历年江苏省南通市中考数学试题(含答案)

合集下载

2023年江苏南通中考真题数学试卷(详解版)

2023年江苏南通中考真题数学试卷(详解版)

123答案AA 选项:三棱柱的俯视图是三角形,故此选项符合题意;B 选项:圆柱体的俯视图是圆,故此选项不合题意;C 选项:四棱锥的俯视图是四边形(画有对角线),故此选项不合题意;D 选项:圆锥体的俯视图是圆(带圆心),故此选项不合题意.故选 A.4A.线段上B.线段上C.线段上D.线段上★★如图,数轴上,,,,五个点分别表示数,,,,,则表示数的点应在().C,而数轴上,,,,五个点分别表示数,,,,,表示数的点应在线段上.故选 C .5A.B.C.D.★★★如图,中,,顶点,分别在直线,上,若,,则的度数为().A 如图,2023年江苏南通中考真题第4题3分2023年江苏南通中考真题第5题3分,,,,,.故选 A .6A.B.C.D.★★★若,则的值为().D,,.故选 D .7★★★如图,从航拍无人机看一栋楼顶部的仰角为,看这栋楼底部的俯角为,无人机与楼的水平距离为,则这栋楼的高度为().2023年江苏南通中考真题第6题3分2023年江苏南通中考真题第7题3分A. B. C. D.B过点作,垂足为,在中,,,在中,,,,故选 B.8★★★2023年江苏南通中考真题第8题3分A.B.C.D.如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为().C,,,,,四边形是矩形,,,,,,,设,则,,由勾股定理得:,,,.故选 C.9A.B.C.D.★★★★如图 1,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图 2所示,则的值为().B,,,,①当时,点在边上,如图所示,此时,,,,,,,,,,2023年江苏南通中考真题第9题3分当时,,,②当时,点在边上,如图所示,此时,,,,,,,,,当时,,,.故选 B .10A.B.C.D.★★★若实数,,满足,,则代数式的值可以是().D由题意可得,2023年江苏南通中考真题第10题3分解得:,则,,A ,B ,C 不符合题意,D 符合题意.故选 D .11★计算:.原式.故答案为:.12★★★分解因式:..13★★★2023年江苏南通中考真题第11题3分2023年江苏南通中考真题第12题3分2023年江苏南通中考真题第13题4分如图,中,,分别是,的中点,连接,则.,分别是,的中点,,又,,.故答案为:.14★★某型号汽车行驶时功率一定,行驶速度(单位:)与所受阻力(单位:)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为,则所受阻力为.设功率为,由题可知,即,将,代入可得:,即反比例函数为:.当时,.胡答案为:.2023年江苏南通中考真题第14题4分15★★★如图,是⊙的直径,点,在⊙上,若,则度.如图,连接,,,,,.故答案为:.16★★★勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数,,,其中,均小于,,,是大于的奇数,则 (用含的式子表示).,,是勾股数,其中,均小于,,,2023年江苏南通中考真题第15题4分2023年江苏南通中考真题第16题4分,是大于的奇数,.故答案为:.17★★已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是.一次函数,随的增大而增大,对于范围内任意自变量的值,其对应的函数值都小于,,解得.故答案为:.18★★★★如图,四边形的两条对角线,互相垂直,,,则的最小值是.2023年江苏南通中考真题第17题4分2023年江苏南通中考真题第18题4分设,的交点为,,,,的中点分别是,,,,连接,,,,,,,如图:,互相垂直,和为直角三角形,且,分别为斜边,,,,当为最小时,为最小,根据“两点之间线段最短”得:,当点在线段上时,为最小,最小值为线段的长,点,分别为,的中点,为的中位线,,,同理:,,,,,,,,四边形为平行四边形,,,,,四边形为矩形,在中,,,由勾股定理得:,的最小值为,的最小值为.故答案为:.19(1)(2)★★(1)(2)(1)(2)解方程组:①②.计算:.①②,②①得:,把代入①得:,解得:,故原方程组的解是:..20★★某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级八年级2023年江苏南通中考真题第19题12分2023年江苏南通中考真题第20题10分(1)(2)(1)(2)(1)(2)注:设竞赛成绩为(分),规定:90为优秀;为良好;60为合格;为不合格.若该校八年级共有名学生参赛,估计优秀等次的约有人.你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.八年级成绩较好,理由见解析若该校八年级共有名学生参赛,估计优秀等次的约有(人).故答案为:.八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).21★★★如图,点,分别在,上,,,相交于点,.求证:.2023年江苏南通中考真题第21题10分(1)(2)(1)(2)(1)(2)小虎同学的证明过程如下:证明:,.,.……第一步又,,.……第二步.……第三步小虎同学的证明过程中,第步出现错误.请写出正确的证明过程.二见解析小虎同学的证明过程中,第二步出现错误,故答案为:二.方法一:,,在和中,,,,在和中,,,.方法二:,,.22(1)(2)★★(1)(2)(1)(2)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.有同型号的,,三把钥匙,从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.故答案为:.画树状图如下:共有种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有种,即、,取出的钥匙恰好能打开取出的锁的概率为.23★★★如图,等腰三角形的顶角,⊙和底边相切于点,并与两腰,分别相交于,两点,连接,.2023年江苏南通中考真题第22题10分2023年江苏南通中考真题第23题10分(1)(2)(1)(2)(1)(2)求证:四边形ODCE是菱形.若⊙的半径为,求图中阴影部分的面积.见解析连接,⊙和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形.连接交于点,四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.24(1)(2)★★★(1)(2)答案(1)(2)解析为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:)每天施工费用(单位:元)甲乙信息二甲工程队施工所需天数与乙工程队施工所需天数相等.求的值.该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用?元根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:的值为.设甲工程队施工天,则乙工程队单独施工天,2023年江苏南通中考真题第24题12分根据题意得:,解得:,设该段时间内体育中心需要支付元施工费用,则,即,,随的增大而增大,当时,取得最小值,最小值.答:该段时间内体育中心至少需要支付元施工费用.25(1)(2)(3)★★★(1)(2)(3)(1)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转,交射线于点.如图,点在边上,,则图中与线段相等的线段是.过点作,垂足为,连接,求的度数.在(2)的条件下,当点在边延长线上且时,求的值.或四边形是正方形,2023年江苏南通中考真题第25题13分(2),,,(全等),.故答案为:.当点在边上时,如图,过点作交于,延长交于点,,四边形是矩形,,,,,,,是等腰直角三角形,,,,,,,为等腰直角三角形,,;当点在边上时,如图,(3)过点作交于,延长交延长线于点,四边形是矩形,同理,,,为等腰直角三角形,,,综上所述:的度数为或.当点在边延长线上时,点在边上,设,则,,,,.26(1)(2)★★★定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由.点与其“级变换点”B分别在直线,上,在,上分别取点,.若,求证:.2023年江苏南通中考真题第26题13分(3)(1)(2)(3)(1)(2)(3)关于的二次函数的图象上恰有两个点,这两个点的“级变换点”都在直线上,求的取值范围.见解析且存在,理由:由题意得,的“级变换点”为:,将代入反比例函数表达式得:,解得:.由题意得,点的坐标为:,由点的坐标知,点在直线上,同理可得,点在直线,则,,则,,则,即.设在二次函数上的点为点、,设点,则其“级变换点”坐标为:,将代入得:,则,即点在直线上,同理可得,点在直线上,即点、所在的直线为;由抛物线的表达式知,其和轴的交点为:、,其对称轴为,当时,抛物线和直线的大致图象如下:直线和抛物线均过点,则点个点为点,如上图,联立直线和抛物线的表达式得:设点的横坐标为,则,则,解得:,此外,直线和抛物线在故,即且;当时,当时,直线不可能和抛物线在故该情况不存在,综上,且.。

