八年级数学因式分解与分式
第二章分式与分式方程单元教学设计(五四制)数学八年级上册
第七节
2.3 分式的加减法3
1.能准确进行分式的混合运算, 体会类比的数学方法.
2.能解决一些简单的实际问题
3.进一步体会分式的模型思想
同步及训练案
按考点复习,做到一讲一练
训练案
第八节
2.3 分式的加减法4
1.能准确进行分式的混合运算, 体会类比的数学方法.
2.能解决一些简单的实际问题
3.进一步体会分式的模型思想.
3练案
按考点复习,做到一讲一练
训练案
第五节
2.3 分式的加减法1
1.掌握同分母分式的加减法运算法则, 能熟练进行同分母分式的
加减运算
2.理解算理, 进一步发展学生的运算能力.
3.能解决一些与分式加减相关的简单的实际问题, 激发学习数
学的热情。
同步及训练案
按考点复习,做到一讲一练
训练案
第六节
2.3 分式的加减法2
1.知道通分、 最简公分母的概念;
2.掌握异分母分式的加减法运算法则, 能熟练进行异分母分式
的加减运算
3.理解算理, 进一步发展学生的运算能力.
4.能解决一些与分式加减相关的简单的实际问题, 激发学习数
学的热情。
同步及训练案
按考点复习,做到一讲一练
学情分析
经过前期的学习,学生初步养成了自主探究意识。一方面,学生己经学习了整式及加减运算和整式的乘除,已经具备了研究分式的基础知识与方法;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。另外。在学习本之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路已经比较熟悉,分式方程的未知数在分母中,它的解法比以前学过的整式方程复杂。随着问题复杂性的增加,学生需要不断地提高认识问题的水平,这里包括提高对新事物与已热悉的事物之间的联系的认识,这种认识水平的提高,是构建知识体系的过程中不可决少的。
八年级数学因式分解和分式方程经典试题汇总
因式分解与分式方程经典试题1.=++-==+xy y x xy y x 6,2,222则已知 。
=-+--==-3223,23b ab b a a ab b a 多项式,已知 。
2.是,则的边长,且是ABC ac c ab b ABC c b a ∆+=+∆22,,22 三角形。
3.),另一个因式为的一个因式是(的多项式,若关于3122--+x ax x x 。
4.的值为的一个因式,则是已知k x kx x 1232+++ 。
(这里我需要指出的是2x 项的系数为两因式x 项系数的乘积,常数项是两因式常数的乘积,因此我们可以设另一因式为)4(+kx ,然后利用对应项系数相等求得)多项式m a a +-322含有因式3-a ,求m 并分解多项式。
5.的可能的值可以是因式,则能用完全平方公式分解若多项式m mx x 42++ 。
6.已知36442++mx x 是完全平方式,那么m 的值是 。
7.若整式142++Q x 是完全平方式,请你写出一个满足条件的单项式Q 是 。
8.的值是,则能分解为若m n x x mx x ))(3(152++-+ 。
9.多项式229)1(b ab k a +-+能用乘法公式因式分解,则k= 。
10.若))(2)(4(24b x x x a x -++=-,则=a ,=b 。
11.若=+++-=+yxy x y xy x y x 35322211,则 。
12.已知=++++=+22222211yxy y xy y x y x ,则 。
13.若=+---=-abb a b ab a b a 7222411,则 。
14.已知=++=+n m m n n m n m ,求711 。
15.已知,,124-=-=+xy y x 求1111+++++y x x y 的值。
16.,则,设060.22=-+>>ab b a b a 的值等于a b b a -+ 。
17.若=+=+-2221013aa a a ,则 。
八年级数学重点知识点(全)
初二数学知识点因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法就是相反的两个转化、2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”、3.公因式的确定:系数的最大公约数·相同因式的最低次幂、注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3、4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序就是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式、6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子瞧作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项、7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q就是完全平方式 ”、分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式、2.有理式:整式与分式统称有理式;即、3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义、4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单、5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解、6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式、7.分式的乘除法法则:、8.分式的乘方:、9.