 李爱军. 基于Solid Works注塑模具的塑件结构设计[J]. 煤矿机械, 2005, 36(4): 38-45[65] 刘岩. 面向制造的注塑模具结构设计[J]. 高科技通讯,2002, 12(10) : 50-53.[66] 罗宇玲, 曹辉, 刘好. 大型注塑模具使用寿命影响因素分析及改进方法[J]. 茂名学院学报, 2006, 16(4): 25-30.[67] 刘平平. 注塑模自动分模技术研究[D]. 上海: 同济大学, 2009.[68] 唐合存. 基于层次分析法的注塑模方案设计系统研究[D]. 大连: 大连理工大学.[69] 傅建军. 模具制造工艺[M]. 北京: 机械工业出版社, 2005.[70] 刘航. 模具制造技术[M]. 西安: 西安电子科技大学出版社, 2006.[71] 张荣清. 模具设计与制造[M]. 北京: 高等教育出版社, 2006.[72] 郭广思. 注塑成型技术[M]. 北京: 机械工业出版社, 2005.[73] 邓明. 现代模具制造技术[M]. 北京: 化学工业出版社, 2005.[74] 张清辉. 模具材料及表面处理[M]. 北京: 电子工业出版社, 2005.[75] 王华山. 塑料注塑技术与实例[M]. 北京: 化学工业出版社, 2006.[76] :王兴天. 注塑技术与注塑机[M]. 北京: 化学工业出版社, 2005.[77] 李群. 模具CAD/CAE的发展概况及趋势[J]. 模具工业, 2005, 12(3): 27-30.[78] 田学军. 注塑过程分析及工艺参数设定[J]. 机械工程师, 2005,16(2): 12-16.[79] 潘振鹏. 塑料模具材料的研制与应用[J]. 金属热处理, 1999, 1.[80] 徐慧民. 模具制造工艺学[M]. 北京理工大学出版社, 2007, 8[81] Autodesk Co Ltd. Moldflow insight 2010 help System [G]. MA: Autodesk Co Ltd, 2009.[82] Wynne H, Irene M. Current research in the conceptual design of mechanical products[J]. Computer-Aided Design, 1998, 3(7): 377-389.[83] Dr M. S. Gadala, J. Wang. A practical procedure for mesh motion in arbitrary Lagrangian-Eulerian method[J]. Engineering with Computers, 1998, 14(3): 91-96.[84] CHIN, KWAI-SANG and T. N. WONG, Knowledge-based evaluation for theconceptual[J]. Computer-Aided Design, 2003, 6(7): 12-22.[85] Li Pang, Kamath G M, Wereley N M, Dynamic Characterisation And Analysis Of Magnetorheological Damper Behaviour[J]. SPIE Conference on Passive Damping and Isolation SPIE 1998, 7(2): 284-302.[86] G. M. Kim, P. J. Cho, C. N .Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International journal of machine tools& manufacture, 2000, 3(2): 277- 291.[87] MOK, C. K, K. S. CHIN and JOHN K. L. HO, An interactive knowledge-based CAD system for mould design in injection molding processes[J]. The International Journal of Advanced Manufacturing Technology, 2001, 8(1): 27-38.[88] Sang C H, Wong T N. Knowledge-based evaluation for the Conceptual design development of injection molding pans[J]. Engin. Appl. 1998, 9(5): 359-366.[89] C. L. LI, S. T. TAN, K. W. CHAN. A Qualitative and Heuristic Approach to the Conceptual Design of Mechanisms, Engng Applic. Artif. Intell. 9, 1996: 17-31.。