南通九年级中考数学试卷【含答案】

南通九年级中考数学试卷【含答案】

南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。

()2. 负数的平方是正数。

()3. 所有的偶数都是2的倍数。

()4. 两个负数相乘得到正数。

()5. 所有的正方形都是矩形。

()三、填空题1. 2的平方是______。

2. 若 a = 3,b = -2,则 a + b = ______。

3. 下列图形中,______是轴对称图形。

4. 若 3x + 5 = 14,则 x = ______。

5. 下列数中,______是素数。

四、简答题1. 解释什么是负数。

2. 解释什么是平行四边形。

3. 解释什么是无理数。

4. 解释什么是代数式。

5. 解释什么是因数分解。

五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

3. 若 2x 3 = 7,求 x 的值。

4. 一个数的平方是16,求这个数。

5. 列出所有的2的倍数,从1到10。

六、分析题1. 解释为什么负数的平方是正数。

2. 解释为什么所有的偶数都是2的倍数。

七、实践操作题1. 画出一个边长为5cm的正方形。

2. 画出一个半径为3cm的圆。

八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。

2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。

最新江苏省南通市中考数学真题试卷附解析

最新江苏省南通市中考数学真题试卷附解析

江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一条信息可通过如图所示的网络线由A 点往各站点传递(同级别站点不能传递),则信息由 A 点到达d 3的所有不同途径中,其中按途径]233A a b c d →→→→到达的概率是( ) A .14B .15C .16D .182.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周,所得圆柱的侧面积是( )A.36лB.18лC.12лD.9л3. 抛物线122+-=x x y ,则图象与x 轴交点为( ) A . 二个交点B . 一个交点C . 无交点D . 不能确定4.设7的小数部分为b ,那么(4+b )b 的值是( ) A .1 B .是一个有理数 C .3 D .无法确定 5.在平面直角坐标系中,下列各结论不成立的是( )A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上B .若点P (x ,y )坐标满足0xy=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为a D .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称6.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( ) A .平均数但不是中位数 B .平均数也是中位数 C .众数D .中位数但不是平均数7.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( ) A .3:4B .2:3C .3:5D .1:28.要清楚地表明病人的体温变化情况,应选用的统计图是( ) A .扇形统计图B .折线统计图C .条形统计图D .以上都可以9.下列各组代数式中,不是同类项的一组是( ) A .12-和0B .213ab c -和2cab C .2xy 和2x yD .3xy和xy - 10.计算222222113(22)(46)32a c b a b c +-+---的结果是( )A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -11. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( ) A .0 个B .1 个C .2 个D .3 个二、填空题12. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .13. 请画出正四棱锥的俯视图.14.阳光下,高 8 m 的旗杆在地面的影长为l6m ,附近一棵小树的影长为 lO m ,则小树高为 m .15. 若y 与x 成正比例,x 与成反比例,则 y 与z 成 .16.一组数据35,35,36,36,37,38,38,38,39,40的极差是 . 17.已知一次函数y=kx+5的图象经过点(-l ,2),则k= . 18.如图,根据下列物体的三视图,在右边横线上填出几何体的名称:.19. 某商品的标价是 1375元,打 8 折(按标价的 80%)售出,仍可获利 10%,如果设该商品的进价是x 元,那么可列出方程 . 解答题20. 如图,在△ABC 中,AB 的垂直平分线交 AC 于 D ,如果AC= 7 cm ,BC=4 cm ,则△BDC 的周长为 cm .21.等边三角形ABC绕着它的中心,至少旋转度才能与其本身重合.22.6的平方根是 ,它的算术平方根是 .三、解答题23.已知,如图,⊙O1和⊙O2外切于点 P,AC是⊙O1的直径,延长 AP 交⊙O2于点 B,过点B作⊙O2的切线交 AC 的延长线于点D,求证:AD⊥BD.24.如图,以 0为圆心,方圆 8海里范围内有暗礁,某轮船行驶到距 0点正西 16海里的A处接到消息,则该船至少向东偏南多少度航行才不会触礁?25.已知抛物线y=3x2-2x- 53与直线y=2x有两个交点,如何平移直线y=2x,使得直线与抛物线只有一个交点.26.如图,已知二次函数y=ax2-4x+c的图像经过点A和点B.(1)求该二次函数的表达式;(2)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.27.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E . (1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.28.如图,△ACB 、△ECD 都是等腰直角三角形,且点C 在AD 上,AE 的延长线与BD 交于点F .请你在图中找出一对全等三角形,并写出证明它们全等的过程.O -1xy 3--1 A B29.如图,△ABC中,AC⊥BC,CE⊥AB于点E,AF平分∠CAB交CE于点F,过点F作FD∥BC交AB于点D,求证:AC=AD.30.说明:对于任何整数m,多项式9m都能被8整除.+)54(2-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.C6.B7.A8.B9.C10.C11.C二、填空题12.+13.(223)14.515.反比例16.517.318.直六棱柱19.x1.11375=⨯20.8.01121.12022.66三、解答题23.连结O1O2,则必过点 P,连结O2B,∵O1 A=O1 P,∴∠A=∠O1PA,同理∠O2PB=∠O2BP,又∵∠O1PA =∠O2PB,∴∠A=∠O2BP.∵BD 是⊙O2的切线,∴∠DBA+∠A=∠DBA+∠O2BP=90°,∴∠ADB= 90°,∴AD⊥BD.24.该船要不触礁,则航线至少与⊙O 相切,过A 作⊙O 的切线 AB ,再过0点作0C ⊥AB 于 C ,则OC=8,又AO=16,在 Rt △OAC 中,81sin 162OC A OA ===,∴∠A= 30°,即当该船至少向东偏南30°航行时,才不会触礁.25.y=2x+by=3x2-2x-53,Δ=0得b=-3,即向下平移3个单位; 26.(1)将x =-1,y =-1;x =3,y =-9分别代入y=ax 2-4x +c 得⎩⎨⎧+⨯-⨯=-+-⨯--⨯=-.3439,)1(4)1(122c a c a 解得 ⎩⎨⎧-==.6,1c a ∴二次函数的表达式为y=x 2-4x -6.(2)将(m ,m )代入y=x 2-4x -6,得m=m 2-4m -6, 解得121,6m m =-=.∵m >0,∴11-=m 不合题意,舍去.∴ m =6.∵点P 与点Q 关于对称轴2=x 对称,∴点Q 到x 轴的距离为6.27.(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠. ∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.又 ∵ AD ⊥BC ,CE ⊥AN ,∴ ADC CEA ∠=∠=90°,∴ 四边形ADCE 为矩形.(2)例如,当AD =12BC 时,四边形ADCE 是正方形. 证明:∵ AB =AC ,AD ⊥BC 于D .∴ DC =12BC .又 AD =12BC ,∴ DC =AD .由(1)四边形ADCE 为矩形,∴ 矩形ADCE 是正方形.28.△ACE ≌△BCD (SAS ).29.利用“ASA ”证△ACF ≌△ADF ,得AC=AD30.∵)252(81640169)54(222++=++=-+m m m m m ,∴9)54(2-+m 都能被8整除.。

2002—2019南通市中考数学试卷含详细解答(历年真题)

2002—2019南通市中考数学试卷含详细解答(历年真题)