负整指数计算法则:(1)公式: a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式: (-1)-2=1, (-1)-3=-1、10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母、11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂、12.同分母与异分母的分式加减法法则:、13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x就是未知数,a与b就是用字母表示的已知数,对x来说,字母a就是x的系数,叫做字母系数,字母b就是常数项,我们称它为含有字母系数的一元一次方程、注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数、14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就就是解含有字母系数的方程、特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0、15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程就是整式方程、16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根、17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根就是增根,这时原方程无解;若值不为零,求出的根就是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能就是原方程的增根、18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序、数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根就是x);注意:(1)a叫x的平方数,(2)已知x 求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算、2.平方根的性质:(1)正数的平方根就是一对相反数;(2)0的平方根还就是0;(3)负数没有平方根、3.平方根的表示方法:a的平方根表示为与、注意:可以瞧作就是一个数,也可以认为就是一个数开二次方的运算、4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为、注意:0的算术平方根还就是0、5.三个重要非负数: a2≥0 ,|a|≥0 ,≥0 、注意:非负数之与为0,说明它们都就是0、6.两个重要公式:(1) ; (a≥0)(2) 、7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根就是x)、注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方、8.立方根的性质:(1)正数的立方根就是一个正数;(2)0的立方根还就是0;(3)负数的立方根就是一个负数、9.立方根的特性:、10.无理数:无限不循环小数叫做无理数、注意:π与开方开不尽的数就是无理数、11.实数:有理数与无理数统称实数、12.实数的分类:(1)(2)、13.数轴的性质:数轴上的点与实数一一对应、14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示、注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:、三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线、(如图)几何表达式举例: (1) ∵AD平分∠BAC∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD就是角平分线2.三角形的中线定义:在三角形中,连结一个顶点与它的对边的中点的线段叫做三角形的中线、(如图) 几何表达式举例:(1) ∵AD就是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD就是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点与垂足间的线段叫做三角形的高线、(如图) 几何表达式举例:(1) ∵AD就是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD就是ΔABC的高※4.三角形的三边关系定理:三角形的两边之与大于第三边,三角形的两边之差小于第三边、(如图) 几何表达式举例: (1) ∵AB+BC>AC∴……………(2) ∵ AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、几何表达式举例:(1) ∵ΔABC就是等腰三角形(如图) ∴ AB = AC(2) ∵AB = AC∴ΔABC就是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形、(如图) 几何表达式举例:(1)∵ΔABC就是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC就是等边三角形7.三角形的内角与定理及推论:(1)三角形的内角与180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于与它不相邻的两个内角的与;(如图) ※(4)三角形的一个外角大于任何一个与它不相邻的内角、(1) (2) (3)(4) 几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90°∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴…………………8.直角三角形的定义:有一个角就是直角的三角形叫直角三角形、(如图) 几何表达式举例:(1) ∵∠C=90°∴ΔABC就是直角三角形(2) ∵ΔABC就是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰几何表达式举例:(1) ∵∠C=90° CA=CB直角三角形、(如图) ∴ΔABC就是等腰直角三角形(2) ∵ΔABC就是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等、(如图) 几何表达式举例:(1) ∵ΔABC≌ΔEFG∴ AB = EF ………(2) ∵ΔABC≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”、 (如图)(1)(2) (3) 几何表达式举例:(1) ∵ AB = EF∵∠B=∠F又∵ BC = FG∴ΔABC≌ΔEFG(2) ………………(3)在RtΔABC与RtΔEFG中∵ AB=EF又∵ AC = EG∴RtΔABC≌RtΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相几何表达式举例: (1)∵OC平分∠AOB等;(如图)(2)到角的两边距离相等的点在角平分线上、(如图)又∵CD⊥OA CE⊥OB∴ CD = CE (2) ∵CD⊥OA CE⊥OB 又∵CD = CE∴OC就是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线、(如图) 几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF就是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理: (1)线段垂直平分线上的点与这条线段的两个端点的距离相等;(如图)(2)与一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上、(如图) 几何表达式举例:(1) ∵MN就是线段AB的垂直平分线∴ PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都就是60°、(如图)(1) (2) (3) 几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC就是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形就是等边三角形;(如图)(3)有一个角等于60°的等腰三角形就是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边就是斜边的一半、(如图)(1)(2)(3)(4) 几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC就是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC就是等边三角形(4) ∵∠C=90°∠B=30°∴AC =AB17.关于轴对称的定理(1)关于某条直线对称的两个图形就是全等形;(如图) 几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称(2)如果两个图形关于某条直线对称,那么对称轴就是对应点连线的垂直平分线、(如图)∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方与等于斜边c的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1) ∵ΔABC就是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC就是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线就是斜边的一半;(如图)(2)如果三角形一边上的中线就是这边的一半,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1)∵ΔABC就是直角三角形∵D就是AB的中点∴CD = AB(2) ∵CD=AD=BD∴ΔABC就是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空与选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数、二常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之与、2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而八年级数学重点知识点(全)第三个交点可在三角形内,三角形上,三角形外、注意:三角形的角平分线、中线、高线都就是线段、3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA、4.三角形能否成立的条件就是:最长边<另两边之与、5.直角三角形能否成立的条件就是:最长边的平方等于另两边的平方与、6.分别含30°、45°、60°的直角三角形就是特殊的直角三角形、7.如图,双垂图形中,有两个重要的性质,即:(1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A 、8.三角形中,最多有一个内角就是钝角,但最少有两个外角就是钝角、9.全等三角形中,重合的点就是对应顶点,对应顶点所对的角就是对应角,对应角所对的边就是对应边、10.