2019年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列选项中,比﹣2℃低的温度是()A.﹣3℃B.﹣1℃C.0℃D.1℃2.(3分)化简的结果是()A.4B.2C.3D.23.(3分)下列计算,正确的是()A.a2•a3=a6B.2a2﹣a=a C.a6÷a2=a3D.(a2)3=a6 4.(3分)如图是一个几何体的三视图,该几何体是()A.球B.圆锥C.圆柱D.棱柱5.(3分)已知a,b满足方程组,则a+b的值为()A.2B.4C.﹣2D.﹣46.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣9B.(x+4)2=﹣7C.(x+4)2=25D.(x+4)2=7 7.(3分)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED 度数为()A.110°B.125°C.135°D.140°9.(3分)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)10.(3分)如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0°<α<120°)得到△AB′C′,B′C′与BC,AC分别交于点D,E.设CD+DE=x,△AEC′的面积为y,则y与x的函数图象大致()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)计算:22﹣(1)0=.12.(3分)5G信号的传播速度为300 000 000m/s,将300 000 000用科学记数法表示为.13.(3分)分解因式:x3﹣x=.14.(3分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E 在BC上,且AE=CF,若∠BAE=25°,则∠ACF=度.15.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.16.(3分)已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为cm.17.(3分)如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB =CB,曲线y(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为.18.(3分)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB PD的最小值等于.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解不等式x>1,并在数轴上表示解集.20.(8分)先化简,再求值:(m),其中m2.21.(8分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B 的距离.为什么?22.(9分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.23.(8分)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.24.(10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?25.(9分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O经过点B.(1)求⊙O的半径;(2)点P为劣弧AB中点,作PQ⊥AC,垂足为Q,求OQ的长;(3)在(2)的条件下,连接PC,求tan∠PCA的值.26.(10分)已知:二次函数y=x2﹣4x+3a+2(a为常数).(1)请写出该二次函数的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x ﹣1的图象有两个交点,求a的取值范围.27.(13分)如图,矩形ABCD中,AB=2,AD=4.E,F分别在AD,BC上,点A 与点C关于EF所在的直线对称,P是边DC上的一动点.(1)连接AF,CE,求证四边形AFCE是菱形;(2)当△PEF的周长最小时,求的值;(3)连接BP交EF于点M,当∠EMP=45°时,求CP的长.28.(13分)定义:若实数x,y满足x2=2y+t,y2=2x+t,且x≠y,则称点M(x,y)为“线点”.例如,点(0,﹣2)和(﹣2,0)是“线点”.已知:在直角坐标系xOy中,点P(m,n).(1)P1(3,1)和P2(﹣3,1)两点中,点是“线点”;(2)若点P是“线点”,用含t的代数式表示mn,并求t的取值范围;(3)若点Q(n,m)是“线点”,直线PQ分别交x轴、y轴于点A,B,当|∠POQ﹣∠AOB|=30°时,直接写出t的值.2019年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列选项中,比﹣2℃低的温度是()A.﹣3℃B.﹣1℃C.0℃D.1℃【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.2.(3分)化简的结果是()A.4B.2C.3D.2【解答】解:2,故选:B.3.(3分)下列计算,正确的是()A.a2•a3=a6B.2a2﹣a=a C.a6÷a2=a3D.(a2)3=a6【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵2a2﹣a≠a,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a2)3=a6,∴选项D符合题意.故选:D.4.(3分)如图是一个几何体的三视图,该几何体是()A.球B.圆锥C.圆柱D.棱柱【解答】解:由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选:C.5.(3分)已知a,b满足方程组,则a+b的值为()A.2B.4C.﹣2D.﹣4【解答】解:①,①+得:5a+5b=10,则a+b=2,故选:A.6.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣9B.(x+4)2=﹣7C.(x+4)2=25D.(x+4)2=7【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选:D.7.(3分)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【解答】解:由勾股定理得,OB,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.8.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED 度数为()A.110°B.125°C.135°D.140°【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=70°,∴∠CAB=110°,∵AE平分∠CAB,∴∠CAE∠CBA=55°,∴∠AED=∠C+∠CAE=70°+55°=125°,故选:B.9.(3分)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)【解答】解:A、25min~50min,王阿姨步行的路程为2000﹣1200=800m,故A没错;B、设线段CD的函数解析式为s=kt+b,把(25,1200),(50,2000)代入得,解得:,∴线段CD的函数解析式为s=32t+400(25≤t≤50),故B没错;C、在A点的速度为105m/min,在B点的速度为45m/min,故C错误;D、当t=20时,由图象可得s=1200m,将t=20代入s=﹣3(t﹣20)2+1200(5≤t≤20)得s=1200,故D没错.故选:C.10.(3分)如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0°<α<120°)得到△AB′C′,B′C′与BC,AC分别交于点D,E.设CD+DE=x,△AEC′的面积为y,则y与x的函数图象大致()A.B.C.D.【解答】解:∵△ABC绕点A逆时针旋转α,设AB与BC交于点F,则∠BAB′=∠CAC′=α,∠B=∠C′=30°,AB=AC=AC′,∴△ABF≌△AC′E(AAS),∴BF=C′E,AE=AF,同理△CDE≌△B′DF(AAS),∴B′D=CD,∴B′D+DE=CD+ED=x,AB=AC=2,∠B=30°,则△ABC的高为1,等于△AEC′的高,BC=2B′C′,y EC′×△AEC′的高(2)x,故选:B.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)计算:22﹣(1)0=3.【解答】解:原式=4﹣1=3.故答案为:3.12.(3分)5G信号的传播速度为300 000 000m/s,将300 000 000用科学记数法表示为3×108.【解答】解:将300 000 000用科学记数法表示为:3×108.故答案为:3×108.13.(3分)分解因式:x3﹣x=x(x+1)(x﹣1).【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).14.(3分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E 在BC上,且AE=CF,若∠BAE=25°,则∠ACF=70度.【解答】解:在Rt△ABE与Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL).∴∠BAE=∠BCF=25°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=25°+45°=70°;故答案为:70.15.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为9x﹣11=6x+16.【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.16.(3分)已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为5 cm.【解答】解:设圆锥的母线长为Rcm,圆锥的底面周长=2π×2=4π,则4π×R=10π,解得,R=5(cm)故答案为:5.17.(3分)如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB =CB,曲线y(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为4.【解答】解:作CD⊥x轴于D,BF⊥x轴于F,过B作BE⊥CD于E,∵过点C(3,4)的直线y=2x+b交x轴于点A,∴4=2×3+b,解得b=﹣2,∴直线为y=2x﹣2,令y=0,则求得x=1,∴A(1,0),∵BF⊥x轴于F,过B作BE⊥CD于E,∴BE∥x轴,∴∠ABE=∠BAF,∵∠ABC=90°,∴∠ABE+∠EBC=90°,∵∠BAF+∠ABF=90°,∴∠EBC=∠ABF,在△EBC和△FBA中∠∠∴△EBC≌△FBA(AAS),∴CE=AF,BE=BF,设B(m,),∵4m﹣1,m﹣3,∴4﹣(m﹣3)=m﹣1,解得m=4,k=4,∴反比例函数的解析式为y,把x=1代入得y=4,∴a=4﹣0=4,∴a的值为4.故答案为4.18.(3分)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB PD的最小值等于3.【解答】解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD∴∠EDP=∠DAB=60°,∴sin∠EDP∴EP PD∴PB PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A∴BE=3故答案为3三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解不等式x>1,并在数轴上表示解集.【解答】解:4x﹣1﹣3x>3,4x﹣3x>3+1,x>4,将不等式的解集表示在数轴上如下:20.(8分)先化简,再求值:(m),其中m2.【解答】解:原式•=m2+2m,当m2时,原式=m(m+2)=(2)(2+2)=2﹣221.(8分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B 的距离.为什么?【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.22.(9分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.【解答】解:画树状图为:共有6种等可能的结果数,其中取出的2个球中有1个白球、1个黄球的结果数为3,所以取出的2个球中有1个白球、1个黄球的概率.23.(8分)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.【解答】解:设每套《三国演义》的价格为x元,则每套《西游记》的价格为(x+40)元,依题意,得:2,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:每套《三国演义》的价格为80元.24.(10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).(1)用方差推断,二班的成绩波动较大;用优秀率和合格率推断,一班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?【解答】解:(1)从方差看,二班成绩波动较大,从众数、中位数上看,一班的成绩较好,故答案为:二,一.(2)乙同学的说法较合理,众数和中位数是反映一组数据集中发展趋势和集中水平,由于二班的众数、中位数都比一班的要好.25.(9分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O经过点B.(1)求⊙O的半径;(2)点P为劣弧AB中点,作PQ⊥AC,垂足为Q,求OQ的长;(3)在(2)的条件下,连接PC,求tan∠PCA的值.【解答】解:(1)作OH⊥AB于H.在Rt△ACB中,∵∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∵OH⊥AB,∴AH=HB=1,∴OA=AH÷cos30°.(2)如图2中,连接OP,PA.设OP交AB于H.∵,∴OP⊥AB,∴∠AHO=90°,∵∠OAH=30°,∴∠AOP=60°,∵OA=OP,∴△AOP是等边三角形,∵PQ⊥OA,∴OQ=QA.(3)连接PC.在Rt△ABC中,AC BC,∵AQ=QO.∴QC=AC﹣AQ,∵△AOP是等边三角形,PQ⊥OA,∴PQ,∴tan∠ACP.26.(10分)已知:二次函数y=x2﹣4x+3a+2(a为常数).(1)请写出该二次函数的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x ﹣1的图象有两个交点,求a的取值范围.【解答】解:(1)∵二次函数y=x2﹣4x+3a+2=(x﹣2)2+3a﹣2,∴该二次函数开口向上,对称轴为直线x=2,顶点坐标为(2,3a﹣2),其性质有:①开口向上,有最小值3a﹣2,③对称轴为x=2.(2)由题意得,解得a,故该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,a的取值为.27.(13分)如图,矩形ABCD中,AB=2,AD=4.E,F分别在AD,BC上,点A 与点C关于EF所在的直线对称,P是边DC上的一动点.(1)连接AF,CE,求证四边形AFCE是菱形;(2)当△PEF的周长最小时,求的值;(3)连接BP交EF于点M,当∠EMP=45°时,求CP的长.【解答】证明:(1)如图:连接AF,CE,AC交EF于点O∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC∴∠AEO=∠CFO,∠EAO=∠FCO,∵点A与点C关于EF所在的直线对称∴AO=CO,AC⊥EF∵∠AEO=∠CFO,∠EAO=∠FCO,AO=CO∴△AEO≌△CFO(AAS)∴AE=CF,且AE∥CF∴四边形AFCE是平行四边形,且AC⊥EF∴四边形AFCE是菱形;(2)如图,作点F关于CD的对称点H,连接EH,交CD于点P,此时△EFP的周长最小,∵四边形AFCE是菱形∴AF=CF=CE=AE,∵AF2=BF2+AB2,∴AF2=(4﹣AF)2+4,∴AF∴AE CF∴DE∵点F,点H关于CD对称∴CF=CH∵AD∥BC∴(3)如图,延长EF,延长AB交于点N,过点E作EH⊥BC于H,交BP于点G,过点O作BO⊥FN于点O,由(2)可知,AE=CF,BF=DE∵EH⊥BC,∠A=∠ABC=90°∴四边形ABHE是矩形∴AB=EH=2,BH=AE∴FH=1∴EF,∵AD∥BC∴△BFN∽△AEN∴∴∴BN=3,NF∴AN=5,NE∵∠N=∠N,∠BON=∠A=90°∴△NBO∽△NEA∴∴∴BO,NO∵∠FMP=∠BMO=45°,BO⊥EN ∴∠OBM=∠BMO=45°∴BO=MO∴ME=EN﹣NO﹣MO∵AB∥EH∴△BNM∽△GEM∴∴∴EG∴GH=EH﹣EG∵EH∥CD∴△BGH∽△BPC∴∴∴CP28.(13分)定义:若实数x,y满足x2=2y+t,y2=2x+t,且x≠y,则称点M(x,y)为“线点”.例如,点(0,﹣2)和(﹣2,0)是“线点”.已知:在直角坐标系xOy中,点P(m,n).(1)P1(3,1)和P2(﹣3,1)两点中,点P2是“线点”;(2)若点P是“线点”,用含t的代数式表示mn,并求t的取值范围;(3)若点Q(n,m)是“线点”,直线PQ分别交x轴、y轴于点A,B,当|∠POQ﹣∠AOB|=30°时,直接写出t的值.【解答】解:(1)∵当M点(x,y),若x,y满足x2﹣2y=t,y2﹣2x=t且x≠y,t为常数,则称点M为“线点”,又∵P1(3,1),则32﹣2×1=7,(1)2﹣2×3=﹣5,7≠﹣5,∴点P1不是线点;∵P2(﹣3,1),则(﹣3)2﹣2×1=7,12﹣2×(﹣3)=7,7=7,∴点P2是线点,故答案为:P2;(2)∵点P(m,n)为“线点”,则m2﹣2n=t,n2﹣2m=t,∴m2﹣2n﹣n2+2m=0,m2﹣2n+n2﹣2m=2t,∴(m﹣n)(m+n+2)=0,∵a≠b,∴m+n+2=0,∴m+n=﹣2,∵m2﹣2n+n2﹣2m=2t,∴(m+n)2﹣2mn﹣2(m+n)=2t,即:(﹣2)2﹣2mn+2×2=2t,∴mn=4﹣t,∵m≠n,∴(m﹣n)2>0,∴m2﹣2mn+n2>0,∴(m+n)2﹣4mn>0,∴(﹣2)2﹣4mn>0,∴mm<1,∵mn=4﹣t,∴t>3;(3)设PQ直线的解析式为:y=kx+b,则,解得:k=﹣1,∵直线PQ分别交x轴,y轴于点A、B,∴∠AOB=90°,∴△AOB是等腰直角三角形,∵|∠AOB﹣∠POQ|=30°,∴∠POQ=120°或60°,∵P(m,n),Q(n,m),∴P、Q两点关于y=x对称,①若∠POQ=120°时,如图1所示:作PC⊥x轴于C,QD⊥y轴于D,作直线MN⊥AB.∵P、Q两点关于y=x对称,∴∠PON=∠QON∠POQ=60°,∵△AOB是等腰直角三角形,∴∠AON=BON=45°,∴∠POC=∠QOD=15°,在OC上截取OT=PT,则∠TPO=∠TOP=15°,∴∠CTP=30°,∴PT=2PC=2n,TC n,∴﹣m n+2n,由(2)知,m+n=﹣2,解得:m=﹣1,n1,由(2)知:mn=4﹣t,t>3,∴(﹣1)(﹣1)=4﹣t,解得:t=6,若∠POQ=60°时,如图2所示,作PD⊥x轴于D,QC⊥y轴于C,作直线MN⊥AB.∵P、Q两点关于y=x对称,∴∠PON=∠QON∠POQ=30°,∵△AOB是等腰直角三角形,∴∠AON=BON=45°,∴∠POD=∠QOC=15°,在OD上截取OT=PT,则∠TPO=∠TOP=15°,∴∠DTP=30°,∴PT=2PD=﹣2n,TD n,∴﹣m n﹣2n,由(2)知,m+n=﹣2,解得m=﹣1,n=﹣1,由(2)知:mn=4﹣t,t>3,∴(﹣1)(﹣1)=4﹣t,解得:t,综上所述,t的值为:6或.2018年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题要求的)1.(3分)6的相反数为()A.﹣6B.6C.D.2.(3分)计算x2•x3结果是()A.2x5B.x5C.x6D.x83.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x<1B.x≤1C.x>1D.x≥14.(3分)2017年国内生产总值达到827 000亿元,稳居世界第二.将数827 000用科学记数法表示为()A.82.7×104B.8.27×105C.0.827×106D.8.27×106 5.(3分)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12 6.(3分)如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上7.(3分)若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.78.(3分)一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2B.12πcm2C.8πcm2D.4πcm29.(3分)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M,N 两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为()A.B.C.D.10.(3分)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)11.(3分)计算:3a2b﹣a2b=.12.(3分)某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为度.13.(3分)一个等腰三角形的两边长分别为4cm和9cm,则它的周长为cm.14.(3分)如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE=度.15.(3分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为.16.(3分)如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是(填序号).17.(3分)若关于x的一元二次方程x2﹣2mx﹣4m+1=0有两个相等的实数根,则(m﹣2)2﹣2m(m﹣1)的值为.18.(3分)在平面直角坐标系xOy中,已知A(2t,0),B(0,﹣2t),C(2t,4t)三点,其中t>0,函数y的图象分别与线段BC,AC交于点P,Q.若S△PAB﹣S=t,则t的值为.△PQB三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步驟)19.(10分)计算:(1)(﹣2)2(﹣3)0﹣()﹣2;(2).20.(8分)解方程:.21.(8分)一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.22.(8分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?23.(9分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:1718161324152826181922171619323016141526 15322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表(1)填空:a=,b=,c=;(2)若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.25.(9分)小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.26.(10分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2(k﹣1)x+k2k(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.27.(13分)如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE=CF;(2)若A,E,O三点共线,连接OF,求线段OF的长.(3)求线段OF长的最小值.28.(13分)【定义】如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.【运用】如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m >2,∠APB=α,求证:tan;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB 的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).2018年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题要求的)1.(3分)6的相反数为()A.﹣6B.6C.D.【解答】解:6的相反数为:﹣6.故选:A.2.(3分)计算x2•x3结果是()A.2x5B.x5C.x6D.x8【解答】解:x2•x3=x5.故选:B.3.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故选:D.4.(3分)2017年国内生产总值达到827 000亿元,稳居世界第二.将数827 000用科学记数法表示为()A.82.7×104B.8.27×105C.0.827×106D.8.27×106【解答】解:827 000=8.27×105.故选:B.5.(3分)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.6.(3分)如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上【解答】解:2<<3,∴﹣1<2<0,∴表示数2的点P应落在线段BO上,故选:B.7.(3分)若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.7【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个多边形为六边形.故选:C.8.(3分)一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2B.12πcm2C.8πcm2D.4πcm2【解答】解:根据题意得圆锥的母线长为4,底面圆的半径为2,所以这个圆锥的侧面积4×2π×2=8π(cm2).故选:C.9.(3分)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M,N 两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为()A.B.C.D.【解答】解:由作图可知,四边形ECFD是正方形,∴DE=DF=CE=CF,∠DEC=∠DFC=90°,∵S△ACB=S△ADC+S△CDB,∴AC×BC AC×DE BC×DF,∴DE,故选:D.10.(3分)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.【解答】解:设AB=x,则AE=EB由折叠,FE=EB则∠AFB=90°由tan∠DCE∴BC,EC∵F、B关于EC对称∴∠FBA=∠BCE∴△AFB∽△EBC∴∴y故选:D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)11.(3分)计算:3a2b﹣a2b=2a2b.【解答】解:原式=(3﹣1)a2b=2a2b,故答案为:2a2b.12.(3分)某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为60度.【解答】解:甲部分圆心角度数是360°=60°,故答案为:60.13.(3分)一个等腰三角形的两边长分别为4cm和9cm,则它的周长为22cm.【解答】解:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.14.(3分)如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE=130度.【解答】解:∵∠AOB=40°,OP平分∠AOB,∴∠AOC=∠BOC=20°,又∵CD⊥OA于点D,CE∥OB,∴∠DCP=90°+20°=110°,∠PCE=∠POB=20°,∴∠DCE=∠DCP+∠PCE=110°+20°=130°,故答案为:130.15.(3分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为240x=150x+12×150.【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故答案为:240x=150x+12×15016.(3分)如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是(填序号).【解答】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.故答案为17.(3分)若关于x的一元二次方程x2﹣2mx﹣4m+1=0有两个相等的实数根,则(m﹣2)2﹣2m(m﹣1)的值为.【解答】解:由题意可知:△=4m2﹣2(1﹣4m)=4m2+8m﹣2=0,∴m2+2m∴(m﹣2)2﹣2m(m﹣1)=﹣m2﹣2m+44故答案为:18.(3分)在平面直角坐标系xOy中,已知A(2t,0),B(0,﹣2t),C(2t,4t)三点,其中t>0,函数y的图象分别与线段BC,AC交于点P,Q.若S△PAB﹣S=t,则t的值为4.△PQB【解答】解:如图所示,∵A(2t,0),C(2t,4t),∴AC⊥x轴,当x=2t时,y,∴Q(2t,),∵B(0,﹣2t),C(2t,4t),易得直线BC的解析式为:y=3x﹣2t,则3x﹣2t,解得:x1=t,x2t(舍),∴P(t,t),∵S△PAB=S△BAC﹣S△APC,S△PQB=S△BAC﹣S△ABQ﹣S△PQC,∵S△PAB﹣S△PQB=t,∴(S△BAC﹣S△APC)﹣(S△BAC﹣S△ABQ﹣S△PQC)=t,S△ABQ+S△PQC﹣S△APC t,t=4,故答案为:4.三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步驟)19.(10分)计算:(1)(﹣2)2(﹣3)0﹣()﹣2;(2).【解答】解:(1)原式=4﹣4+1﹣9=﹣8;(2)原式•.20.(8分)解方程:.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x,经检验x是方程的解,∴原方程的解为x.21.(8分)一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.【解答】解:画树状图得:则共有9种等可能的结果,两次摸出的小球标号相同时的情况有3种,所以两次取出的小球标号相同的概率为.22.(8分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?【解答】解:∵∠ABD=120°,∠D=30°,。