等边三角形就是特殊的等腰三角形、11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明、12.符合“AAA”“SSA”条件的三角形不能判定全等、13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法、14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线、15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图、16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该就是几何基本作图、17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图、※18.几何重要图形与辅助线:(1)选取与作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;八年级数学重点知识点(全)③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图、(2)已知角平分线、(若BD就是角平分线)①在BA 上截取BE=BC构造全等,转移线段与角;②过D点作DE∥BC交AB于E,构造等腰三角形、(3)已知三角形中线(若AD就是BC的中线)①过D点作DE∥AC交AB于E,构造中位线 ; ②延长AD到E,使DE=AD连结CE构造全等,转移线段与角;③∵AD就是中线∴SΔABD= SΔADC(等底等高的三角形等面积)(4) 已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全等三角形; ②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形、八年级数学重点知识点(全) (5)其它①作等边三角形ABC一边的平行线DE,构造新的等边三角形; ②作CE∥AB,转移角; ③延长BD与AC交于E,不规则图形转化为规则图形;④多边形转化为三角形; ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形; ⑥若a∥b,AC,BC就是角平分线,则∠C=90°、。
八年级数学上册第十五章 第3节 分式方程 解答题专题训练 8含答案解析.doc
八年级数学上册第十五章第3节分式方程解答题专题训练(8)一、解答题1.解方程:^1x + 3 2x + 62.(1)分解因式:x(a-b)+y(a-b)3 4(2)解分式方程: ----- =—X-1 X3.在争创全国卫生城市的活动中,我县一青年突击队决定清运一重达50吨的垃圾,请根据以下信息,帮小刚计算青年突击队的实际清运速度。
(1)清运开工后,由于附近居民主动参加义务劳动,清运速度比原计划提高了一倍。
(2)结果比原计划提前了 2小时完成任务。
4.超市老板大宝第一次用1000元购进某种商品,由于畅销,这批商品很快售完,第二次去进货时发现批发价上涨了 5元,购买与第一次相同数量的这种商品需要1250元.(1)求第一次购买这种商品的进货价是多少元?(2)若这两批商品的售价均为32元,问这两次购进的商品全部售完(不考虑其它因素)能赚多少元钱?5.解方程:2-x 1 ,(1) ---- + ---- = 1x — 3 3 — x3 x + 2八(2) --------------- = 0%-1 %(% -1)6.根据以下信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg产品,可列方程为—小惠同学设甲型机器人搬运800kg 所用时间为v小时,可列方程为一(2)请你按照(1)中小华同学的解题思路,写出完整的解答过程.7.计算:(1)sin30° - (2)解方程;8.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、8两种消毒10.解方程: 6 x 2-l液,其中A 消毒液的单价比3消毒液的单价多40元,用3200元购买3消毒液的数量是用 2400元购买A 消毒液数量的2倍.(1) 求两种消毒液的单价;(2) 学校准备用不多于6800元的资金购买A 、3两种消毒液共70桶,问最多购买A 消 毒液多少桶?9. 甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5 米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1) 求甲、乙每天各可完成多少米道路施工工程?(2) 后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了 500米,甲比乙多 承包了 100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若 正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人 同时完工,请通过计算给出调整方案.3x+2y = -12x + 3y = T-9 1 4(2) -- = ------------- .4 — x 2 + 尤 2 — x11. 某商厦分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果进价的1.2倍,所以进回的甲糖果的重量比乙糖果少10kg.(1) 甲、乙两种糖果的进价分别是多少?(2) 若两种糖果的销售利润率均为10%,则两种糖果的售价分别是多少?(3) 如果将两种糖果混合在一起销售,总利润不变,那么混合后的糖果单价应定为多少 元?12. 王老师从学校出发,到距学校2000m 的某商场去给学生买奖品,他先步行了 800m后,换骑上了共享单车,到达商场时,全程总共刚好花了 15min .已知王老师骑共享单车 的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).(1) 求王老师步行和骑共享单车的平均速度分别为多少?(2) 买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王 老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?13. 某市从今年1月1日起调整居民用水价格,每立方米水费上涨S ,小丽家去年12月 的水费是15元,而今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12 月的用水量多5m 3,求小丽家今年7月的用水量.14. 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较 拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比 走路钱一少用10分钟到达.求小明走路线一时的平均速度./ 、 “、e x 1 2x + 215. (1)解万程:一+1 = ---------X+1 X, 7 3(2)解方程: -- C ------ 2x+x x-x记者:你们是用9天完成4800长的高架桥铺设任务的?眼(2)解方程:土 +: = 上19. (1)化、1 4 (1) ----- =—;x-2 x2 -4 (2) 1 -----3x-l 6x-222 . (本题共10当a为何值x-1x-2x-2_ 2x+ax + 1 (x-2)(x+ l)的解是负16.“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。
八年级数学(竞赛)因式分解
第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。
八年级因式分解分式与分式方程
因式分解、分式复习一、知识梳理知识点一 因式分解1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ; 完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项“ 1”易漏掉.分解不彻底,如保留中括号形式,还能继续分解等【课前练习】1.下列各组多项式中没有公因式的是( )A .3x -2与 6x 2-4x B.3(a -b )2与11(b -a )3C .mx —my 与 ny —nxD .ab —ac 与 ab —bc 2. 下列各题中,分解因式错误的是( ) 3. 列多项式能用平方差公式分解因式的是()22222222.949 .949.949 .(949)A x y B x y C x y D x y ---+-+4. 分解因式:x 2+2xy+y 2-4 =_____5. 分解因式:(1)()229=n ;()222=a(2)22x y -= ;(3)22259x y -= ; (4)22()4()a b a b +--;(5)以上三题用了 公式222222.1(1)(1) ;.14(12)(12).8164(98)(98);.(2)(2)(2)A x x x B y y y C x y x y x y D y x y x y x -=+--=+--=+---=-+-【经典考题剖析】 例 1. 分解因式:(1)33x y xy -;(2)3231827x x x -+;(3)()211x x ---;(4)()()2342x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。
初中数学八年级上册第十五章《整式的乘除与因式分解》简介
新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
八年级数学竞赛专题训练试卷(二)因式分解与分式
八年级数学竞赛专题训练试卷(二)因式分解与分式一、选择题(每小题4分,共40分)1.已知a 2+b 2+4a -2b+5=0,则a b a b+-的值为 ( ) (A)3 (B)13 (C)-3 (D)13- 2.a 4+4分解因式的结果是 ( )(A)(a 2+2a -2)(a 2-2a+2) (B)(a 2+2a -2)(a 2-2a -2)(C)(a 2+2a+2)(a 2-2a -2) (D)(a 2+2a+2)(a 2-2a+2)3.下列五个多项式:①ab -a -b -1;②(x -2) 2+4x ;③3m(m -n)+6n(n -m );④x 2-2x -1;⑤6a 2-13ab+6b 2,其中在有理数范围内可以进行因式分解的有 ( )(A)1个 (B)2个 (C)3个 (D)4个4.a ,b ,c 为△ABC 的三边且3a 3+6a 2b -3a 2c -6abc=0,则△ABC 的形状为 ( )(A)直角三角形 (B)等腰三解形(C)等腰直角三角形 (D)等腰三角形或直角三角形5.a ,b ,c 是正整数,a >b >c ,且a 2-ab -ac+bc=7,则b -c 等于 ( )(A)1 (B)6 (C)土6 (D)1或76.若x 取整数,则使分式6321x x +-的值为整数的x 的值有 ( ) (A)3个 (B)4个 (C)6个 (D)8个7.已知x 2+ax -18能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )(A)3个 (B)4个 (C)6个 (D)8个8.若a=20092+20092×20102+20102,则n ( )(A)是完全平方数,还是奇数 (B)是完全平方数。