南通中考数学试题及答案

南通中考数学试题及答案

南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 2.5C. 0.3333D. √4答案:A2. 已知函数f(x)=2x+1,f(2)的值是:A. 3B. 4C. 5D. 6答案:C3. 一个三角形的三个内角分别是30°、60°和90°,这个三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形答案:A4. 一个数的相反数是-5,那么这个数是:A. 5C. 10D. -10答案:A5. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 2.5cmD. 20cm答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个长方体的长、宽、高分别是3cm、4cm和5cm,它的体积是:A. 60cm³B. 30cm³C. 120cm³D. 15cm³答案:A8. 一个数的平方是25,那么这个数是:B. -5C. 5或-5D. 0答案:C9. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 2或-2D. 0答案:B10. 一个数的平方根是3,那么这个数是:A. 9B. -9C. 9或-9D. 0答案:A二、填空题(每题4分,共20分)1. 一个数的平方是36,这个数是______。

答案:±62. 一个数的立方是-27,这个数是______。

答案:-33. 一个数的倒数是2,这个数是______。

答案:1/24. 一个数的绝对值是8,这个数是______。

答案:±85. 一个数的平方根是4,这个数是______。

答案:16三、解答题(每题10分,共50分)1. 已知一个等腰三角形的底边长为6cm,腰长为5cm,求这个三角形的面积。

答案:首先,根据勾股定理,我们可以计算出三角形的高。

南通市中考数学试题及答案

南通市中考数学试题及答案

南通市初中毕业、升学考试果填在题中横线上.1.计算0-1=________. 2________.3.已知∠A =40°,则∠A 的余角等于=________度.4.计算:3(2)a =________.5.一个长方体的主视图和左视图如图所示(单位:cm ),则俯视图的面积是_______cm 2.43主视图42左视图ADEOAB E第5题 第8题 第10题 第13题 6.一组数据2,4,x ,2,3,4的众数是2,则x =________.7.函数y =x 的取值范围是________.8.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是________.9.一次函数(26)5y m x =-+中,y 随x 的增大而减小,则m 的取值范围是________. 10.如图,DE ∥BC 交AB 、AC 于D 、E 两点,CF 为BC 的延长线,若∠ADE =50°,∠ACF =110°,则∠A =________度. 11.将点A (0)绕着原点顺时针方向旋转45°角得到点B ,则点B 的坐标是________. 12.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克________元.13.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB =________度. 14.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差. 方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC =________.二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,恰有..一项..是符合题目要求的,请你将正确的选项的代号填入题后括号内. 15.下列命题正确的是( )A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等的四边形是等腰梯形16.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=⎧⎨--=⎩ B .2103210x y x y --=⎧⎨--=⎩ C .2103250x y x y --=⎧⎨+-=⎩ D .20210x y x y +-=⎧⎨--=⎩123-1O123-1xy P(1,1) 17.已知△ABC 和△A ′B ′C ′是位似图形. △A ′B ′C ′的面积6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上的高等于( ) A .3cm B .6cm C .9cm D .12cm 18.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1x <0,2x -31x <0,则( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩三、解答题:本大题共10小题,共92分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题10分,第20题6分,共16分) 19.(1)计算 (2)分解因式2(2)(4)4x x x +++-20.解分式方程225103x x x x-=+-(21~22题,第21题7分,第22题8分,共15分)21.如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有暗礁的危险?A 东BP北22.已知:如图,M 是AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN=(1)求圆心O到弦MN的距离;(2)求∠ACM的度数.(23~24题,第23题7分,第24题8分,共15分)23.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上再投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?24.已知点A(-2,-c)向右平移8个单位得到点A′,A与A′两点均在抛物线2=++上,且这条抛物线与y轴的交点的纵坐标为-6,求这条抛物线的顶点坐y ax bx c标.(25~26题,第25题10分,第26题12分,共22分)25.随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,:截至2008年2男性女性解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上的老人中,男性的极差是______人,女性人数的中位数是_________人;(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多晒人?26.如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E.(1)求证:AB ·AF =CB ·CD(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点.设DP =xcm (x >0),四边形BCDP的面积为ycm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.(第27题10分)27.在一次数学探究型学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形制片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.它们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.方案一 方案二28.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C. (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.2008年南通市初中毕业、升学考试数学试题参考答案说明:本评分标准每题只提供一种解法,如有其他解法,请参照本标准的精神给分 一、填空题:本大题共14小题,每小题3分,共42分.1.-7 2.12 3.50 4.8a 35.6 6.2 7.x ≥2 8.479.m <3 10.60 11.(4,-4) 12.4 13.120 14.52二、选择题:本大题共4小题,每小题4分,共16分. 15.C 16.D 17.B 18.C三、解答题:本大题共10小题,共92分 19.(1)解:原式=÷= 2(2)解:原式=((2)(2)x x x ++- =(2)(22)x x ++ =2(2)(1)x x ++20.解:方程两边同乘以(3)(1)x x x +-,得5(x -1)-(x +3)=0 解这个方程,得x =2.检验:把x =2代入最简公分母,得2×5×1=10≠0 ∴原方程的解是x =221.解:过点P 作PC ⊥AB 于C 点,根据题意,得 A 东BP北45°60°AB =18×2060=6,∠PAB =90°-60°=30°,∠PBC =90°-45°=45°,∠PCB =90°, ∴PC =BC 在Rt △PAC 中tan30°=PC AB BC +=6PCPC +6PC PC=+,解得PC= 3∵3>6,∴海轮不改变方向继续前进无触礁危险22.(1)连结OM.∵点M 是AB 的中点,∴OM ⊥AB 过点O 作OD ⊥MN 于点D ,由垂径定理,得MD =12MN =在Rt △ODM 中,OM =4,MD =OD=2 故圆心O 到弦MN 的距离为2cm. (2)cos ∠OMD=MD OM =∴∠OMD =30°,∴∠ACM =60°23.解:(1)设A 市投资“改水工程”年平均增长率是x ,则 2600(1)1176x +=解之,得x =0.4或x =-2.4(不合题意,舍去) 所以,A 市三年共投资“改水工程”2616万元.24.解:由抛物线2y ax bx c =++与y 轴交点的纵坐标为-6,得c =-6. ∴A (-2,6),点A 向右平移8个单位得到点A ′(6,6) ∵A 与A ′两点均在抛物线上, ∴426636666a b a b --=⎧⎨+-=⎩,解这个方程组,得14a b =⎧⎨=-⎩故抛物线的解析式是2246(2)10y x x x =--=-- ∴抛物线顶点坐标为(2,-10) 25.解:(1)男性女性(2)22,50(3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5 预计地区一增加100周岁以上男性老人5人.26.(1)证明:∵AD =CD ,DE ⊥AC ,∴DE 垂直平分AC ∴AF =CF ,∠DFA =DFC =90°,∠DAF =∠DCF.∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°,∴∠DCF =∠DAF =∠B 在Rt △DCF 和Rt △ABC 中,∠DFC =∠ACB =90°,∠DCF =∠B ∴△DCF ∽△ABC ∴CD CF AB CB =,即CD AFAB CB=.∴AB ·AF =CB ·CD (2)解:①∵AB =15,BC =9,∠ACB =90°, ∴AC12,∴CF =AF =6∴1(9)2y x =+×6=3x +27(x >0) ②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小.由(1)可知,点C 关于直线DE 的对称点是点A ,∴PB +PC =PB +PA ,故只要求PB +PA 最小. 显然当P 、A 、B 三点共线时PB +PA 最小.此时DP =DE ,PB +PA =AB. 由(1),∠ADF =∠FAE ,∠DFA =∠ACB =90°,地△DAF ∽△ABC. EF ∥BC ,得AE =BE =12AB =152,EF =92. ∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15.∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8. ∴DE =DF +FE =8+92=252. ∴当x =252时,△PBC 的周长最小,此时y =129227.解:(1)理由如下:∵扇形的弧长=16×2π=8π,圆锥底面周长=2πr ,∴圆的半径为4cm. 由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形直劈昂的对角线长为16+4+20+cm ,20+∴方案一不可行.(2)方案二可行.求解过程如下:设圆锥底面圆的半径为rcm ,圆锥的母线长为Rcm ,则(1r R+= 2πr=24Rπ.②由①②可得12823R==,r3223=.故所求圆锥的母线长为12823cm,底面圆的半径为3223cm. 28.解:(1)∵D(-8,0),∴B点的横坐标为-8,代入14y x=中,得y=-2. ∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2)从而k=8×2=16(2)∵N(0,-n),B是CD的中点,A,B,M,E四点均在双曲线上,∴mn=k,B(-2m,-2n),C(-2m,-n),E(-m,-n)DCNOS矩形=2mn=2k,DBOS△=12mn=12k,OENS△=12mn=12k.∴OBCES矩形=DCNOS矩形―DBOS△―OENS△=k.∴k=4.由直线14y x=及双曲线4yx=,得A(4,1),B(-4,-1)∴C(-4,-2),M(2,2)设直线CM的解析式是y ax b=+,由C、M两点在这条直线上,得4222a ba b-+=-⎧⎨+=⎩,解得a=b=23∴直线CM的解析式是y=23x+23.(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1,M1设A点的横坐标为a,则B点的横坐标为-a.于是111A MMA a mpMP M O m-===,同理MB m aqMQ m+==∴p-q=a mm--m am+=-2。

2023年江苏省南通市中考数学试卷含答案解析

2023年江苏省南通市中考数学试卷含答案解析

绝密★启用前2023年江苏省南通市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.计算(−3)×2,正确的结果是( )A. 6B. 5C. −5D. −62.2023年5月21日,以“聚力新南通、奋进新时代”为主题的第五届通商大会暨全市民营经济发展大会召开,40个重大项目集中签约,计划总投资约41800000000元,将41800000000用科学记数法表示为( )A. 4.18×1011B. 4.18×1010C. 0.418×1011D. 418×1083.如图所示的四个几何体中,俯视图是三角形的是( )A. 三棱柱B. 圆柱C. 四棱锥D. 圆锥4.如图,数轴上A,B,C,D,E五个点分别表示数1,2,3,4,5,则表示数√ 10的点应在( )A. 线段AB上B. 线段BC上C. 线段CD上D. 线段DE上5.如图,△ABC中,∠ACB=90°,顶点A,C分别在直线m,n上,若m//n,∠1=50°,则∠2的度数为( )A. 140°B. 130°C. 120°D. 110°6.若a2−4a−12=0,则2a2−8a−8的值为( )A. 24B. 20C. 18D. 167.如图,从航拍无人机A看一栋楼顶部B的仰角α为30°,看这栋楼底部C的俯角β为60°,无人机与楼的水平距离为120m,则这栋楼的高度为( )A. 140√ 3mB. 160√ 3mC. 180√ 3mD. 200√ 3m8.如图,四边形ABCD是矩形,分别以点B,D为圆心,线段BC,DC长为半径画弧,两弧相交于点E,连接BE,DE,BD.若AB=4,BC=8,则∠ABE的正切值为( )A. 43B. 45C. 34D. 359.如图1,△ABC中,∠C=90°,AC=15,BC=20.点D从点A出发沿折线A−C−B运动到点B停止,过点D作DE⊥AB,垂足为E.设点D运动的路径长为x,△BDE的面积为y,若y与x的对应关系如图2所示,则a−b 的值为( )A. 54B. 52C. 50D. 4810.若实数x,y,m满足x+y+m=6,3x−y+m=4,则代数式−2xy+1的值可以是( )A. 3B. 52C. 2 D. 32二、填空题(本大题共8小题,共30.0分)11.计算3√ 2−√ 2=______ .12.分解因式:a2−ab=______.13.如图,△ABC中,D,E分别是AB,AC的中点,连接DE,则S△ADES△ABC=______ .14.某型号汽车行驶时功率一定,行驶速度v(单位:m/s)与所受阻力F(单位:N)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为30m/s,则所受阻力F为______ N.15.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DAB=66°,则∠ACD=______ 度.16.勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a,b,c,其中a,b均小于c,a=12m2−12,c=12m2+12,m是大于1的奇数,则b=______ (用含m的式子表示).17.已知一次函数y=x−k,若对于x<3范围内任意自变量x的值,其对应的函数值y都小于2k,则k的取值范围是______ .18.如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是______ .三、解答题(本大题共8小题,共90.0分。

江苏省南通市中考数学试卷(附答案解析)

江苏省南通市中考数学试卷(附答案解析)

第 1 页 共 25 页2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是( )A .﹣4B .﹣3C .﹣2D .﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A .6.8×104B .6.8×105C .0.68×105D .0.68×1063.下列运算,结果正确的是( )A .√5−√3=√2B .3+√2=3√2C .√6÷√2=3D .√6×√2=2√34.以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°6.一组数据2,4,6,x ,3,9,5的众数是3,则这组数据的中位数是( )A .3B .3.5C .4D .4.57.下列条件中,能判定▱ABCD 是菱形的是( )A .AC =BDB .AB ⊥BC C .AD =BD D .AC ⊥BD8.如图是一个几何体的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )A .48πcm 2B .24πcm 2C .12πcm 2D .9πcm 29.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D。

2024年南通市中考数学真题试卷及答案

2024年南通市中考数学真题试卷及答案

2024年南通市中考数学真题试卷及答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 如果零上2℃记作2+℃,那么零下3℃记作( ) A. 3-℃B. 3℃C. 5-℃D. 5℃2. 2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为( ) A. 9158.210⨯B. 1015.8210⨯C. 111.58210⨯D. 121.58210⨯3. )A. 9B. 3C.D.4. 如图是一个几何体的三视图,该几何体是( )A. 球B. 棱柱C. 圆柱D. 圆锥5. 如图,直线ab ,矩形ABCD 的顶点A 在直线b 上,若241∠=︒,则1∠的度数为( )A. 41︒B. 51︒C. 49︒D. 59︒6. 红星村种的水稻2021年平均每公顷产7200kg ,2023年平均每公顷产8450kg .求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x .列方程为( ) A. ()2720018450x += B. ()7200128450x += C. ()2845017200x -=D. ()8450127200x -=7. 将抛物线221y x x =+-向右平移3个单位后得到新抛物线的顶点坐标为( ) A. ()4,1--B. ()4,2-C. ()2,1D. ()22-,8. “赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,()n m n >.若小正方形面积为5,()221m n +=,则大正方形面积为( )A. 12B. 13C. 14D. 159. 甲、乙两人沿相同路线由A 地到B 地匀速前进,两地之间的路程为20km .两人前进路程s (单位:km )与甲的前进时间t (单位:h )之间的对应关系如图所示.根据图象信息,下列说法正确的是( )A. 甲比乙晚出发1hB. 乙全程共用2hC. 乙比甲早到B 地3hD. 甲的速度是5km/h10. 在ABC 中,()045B C αα∠=∠=︒<<︒,AH BC ⊥,垂足为H,D 是线段HC 上的动点(不与点H,C 重合),将线段DH 绕点D 顺时针旋转2α得到线段DE .两位同学经过深入研究,小明发现:当点E 落在边AC 上时,点D 为HC 的中点;小丽发现:连接AE ,当AE 的长最小时,2AH AB AE =⋅.请对两位同学的发现作出评判( ) A. 小明正确,小丽错误 B. 小明错误,小丽正确 C. 小明、小丽都正确D. 小明、小丽都错误二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11. 分解因式:ax ay -=_________.12. 已知圆锥的底面半径为2cm ,母线长为6cm ,则该圆锥的侧面积为______2cm .13. 已知关于x 的一元二次方程220x x k -+=有两个不相等的实数根.请写出一个满足题意的k 的值:______.14. 社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B 处测得旗杆顶部A 的仰角为60︒,6m BC =,则旗杆AC 的高度为______m .15. 若菱形的周长为20cm ,且有一个内角为45︒,则该菱形的高为______cm .16. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此器电池为电源的用电器的限制电流I 不能超过10A,那么用电器可变电阻R 应控制的范围是______.17. 如图,在Rt ABC △中,90ACB ∠=︒,5AC BC ==.正方形DEFG,它的顶点D,E,G 分别在ABC 的边上,则BG 的长为______.18. 平面直角坐标系xOy 中,已知()3,0A ,()0,3B .直线y kx b =+(k,b 为常数,且0k >)经过点()1,0,并把AOB 分成两部分,其中靠近原点部分的面积为154,则k 的值为______. 三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:()12112m m m m ⎛⎫--+ ⎪⎝⎭; (2)解方程21133x x x x -=++.20. 我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表. 50个家庭去年月均用水量频数分布表根据上述信息,解答下列问题:(1)m=______,n=______;(2)这50个家庭去年月均用水量的中位数落在______组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?21. 如图,点D在ABC的边AB上,DF经过边AC的中点E,且EF DE∥.=.求证CF AB22. 南通地铁1号线“世纪大道站”有标识为1,2,3,4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为______;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.23. 如图,ABC 中,3AB =,4AC =,5BC =,A 与BC 相切于点D .(1)求图中阴影部分的面积; (2)设A 上有一动点P,连接CP ,BP .当CP 的长最大时,求BP 的长.24. 某快递企业为提高工作效率,拟购买A,B 两种型号智能机器人进行快递分拣.相关信息如下: 信息一信息二(1)求A,B 两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A,B 两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?25. 已知函数()()22y x a x b =-+-(a,b 为常数).设自变量x 取0x 时,y 取得最小值. (1)若1a =-,3b =,求0x 的值;(2)在平面直角坐标系xOy 中,点(),P a b 在双曲线2y x =-上,且012x =.求点P 到y 轴的距离;(3)当22230a a b --+=,且013x ≤<时,分析并确定整数a 的个数.26. 综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动. 【特例探究】(1)如图①,①,①是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表请补全表格中数据,并完成以下猜想.已知ABC 的角平分线1AD =,AB AC =,BAD α∠=,用含α的等式写出两腰之和+AB AC 与两腰之积AB AC ⋅之间的数量关系:______. 【变式思考】(2)已知ABC 的角平分线1AD =,60BAC ∠=︒,用等式写出两边之和+AB AC 与两边之积AB AC ⋅之间的数量关系,并证明. 【拓展运用】(3)如图①,ABC 中,1AB AC ==,点D 在边AC 上,BD BC AD ==.以点C 为圆心,CD 长为半径作弧与线段BD 相交于点E,过点E 作任意直线与边AB ,BC 分别交于M,N 两点.请补全图形,并分析11BM BN+的值是否变化?2024年南通市中考数学真题试卷答案一、选择题 1. A 2. C 3. B 4. D 5. C 6. A 7. D 9. D 10. C【详解】解:①将线段DH 绕点D 顺时针旋转2α得到线段DE ①,2DH DE HDE α=∠= 当点E 落在边AC 上时,如图:①HDE C CED ∠=∠+∠,C α∠= ①CED C α∠==∠ ①DE CD = ①DH CD =①D 为CH 的中点,故小明的说法是正确的; 连接,AE HE①,2DH DE HDE α=∠= ①()11802902DHE DEH αα∠=∠=︒-=︒- ①AH BC ⊥①90AHB AHD ∠=∠=°①AHE AHD DHE α∠=∠-∠=①点E 在射线HE 上运动①当AE HE ⊥时,AE 的长最小①当AE 的长最小时,90AEH AHB ∠=∠=︒又①B C AHE α∠=∠==∠①AEH AHB ∽ ①AE AH AH AB = ①2AH AB AE =⋅;故小丽的说法正确;故选C .二、填空题.11. ()a x y -12. 12π13. 0(答案不唯一)14.15.216. 3.6R ≥17. 【详解】解:过点G 作GH AC ⊥,则:90AHG GHD ∠=∠=︒①90DGH HDG ∠+∠=︒①90ACB ∠=︒,5AC BC ==①45AB A B =∠=∠=︒①45AGH A ∠=︒=∠①AH HG =设AH HG x ==,则:5CH AC AH x =-=-①正方形DEFG①,90DG DE GDE =∠=︒①90HDG CDE ∠+∠=︒①HGD CDE ∠=∠①90C GHD ∠=∠=︒①GHD DCE ≌①CD GH x ==①52DH CH CD x =-=-在Rt GHD 中,由勾股定理,得:222GD DH GH =+①()22252x x =-+,解得:2x = ①2,3AH CH ==①90C AHD ∠=∠=︒①HG BC ∥ ①23AG AH BG CH ==①3355BG AB ==⨯=故答案为: 18. 35【详解】解:根据题意画出图形如下设直线AB 的解析式为:y mx n =+把()3,0A ,B (0,3)代入可得出:303m n n +=⎧⎨=⎩解得:13m n =-⎧⎨=⎩①直线AB 的解析式为:3y x =-+①直线y kx b =+经过点()1,0C①0k b +=①b k =-①直线y kx k =-联立两直线方程:3y kx k y x =-⎧⎨=-+⎩解得:3121k x k k y k +⎧=⎪⎪+⎨⎪=⎪+⎩①32,11k k D k k +⎛⎫ ⎪++⎝⎭①()3,0A ,B (0,3),()1,0C①3OB =,3OA =,2AC =根据题意有:154ABO ACD S S -= 即1115224D OB OA y AC ⋅⋅-⋅⋅= 112153322214k k ⨯⨯-⨯⨯=+ 解得:35k = 故答案为:35. 三、解答题.19. (1)3m -(2)32x =- 20. (1)20,15 (2)B (3)648个21. 证明:①点E 为边AC 的中点①AE EC =①EF DE =,AED CEF ∠=∠①()SAS AED CEF △≌△①DAE FCE =∠∠①CF AB ∥.22. (1)14 (2)1423. (1)36625π- (2【小问1详解】解①连接AD①3AB =,4AC =,5BC =①22222234255AB AC BC +=+===①90BAC ∠=︒①BC 与A 相切于D①AD BC ⊥ ①1122ABC S AD BC AC AB =⋅=⋅△ ①341255AC AB AD BC ⋅⨯=== ①212901365346236025ABC S S S ππ⎛⎫⨯ ⎪⎝⎭=-=⨯⨯-=-阴影扇形; 【小问2详解】解①延长CA 交A 于P,连接BP ,此时CP 最大由(1)知:90BAC PAB ∠=∠=︒,125AP AD ==①PB == 24. (1)A 型智能机器人的单价为80万元,B 型智能机器人的单价为60万元 (2)选择购买A 型智能机器人5台,购买B 型智能机器人5台【小问1详解】解:设A 型智能机器人的单价为x 万元,B 型智能机器人的单价为y 万元 326032360x y x y +=⎧⎨+=⎩解得8060x y =⎧⎨=⎩答:A 型智能机器人的单价为80万元,B 型智能机器人的单价为60万元;【小问2详解】解:设购买A 型智能机器人a 台,则购买B 型智能机器人()10a -台 ①()806010700a a +-≤,①5a ≤,①每天分拣快递的件数()2218104180a a a =+-=+①当5a =时,每天分拣快递的件数最多为45180200万件 ①选择购买A 型智能机器人5台,购买B 型智能机器人5台. 25. (1)01x = (2)2或1 (3)整数a 有4个【小问1详解】解:有题意知()()222221321692410y x x x x x x x x =++-=+++-+=-+ ()()222218218x x x =-++=-+ 当01x =时,y 取得最小值8;【小问2详解】解:①点(),P a b 在双曲线2y x=-上 ①2b a-= ①()()()22222y x a x b x a x a ⎛⎫=-+-=-++ ⎪⎝⎭ 2222422x ax a x x a a ⎛⎫=-++++ ⎪⎝⎭ 2224222x a x a a a ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭①012x =, ①421222a a ⎛⎫- ⎪⎝⎭-=⨯,化解得220a a --=,解得12a =或21a =- 则点()2,1P -或()1,2P -①点P 到y 轴的距离为2或1;【小问3详解】解:()()22y x a x b =-+- 222222x ax a x bx b =-++-+ ()222222x a b x a b =-+++①22230a a b --+=①2322a a b +=+①()222223y x a x a b =-+++①013x ≤<①()231322a -+≤-<⨯,化简得219a ≤< ①2,1,1,2a =--则整数a 有4个.26. (1)见解析; 2cos AB AC AB ACα+=⋅,(2)AB AC AC +=⋅,证明见解析; (3)1112BM BN +=是定值 【详解】解:(1)①30BAD CAD ∠=∠=︒,AD 是ABC 的角平分线,1AD = ①AD BC ⊥①cos303AD AB AC ====︒;①AB AC +=43AB AC ⋅=;如图,由(1)可得:AD BC ⊥①1cos cos AD AB AC αα=== ①2cos AB AC α+=,21cos AB AC α⋅= ①2cos AB AC AB ACα+=⋅;(2)猜想:AB AC AC +=⋅,理由如下: 如图,延长AB 至E 使AE AC =,连接CE ,过B 作BH CE ⊥于H ,延长AD 交CE 于F①60BAC ∠=︒,AD 平分BAC ∠ ①ACE △为等边三角形,AF CE ⊥,30EAF CAF ∠=∠=︒ 设2AC AE CE x ===,EH a =①CF EF x ==,AF =,而1AD =①1DF =-①BH CE ⊥,AF CE ⊥①BH AF ∥①30EBH EAF ∠=∠=︒,CDF CBH ∽①2BE a =,EH =①CDF CBH ∽①DF CFBH CH =,2x x a =-解得:2a =①22424AB AC x a x +=-==; ()2222244AB AC x x a x ax ⋅=-=-=①AB AC AC +=⋅;(3)如图,补全图形如下:①ABC 中,1AB AC ==,点D 在边AC 上,BD BC AD == ①设DAB DBA α∠=∠=,则2BCD BDC α∠=∠=,2ABC ACB α∠=∠= ①22180ααα++=︒解得:36α=︒①36ABE CBE ∠=∠=︒ ①cos362BM BN BM BN +=︒⋅ 即2cos36BM BN BM BN +=︒⋅ ①112cos36BM BN+=︒ 连接CE ,AE ,并延长AE 交BC 于Q①CD CE =①72CDE CED ∠=∠=︒,36ECD BCE ∠=︒=∠ ①CE 平分ACB ∠①AQ 平分BAC ∠①AB AC =①AQ BC ⊥①72ABC ACB CDB ∠=∠=∠=︒①CBD CAB ∽△△ ①CB CD CA CB= 设AD BD BC x ===,则1CD x =- ①21x x =-,即210x x +-=解得:x =(不符合题意的根舍去)①AD BD BC ===①1124BQ BC ==,312CD CE x -==-= ①AQ 是BC 的垂直平分线①32BE CE ==①1cos cos364BQ EBQ BE ∠=︒==;①1112BM BN +=是定值.。