还是偶数(C)不是完全平方数,但是奇数 (D)不是完全平方数,但是偶数9.设有理数a ,b ,c 都不为零,且a+b+c=0,则222222222111b c a c a b a b c +++-+-+- 的值是 ( )(A)正数 (B)负数 (C)零 (D)不能确定10.当x 分别取值12007,12006,12005,…,12,1,2,…,2005,2006,2007时,计算代数式2211x x -+的值,将所得的结果相加,其和等于 ( ) (A)-1 (B)1 (C)0 (D)2007二、填空题(每小题4分,共40分)11.因式分解:4a 2-4b 2+4bc -c 2=_________.12.已知a 、b 为实数,且ab=1,a ≠1,设11a b M a b =+++,1111N a b =+++,则M -N 的值等于_________.13.若多项式x 3+ax 2+bx 能被(x -)和(x+4)整除,那么a=________,b=_________.14.整数a ,b 满足6ab -9a+10b=303,则a+b=_________.15.k 取________时,方程2211x k x x x x x+-=++会产生增根. 16.已知15a b +=-,a+3b=1,则22331295a ab b +++的值为__________. 17.分解因式:x 4-x 3+4x 2+3x+5=________.18.分解因式:x 2-2xy -8y 2-x -14y -6=_________.19.分解因式:24x 2-1507x -337842=_________.20.已知abc=1,a+b+c=2,a 2+b 2+c 2=3,则111111ab c bc a ca b +++-+-+-的值为_________.三、解答题(21题满分10分,22题、23题每题满分15分,共40分)21.解方程:(1)(x+1)(x+3)(x+5)(x+7)+15=0.(2)()()()()()111511291012x x x x x x ++=+++++…+.22.已知:3(a2+b2+c2)=(a+b+c) 2,求证:a=b=c.23.小明在计算中发现:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,…由此他做出猜想:四个连续正整数的乘积加1必为平方数.你认为他的猜想正确吗?试说明理由.参考答案一、选择题1.B 2.D 3.B 4.B 5.B 6.B 7.C 8.A 9.C 10.C二、填空题11.原式=(2a+2b -c)(2a -2b+c).12.M -N=0.13.a=1,b=12.14.a+b=15.15.k=-1或k=2时方程有增根.16.0.17.x 4-x 3+4x 2+3x+5=(x 2+x+1)(x 2-2x+5).18.原式=x 2-(2y+1)x -(8y 2+14y -6)=x 2-(2y+1)x -2(4y+3)(y+1)=(x -4y -3)(x+2y+2).19.原式=(3x+274)(8x -1233).20.23- 三、解答题21.(1)原方程可整理成:(x 2+8x+7)(x 2+8x+15)+15=0.将(x 2+8x)看成整体,则有(x 2+8x) 2+22(x 2+8x)+120=0.∴(x 2+8x+12)(x 2+8x+10)=0,即x 2+8x+12=0或x 2+8x+10=0,解得x 1=-2,x 2=-6,34x =-44x =-(2)原方程可写成:1111115112x+91012x x x x x -+-+-=++++…+, 即1151012x x -=+,去分母,整理得x 2+10x 24=0, 解得x 1=12,x 2=2,且经检验是原方程的解.22.∵3(a 2+b 2+c 2)=(a+b+c) 2,∴3a 2+3b 2+3c 2=a 2+b 2+c 2+2ab+26c+2ca .∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(c 2-2ca+a 2)=0.即(a -b ) 2+(b -c) 2+(c -a) 2=0.∴a -b =0且b -c=0且c -a=0,∴a =b =c .23.猜想正确.设四个连续正整数为n ,(n+1),(n+2),(n+3)(其中n 为正整数), n(n+1)(n+2)(n+3)+l=(n 2+3n)(n 2+3n+2)+1=(n 2+3n) 2+2(n 2+3n)+1=[(n 2+3n)+1] 2∴四个连续正整数的乘积加1必为平方数.。
因式分解、分式和分式方程(易错必刷44题18种题型)—八年级数学下学期期末(北师大版)(解析版)
因式分解和分式方程(易错必刷44题18种题型专项训练)➢因式分解的意义 ➢因式分解-运用公式法 ➢提公因式法与公式法的综合运用 ➢因式分解-十字相乘法等 ➢分式有意义的条件 ➢分式有意义的条件 ➢分式的值➢因式分解-提公因式法➢因式分解-运用公式法➢因式分解-分组分解法➢因式分解的应用➢分式的值为零的条件➢分式的值为零的条件➢ 分式的基本性质 ➢分式的加减法 ➢分式的化简求值➢分式方程的解 ➢解分式方程➢分式方程的增根 ➢分式方程的应用一.因式分解的意义(共5小题)1.若多项式x 2﹣ax ﹣1可分解为(x ﹣2)(x +b ),则a +b 的值为( )A .2B .1C .﹣2D .﹣1【答案】A【解答】解:∵(x ﹣2)(x +b )=x 2+bx ﹣2x ﹣2b =x 2+(b ﹣2)x ﹣2b =x 2﹣ax ﹣1,∴b ﹣2=﹣a ,﹣2b =﹣1,∴b =0.5,a =1.5,∴a+b=2.故选:A.2.下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)【答案】D【解答】解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;B2x2+2x=2x2(1+)中不是整式,故B错误;C(x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;D x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【答案】C【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m=,n=.