南通中考数学试题及答案

南通中考数学试题及答案

南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √2B. 0.5C. 0.33333...D. -3答案:A2. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. 2答案:A4. 一个圆的半径是5,求这个圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B5. 一个等差数列的首项是2,公差是3,第10项是多少?A. 29B. 32C. 35D. 38答案:A6. 一个长方体的长、宽、高分别是2、3和4,求这个长方体的体积。

A. 24B. 36C. 48D. 60答案:A7. 一个分数的分子是5,分母是8,化简后是多少?A. 5/8B. 1/2C. 1/16D. 5/16答案:B8. 一个多项式P(x) = 3x^2 - 5x + 2,求P(2)的值。

B. 4C. 8D. 12答案:B9. 一个函数f(x) = 2x + 3,当x=1时,f(x)的值是多少?A. 5B. 6C. 7D. 8答案:A10. 一个方程2x - 5 = 9的解是:A. x = 3B. x = 4C. x = 5D. x = 6答案:C二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。

答案:812. 一个数的绝对值是5,这个数可以是______或______。

答案:5,-513. 一个圆的直径是10,这个圆的周长是______π。

14. 一个三角形的内角和等于______度。

答案:18015. 一个等腰三角形的底边长是6,两腰边长是5,这个三角形的面积是______。

答案:1516. 一个函数y = kx + b的斜率是2,当x=0时,y=1,求k和b的值。

答案:k=2,b=117. 一个方程3x + 7 = 22,解得x=______。

江苏省南通市中考数学真题试题(带解析)

江苏省南通市中考数学真题试题(带解析)

一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上.1.(2010江苏南通,1,3分)-4的倒数是A.4 B.-4 C.14D.-14【分析】要求-4的倒数,只要用1除以-4即得.【答案】D【涉及知识点】倒数的概念.【点评】本题属于最基础的试题,主要考查学生对有关概念的了解,考查知识点一般比较单一,意在让同学们下笔即可得分.【推荐指数】★2.(2010江苏南通,2,3分)9的算术平方根是A.3 B.-3 C.81 D.-81【分析】先求出9的平方根,进而得到9的算术平方根.【答案】A【涉及知识点】平方根与算术平方根的概念.【点评】本题是考查平方根与算术平方根的概念,同学们只要能了解这两个概念及其区别与联系,下笔即可获得分数,但要注意看清题目的,避免胡乱下笔导致丢分.【推荐指数】★3.(2010江苏南通,3,3分)用科学记数法表示0.000031,结果是A.3.1×10-4 B.3.1×10-5C.0.31×10-4D.31×10-6【分析】用科学记数法表示0.000031结果,即写成a×10n的形式,此时的a=3.1,n=-5,即n的绝对值等于3前面0的个数(含小数点前的0).【答案】B【涉及知识点】用科学记数法表示较小的数.【点评】本题考查的是用科学记数法表示较小的数,求解时只要弄清楚其意义,即可正确解答.【推荐指数】★4.(2010江苏南通,4,3在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠【分析】要使被开方式有意义,只要满足代数式3x -6≥0,解其不等式即得.【答案】C【涉及知识点】确定字母有取值范围.【点评】本题是考查二次根式中的被开方式的字母取值范围.确定有关字母的取值范围也是中考的常见题型,求解时一要弄清代数式的结构特征,二要及时将问题转化.【推荐指数】★5.(2010江苏南通,5,3分)如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC=30°,则AC 的长是A .1B CD .2【分析】由AB 是⊙O 的直径可知∠C =90°,于是,利用含30°角的直角三角形的性质求解. 【答案】D【涉及知识点】直径所对的圆周角是直角以及含30°角的直角三角形的性质.【点评】本题虽说是一道比较简单的选择题,但却综合运用了圆与直角三角形的有关知识. 【推荐指数】★★6.(2010江苏南通,6,3分)某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件【分析】由100件产品中5件不合格,可以先求出样本中产品的合格率,进而再估算总体的合格产品数.【答案】A【涉及知识点】用样本去估算总体.【点评】本题意在考查同学们对统计中简单知识的掌握与运用.【推荐指数】★★7.(2010江苏南通,7,3分)关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <2【分析】先求出用字母m 表示的方程的解,再由正实数的概念构造出一元一次不等式求解.(第5题)·O ABC【答案】C【涉及知识点】含有字母系数的一元一次方程的解问题、正实数的概念以及不等式.【点评】本题涉及几个简单的知识点,求解时一定注意看清题目,及时地将问题加以转化. 【推荐指数】★★8.(2010江苏南通,8,3分)如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是A .20B .15C .10D .5【分析】利用题设条件,结合菱形的性质可直接求解. 【答案】D【涉及知识点】菱形的性质、等边三角形.【点评】本题是一道比较基础的几何知识的运用题,求解时只要能对菱形的有关性质和等边三角形的相关性质的理解即可获得答案.【推荐指数】★★9.(2010江苏南通,9,3分) 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm【分析】依题意,要求点D 所转过的路径长,即求以点O 为圆心,OD 为半径的半圆周长. 【答案】C【涉及知识点】平行四边形的性质、旋转、圆的周长公式.【点评】本题虽说是一道比较基础的题目,但涉及了好几个知识点,求解时一定要贴近题目要求.【推荐指数】★★10.(2010江苏南通,10,3分)在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有A .5个B .4个C .3个D .2个【分析】可通过画出简单地草图,注意点Q 在y 轴上.【答案】B【涉及知识点】平面直角坐标系、等腰三角形.【点评】求解有关等腰三角形问题时一定要注意分情况讨论. 【推荐指数】★★BACD(第8题) (第9题)ABCDO二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.11.(2010江苏南通,11,3分)如果正比例函数y kx=的图象经过点(1,-2),那么k 的值等于▲.【分析】由于正比例函数y kx=的图象经过点(1,-2),于是点(1,-2)满足y=kx,进而利用待定系数法求解.【答案】-2【涉及知识点】【点评】本题是一道简单的数学思想方法的运用.【推荐指数】★12.(2010江苏南通,12,3分)若△ABC∽△DEF,△ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为▲.【分析】由相似三角形的性质直接获解.【答案】1:2【涉及知识点】相似三角形的性质.【点评】本题是一道基础题,意在要求同学们掌握相似三角形的性质的运用.【推荐指数】★13.(2010江苏南通,13,3分)分解因式:2ax ax-=▲.【分析】直接提取公因式分解.【答案】ax(x-1)【涉及知识点】因式分解的概念及基本方法.【点评】本题意在考查同学们对因式分解一般步骤的熟练程度.【推荐指数】★14.(2010江苏南通,14,3分)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为▲.【分析】6个数字,其中的偶数有3,进而利用概率的意义求解.【答案】1 2【涉及知识点】概念的意义.【点评】本题是一道简单的概念计算问题,求解时只要分清事件发生的可能结果,运用概率的定义即得.【推荐指数】★15.(2010江苏南通,15,3分)在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为▲.【分析】由M(-4,-1)变换到M ′(-2,2)可知平移的规律是先向右平移2个单位,再向上平移3个单位,从而可以进一步求解.【答案】(2,4)【涉及知识点】平面直角坐标系、点坐标的变换.【点评】平面直角坐标系中图形的变换问题是中考的一个热点之一,求解时一定要从点坐标的特点出发,从中探索到变换的一般规律.【推荐指数】★★16.(2010江苏南通,16,3分)如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D ′、C ′的位置,并利用量角器量得∠EFB=65°,则∠AED′等于▲度.【分析】由折叠的原理可知,∠DEF=∠D′EF,又ED∥FC,所以∠DEF=∠EFB,而∠EFB=65°,得∠DEF=65°,即∠D′ED=130°,因为∠∠AED′+∠D′ED=180°,AED′=50°.【答案】50【涉及知识点】矩形、折叠的性质、平行线的性质、互为邻补角.【点评】对于折叠的问题中中考中常见的题型,求解时一定注意灵活运用所学知识.【推荐指数】★★17.(2010江苏南通,17,3分)如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= ▲.【分析】要求tan∠ADN的值,过N作NE⊥AD于E,由于M、N两点关于对角线AC对称,DM=1,即BN=DM=1,而AD=4,所以AE=1,即DE=4-1=3,在Rt△DEN中,AN=AB=4,DE=3,所以tan∠AND=ENDE=43.【答案】4 3【涉及知识点】轴对称的性质,锐角三角形函数. A(第17题)BDM N C··(第16题)【点评】本题是知识的具体运用,求解时一定要理解题意,寻求结论中所需要的元素. 【推荐指数】★★★18.(2010江苏南通,18,3分)设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = ▲ .【分析】由于x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,所以有x 1x 2=-3,x 22+4x 2-3=0,即x 22=3-4x 2,所以2x 1(x 22+5x 2-3)+a =2转化为2x 1(3-4x 2+5x 2-3)+a =2,即2x 1x 2+a =2,所以2×(-3)+a =2,解得a =8.【答案】8【涉及知识点】一元二次方程根的概念、一元二次方程根与系数的关系,一元一次方程. 【点评】本题要求利用一元二次方程根的概念和一元二次方程根与系数的关系求解问题.【推荐指数】★★★三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.19.(2010江苏南通,19,10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69a a a a-÷-++.【分析】(1)(-4)2=16,(π-3)0=1,-23=-8,5-=5.(2)先对第一个分式分解因式,同时约分,并对第二个分式通分,进而作进一步地运算.【答案】(1)解:原式=16+1-8-5=4. (2)解:原式=2(3)(3)333(3)333a a a a a a a a a a +---÷=⋅=++-+. 【涉及知识点】实数的有关概念及运算.【点评】注意求解本题时应弄清楚实数、分式的有关概念、性质以及运算法则和顺序. 【推荐指数】★★20.(2010江苏南通,20,8分) 如图,⊙O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点,CD =6cm ,求直径AB 的长.OBADC· P (第20题)【分析】由条件可得到△BOC 为等边三角形,进而由垂径定理结合锐角三角函数求解;或构造直角三角形,利用勾股定理求解.【答案】方法一:连结OC ,BC ,则OC =OB∵PC 垂直平分OB , ∴OC =BC . ∴OC =OB =BC .∴△BOC 为等边三角形. ∴∠BOC =60° 由垂径定理,CP =12CD =3cm 在Rt△BOC 中,CPOP=tan∠COP∴OP∴AB =2OB =4OP方法二:解:连OC ,设OP 为x ,则OC 为2x ,直径AB 为4x , 在Rt△COP 中,222PC OP OC +=即()22232+=x x ,解得3=x所以直径AB 为34cm.【涉及知识点】与圆有关的概念.【点评】垂径定理是圆中核心定理之一,也是中考的常考知识点. 【推荐指数】★★21.(2010江苏南通,21,9分)如图,直线y x m =+与双曲线ky x =相交于A (2,1)、B 两点. (1)求m 及k 的值;(2)不解关于x 、y 的方程组,,y x m ky x =+⎧⎪⎨=⎪⎩直接写出点B 的坐标; (3)直线24y x m =-+经过点B 吗?请说明理由.【分析】(1)将点A 分别代入两个解析式直接求解即求.(2)利用双曲线关于原点的对称性求得.(3)由(1)和(2),将x =-1, m =-1代入24y x m =-+,看y 的值是否等于-2.(第21题)。

最新江苏省南通市中考数学试卷原卷附解析

最新江苏省南通市中考数学试卷原卷附解析

江苏省南通市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若⊙A 和⊙B 相切, 它们的半径分别为8cm 和2 cm. 则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对2. 已知β为锐角,且tan β=3.387 ,则β等于( )A .73033′B . 73027′C . 16027′D . 16021′3.已知x y >,则32x -与32y -的大小关系是( ) A .3232x y -≥- B .3232x y ->- C .3232x y -<-D .3232x y -≠- 4.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h .已知北京到上海的铁路全长为1462km .设火车原来的速度为xkm/h ,则下面所列方程正确的是( )A .2)251(14621462=+-%x x B .21462)251(1462=--x x % C .21462251462=-x x %D .22514621462=-x x % 5.若x=2是方程k (2x-1)=kx+7 的解,则k 的值为( )A .1B .-1C .7D .-7 6.把长为 6个单位长度的木条的左端放在数轴上表示-10 和-11 的两点之间,则木条的右端会落在( )A . -4~3之间B . -6~5之间C .-5~4之间D .-7~6之间 7.若|2|a =-,|4|b =--,0c =,下列用不等号连结正确的是( )A .a b c >>B .a c b >>C .b a c <<D .b c a >> 8.某种话梅原零售价每袋3元,凡购买2袋以上(包括2袋),商场推出两种优惠销售办法.第一种:1袋话梅按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量话梅的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买话梅( )A .4袋B .5袋C .6袋D .7袋 二、填空题9.在一间黑屋子里,用一盏白炽灯如图方式分别照射一个球,一个圆锥和一个空心圆柱,它们在地面上的影子形状分别是 、 、 . 10.抛物线y =3x 2-6的顶点坐标是 .(0,-6)11.如图,小亮从A 点出发前进10m ,向右转15,再前进10m ,又向右转15,…,这样一直走下去,他第一次回到出发点A 时,一共走了 m .12.如图,已知AB ⊥l 于F ,CD 与l 斜交于F ,求证:AB 与CD 必相交.证明:(反证法)假设AB 与CD 不相交,则∥ ,∵AB ⊥l ,∴CD ⊥ .这与直线CD 与l 斜交矛盾.∴假设AB 与CD 不相交 ,∴AB 与CD .13. 已知35x y -=,用含有x 的代数式表示y 为y = .14.正八边形绕着它的中心,至少旋转 度才能与其本身重合.15.如图,∠A=80°,∠2=130°,则∠l= .16.用科学记数法表示数0.000045= .17.答1在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是_______.18.某篮球运动员在一场比赛中,投 3 分球和2分球的命中的可能性分别为 30% 和 80%,他投了 10 次3分球,投了 15 次2分球,则他本场比赛共得了 分.19.22 2(2)-+-= , -8÷2×21=______ ,425-= . 20.体育老师手上有九年级同学立定跳远的成绩,现要求对体育成绩分性别进行统计,并统计出成绩为优秀的人数,良好的人数,合格的人数,不合格的人数.(1)在这里涉及 个数据,分别是 ;(2)统计时,把表格中“A 、B 、C 、D 、E 、F 、G 、H 、I 、J 、K 、L ”所代表的要统计项目的具体内容填写完整.C D A E F G H I J K L B21.数轴上有一个点到表示-7和2的点的距离相等,则这个点所表示的数是_________.三、解答题22.先确定图中路灯灯泡的位置,再根据小浩的影子画出表示小浩身高的线段.23.如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.FE D C B A24.为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50•名学生进行了调查,根据调查所得的数据制成如图的频数分布直方图.(1)补全该图,并写出相应的频数;(2)求第1组的频率;(3)求该班学生每周做家务时间的平均数;(4)你的做家务时间在哪一组内?请用一句话谈谈你的感受.25.先化简: (2x-1)2-(3x+1)(3x-1)+(5x+1)(x-1),再选取一个你喜欢的数代替x求值. 26.先化简下面的代数式再求值:a(1-a)+(a-1)(a+1),其中3.27.将一根 20m 长的铝合金,裁成 3m 长和2m长两种规格,怎样裁利用率最高?你有几种裁法?28.某校阶梯教室第一排有a个座位,后面每一排比前排多2个座位.⑴求第三排有几个座位;⑵写出第n排的座位数;⑶当a=25,n=16时,求出对应的座位数.29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.04L/km,则这次养护共耗油多少升?30.比较a与a 的大小.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.A5.C6.C7.B8.A二、填空题9.圆,圆,圆环10.11.24012.AB ,CD ,l ,不成立,必相交13.35x -14.4515.130°16.4.5×10-517. 2518. 3319.0,-2,25- 20.(1)4 优秀人数、良好人数、合格人数、不合格人数 (2)A :成绩、等级8:人数C :男生 D :女生E 、I :优秀 F 、J :良好G 、K :合格 H 、L :不合格21.-2.5三、解答题22.如上图所示.P 为路灯灯泡,AB 即为小浩的身高.23.(1)证明:∵四边形ABCD 是平行四边形,∴CD AB CD AB =,//,∴FCE ABE CFE BAE ∠=∠∠=∠,.∵E 为BC 的中点,∴EC EB =,∴FCE ABE ∆≅∆∴CF AB =.(2)解:当AF BC =时,四边形ABFC 是矩形.理由如下: ∵CF AB CF AB =,//, ∴四边形ABFC 是平行四边形.∵AF BC =,∴四边形ABFC 是矩形24.(1)图略,频数为14,(2)频率为0.52,(3)1.24,(4)略25.-8x+1,略26. a-1=3.27.共有三种不同的截法,能使利用率最高,分别是裁成 3m 长的2 根,2m 长的 7 根;3m 长的 4 根,2m 长的4根;3m 长的 6 根,2m 长的 1 根28.(1)a+4;(2)a+2n-2;(3)55个29.(1)在出发点的向东方向,距出发点15千米;(2)3.88升30.分情况:a>0 ,a=0,a<0 进行讨。

江苏省南通市2001-2019年中考数学试题分类解析专题1:实数

江苏省南通市2001-2019年中考数学试题分类解析专题1:实数

2001-2019年江苏南通中考数学试题分类解析汇编(12专题)专题1:实数一、选择题1. (2001江苏南通3分)用小数表示3×10-2,结果为【】A、-0.03B、-0.003C、0.03D、0.003【答案】C。

【考点】负整指数幂。

【分析】根据负整指数幂直接计算得:3×10-2=3×0.01=0.03。

故选C。

2.(江苏省南通市2002年3分)16的平方根是【】A.±4 B.±2 C.4 D. 2【答案】A。

【考点】平方根。

【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的一个平方根。

∵(±4)2=16,∴16的平方根是±4。

故选A。

3. (江苏省南通市2003年3分)的结果是【】A.3 B.7 C.-3 D.-7【答案】A。

【考点】实数的运算【分析】先根据算术平方根、立方根的定义去掉根号,从而化简再相减:原式=5-2=3。

故选A。

4. (江苏省南通市2003年3分)《2002年南通市国民经济和社会发展统计公报》显示,2002年南通市完成国内生产总值890.08亿元,这个国内生产总值用科学记数法表示为【】A.8.9008×108元 B.8.9008×109元 C.8.9008×1010元 D.8.9008×1011元【答案】C。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

890.08亿=89008000000一共11位,从而890.08亿=89008000000=8.9008×109。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
考点:三视图,圆柱 解析:由几何体的三视图可知,该几何体为圆柱
主视图 左视图
俯视图
14.如图,在 Rt△ ABC 中,CD 是斜边 AB 上的中线,已知 CD=2,AC=3,则 cos A 的值是 ▲ .
考点:直角三角形斜边中线等于斜边的一半,锐角三角函数 解析:直角三角形斜边中线等于斜边的一半,CD=2,则 AB=4,
在不透明的袋子里装有红色、绿色小球各一个,除颜色外无其他差别.随机摸出一个小
球后,放回并摇匀,再随即摸出一个,求两次都摸到红色小球的概率.
考点:树形图,随机事件等可能性
解析:画出树形图如下:
第一次

绿
第二次 红
绿红
绿
从树形图看出,所有可能出现的结果共有 4 种,两次都摸到红色小球的情况有 1 种.
两次都摸到红色小球的概率为 1 4
顺时针旋转 90 得到 DCF ,若 CE=1cm,则 BF= ▲ cm
考点:角平分线的性质,勾股定理,正方形
解析:BE 平分 DBC,则 GE=CE=1cm
DG=GE=1cm; DE 2 cm, BC=CD= ( 2 1)cm;BF ( 2 2) cm
(第 17 题)
18.平面直角坐标系 xOy 中,已知点 (a, b) 在直线 y 2mx m2 2 ( m 0 )上,且满足
23.(本小题满分 8 分)
列方程解应用题:
某列车平均提速 60km/ h ,用相同的时间,该列车提速前行使 200km,提速后比提速平均速度.
6
考点:二元一次方程应用题
解析:设提速前该列车的平均速度为 v km/ h ,行使的相同时间为 t h
由题意得:
vt (v
A.
6 x2
考点:分式的减法
B. 6 x
C. 5 2x
解析: 3 2 = 1 ,选 D x xx
4. 下面的几何图形:
D. 1 x
等腰三角形
正方形
正五边形

其中是轴对称图形但不是中心对称图形的共是
A. 4 个
B.3 个
C.2 个
D.1 个
考点:轴对称图形,中心对称图形,正方形、正多边形和等腰三角形的性质 解析:是轴对称图形但不是中心对称图形有等腰三角形、正五边形,共两个,选 C 5. 若一个多边形的外角和与它的内角和相等,则这个多边形是
26.(本小题满分 10 分)
平 面 直 角 坐 标 系 xOy 中 , 已 知 抛 物 线 y x2 bx c , 经 过 (1, m2 2m 1) 、
(0, m2 2m 2) 两点,其中 m 为常数. (1)求 b 的值,并用含 m 的代数式表示 c ; (2)若抛物线 y x2 bx c 与 x 轴有公共点,求 m 的值;
a2 b2 2(1 2bm) 4m2 b 0 ,则 m ▲ .
考点:配方法;求根公式
4
解析:已知点 (a, b) 在直线 y 2mx m2 2 ( m 0 )上,b 2ma m2 2 (*)代

a2
b2
2(1
2bm)
4m2
b
0
整理得:(b
2m)2
(a
m)2
0
解得
a b
直角三角形 ABC,使点 C 在第一象限, BAC 90 .设点 B 的横坐标为
x ,点 C 的纵坐标为 y ,则表示 y 与 x 的函数关系的图像大致是
(第 9 题)
2
考点:函数图象,数形结合思想
解析:过 C 点作 CD y 轴,易得 ACD≌ BAO全等; AD OB
设点 B 的横坐标为 x ,点 C 的纵坐标为 y ;则 y 1 x ( x 0 );
补全统计图如下: 重量(kg)
1600 1400 1200 1000
800 600 400 200
0 苹果 西瓜 桃子 香蕉 品种
(第 21 题)
1600 1400 1200 1000 800 600
400 200
0 苹果 西瓜 桃子 香蕉 品种
果果 (第 21 题)
(3)90
22.(本小题满分 7 分)
的高是 4 cm,则该圆锥的底面周长是
A. 3 cm
B. 4 cm
C. 5 cm
D. 6 cm
考点:扇形、弧长公式,圆周长,圆锥侧面展开图
(第 8 题)
解析:圆锥底面圆的半径为 52 42 3 cm,该圆锥的底面周长是 6 cm
9. 如图,已知点 A(0,1) ,点 B 是 x 轴正半轴上一动点,以 AB 为边作等腰
1
A.三角形 考点:多边形的内角和
B.四边形
C.五边形
D.六边形
解析:多边形的外角和为 360 ,多边形的外角和与它的内角和相等,则内角和为 360 ,为
四边形,选 B
6. 函数 y= 2x 1 中,自变量 x 的取值范围是 x 1
A. x 1 且 x 1 B. x 1 且 x 1
2
2
C. x 1 且 x 1 D. x 1 且 x 1
m 2m
回代到
(*)式得 2m 2m2 m2 2 ,即 m2 2m 2 0 ,解得 m 1 3 ,又 m 0 ,
m 3 1
三、解答题(本大题共 10 小题,共 96 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字 说明、证明过程或演算步骤)
19.(本小题满分 10 分)
(2)由(1)得: OBC 为等边三角形, 又⊙ O 的半径为 2 cm,BC 2cm , CE 1 AB 1cm
2 过点 O 作 OE BC 于 E,易得:四边形 AOED为矩形,ED AO 2cm, 则 CD EDCE 1cm
25.(本小题满分 8 分)
如图,将□ ABCD的边 AB 延长到点 E ,使 BE AB,连接 DE ,交 BC 于点 F . (1)求证: BEF≌ CDF ; (2)连接 BD、CE,若 BFD 2A ,求证四边形 BECD是矩形.
考点:全等三角形的判定,平行四边形的性质,矩形的判定
解析:
7
第 25 题图
(1) 四边形 ABCD是平行四边形, BE//CD , AB CD 又 BE AB,BE CD ,由 BE//CD 得 CDF BEF,DCF EBF BEF≌ CDF
(2)由(1)得: BE//CD 且 BE CD 四边形 BECD是平行四边形 四边形 ABCD是平行四边形,A FCD , 又 BFD 2A 且 BFD FCD FDC,FCD FDC FD FC, DE BC , 四边形 BECD是矩形
(2)若⊙ O 的半径为 2 cm,求线段 CD 的长.
考点:圆的切线,角平分线,直线平行,三角形的内角和。 解析:(1) ∵OC 平分∠AOB,∴∠AOC=∠COB, ∵AM 切⊙O 于点 A,即 OA⊥AM,又 BD⊥AM, ∴OA∥BD,∴∠AOC=∠OCB
B O
C
A DM (第 24 题)
又∵OC=OB,∴∠OCB=∠B,∴∠B=∠OCB=∠COB= 60 AOB 120
y x 1( x 0 ),故选 A
(第 9 题)
10.平面直角坐标系 xOy 中,已知 A(1,0) 、B(3,0) 、C(0,1) 三点,D(1, m) 是一个动点,

ACD周长最小时, ABD的面积为
A. 1 3
B. 2 3
考点:最短路径问题
C. 4 3
D. 8 3
解析: D 为直线 x 1上一动点,点 A、B 关于直线 x 1对称,连接 BC
考点:幂的运算
解析: x5 x2 = x7
12.已知,如图,直线 AB,CD 相交于点 O,OE⊥AB,∠ COE=60°,则∠ BOD 等于 ▲ 度.
考点:相交线,对顶角,垂直,余角
E
解析:OE⊥AB,∠ COE=60°,则∠ BOD=∠ AOC= 30
C
A
O
B
(第 12 题) D
13.某几何体的三视图如图所示,则这个几何体的名称是 ▲ .
cos A = AC 3 AB 4
A D
B
C
(第 14 题)
15.已知一组数据 5,10,15, x ,9 的平均数是 8,那么这组数据的中位数是 ▲ . 考点:平均数,中位数
解析: 5 10 15 x 9 8 , x 1,这组数据的中位数是 9 5
16.设一元二次方程 x2 3x 1 0 的两根分别是 x1 , x2 ,则 x1 x2 (x22 3x2 ) = ▲ 考点:一元二次方程根的概念,一元二次方程根与系数的关系 解析: x2 是一元二次方程 x2 3x 1 0 的根, x22 3x2 1 0 , x22 3x2 1, 则 x1 x2 (x22 3x2 ) x1 x2 3 17.如图,BD 为正方形 ABCD 的对角线,BE 平分 DBC,交 DC 于点 E,将 BCE 绕点 C
南通市 2016 年初中毕业、升学考试试卷解

数学
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项的字母代号填涂在答.题.卡.相.应.位.置.上)
1. 2 的相反数是
A. 2
考点:相反数的定义
B. 1 2
C. 2
D. 1 2
200, 60)t
300
解得:
v t
120 5 3
答:提速前该列车的平均速度为120 km/ h
24.(本小题满分 9 分)
已知:如图, AM 为⊙ O 的切线,A 为切点,过⊙ O 上一点 B 作 BD AM 于点 D ,
BD 交⊙ O 于 C, OC 平分 AOB
(1)求 AOB的度数;
(1)计算 2 (1)2 (5)0 4 ;
相关文档
最新文档