【答案】见试题解答内容【解答】解:根据题意得:x2﹣8x+m=(x﹣10)(x+n)=x2+(n﹣10)x﹣10n∴n﹣10=﹣8,﹣10n=m解得m=﹣20,n=2;故应填﹣20,2.5.仔细阅读下面的例题,并解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解法一:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n,∴解得n=﹣7,m=﹣21.∴另一个因式为x﹣7,m的值为﹣21.解法二:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)∴当x=﹣3时,x2﹣4x+m=(x+3)(x+n)=0即(﹣3)2﹣4×(﹣3)+m=0,解得m=﹣21∴x2﹣4x+m=x2﹣4x﹣21=(x+3)(x﹣7)∴另一个因式为x﹣7,m的值为﹣21.问题:仿照以上一种方法解答下面问题.(1)若多项式x2﹣px﹣6分解因式的结果中有因式x﹣3,则实数p=.(2)已知二次三项式2x2+3x﹣k有一个因式是2x+5,求另一个因式及k的值.【答案】见试题解答内容【解答】解:(1x+a,得x2﹣px﹣6=(x﹣3)(x+a)则x2﹣px﹣6=x2+(a﹣3)x﹣3a,∴,解得a=2,p=1.故答案为:1.(2)设另一个因式为(x+n),得2x2+3x﹣k=(2x+5)(x+n)则2x2+3x﹣k=2x2+(2n+5)x+5n∴,解得n=﹣1,k=5,∴另一个因式为(x﹣1),k的值为5.二.公因式(共1小题)6.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【答案】D【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.三.因式分解-提公因式法(共2小题)7.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.40【答案】C【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是()A.(x﹣y)(﹣a﹣b+c)B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c)D.﹣(y﹣x)(a+b﹣c)【答案】B【解答】解:﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y),=a(y﹣x)﹣b(y﹣x)﹣c(x),=(y﹣x)(a﹣b﹣c).故选:B.四.因式分解-运用公式法(共2小题)9.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.【答案】见试题解答内容【解答】解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.10.分解因式:(4a+b)2﹣4(a+b)2.【答案】3(2a+b)(2a﹣b).【解答】解:(4a+b)2﹣4(a+b)2=(4a+b)2﹣(2a+2b)2=(4a+b+2a+2b)(4a+b﹣2a﹣2b)=(6a+3b)(2a﹣b)=3(2a+b)(2a﹣b).五.提公因式法与公式法的综合运用(共3小题)11.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2 C.ab(a+1)(a﹣1)D.ab(a2﹣1)【答案】C【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.12.因式分解:(1)4m2n﹣8mn2﹣2mn(2)m2(m+1)﹣(m+1)(3)4x2y+12xy+9y(4)(x2﹣6)2+2(x2﹣6)﹣15.【答案】见试题解答内容【解答】解:(1)4m2n﹣8mn2﹣2mn=2mn(2m﹣4n﹣1);(2)m2(m+1)﹣(m+1)=(m+1)(m2﹣1)=(m+1)2(m﹣1);(3)4x2y+12xy+9y=y(4x2+12x+9)=y(2x+3)2;(4)(x2﹣6)2+2(x2﹣6)﹣15=(x2﹣6﹣3)(x2﹣6+5)=(x2﹣9)(x2﹣1)=(x+3)(x﹣3)(x+1)(x﹣1).13.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解下列问题:(1)因式分解:9+6(x﹣y)+(x﹣y)2=.(2)因式分解:(a+b)(a+b﹣8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.【答案】见试题解答内容【解答】解:(1)将“x﹣y”看成整体,令x﹣y=A,则原式=A2+6A+9=(A+3)2再将“A”还原,得:原式=(x﹣y+3)2故答案为:(x﹣y+3)2;(2)因式分解:(a+b)(a+b﹣8)+16.将“a+b”看成整体,令a+b=A,则原式=A(A﹣8)+16=A2﹣8A+16=(A﹣4)2再将“A”还原,得:原式=(a+b﹣4)2;(3)证明:(n+1)(n+2)(n+3)(n+4)+1=(n+1)(n+4)•(n+3)(n+2)+1=(n2+5n+4)(n2+5n+6)+1令n2+5n=A,则原式=(A+4)(A+6)+1=A2+10A+25=(A+5)2=(n2+5n+5)2∵n为正整数,∴n2+5n+5是整数,∴式子(n+1)(n+2)(n+3)(n+4)+1的值是某一个整数的平方.六.因式分解-分组分解法(共1小题)14.已知整数a,b满足2ab+4a=b+3,则a+b的值是()A.0或﹣3B.1C.2或3D.﹣2【答案】A【解答】解:由2ab+4a=b+3,得:2ab+4a﹣b﹣2=1∴(2a﹣1)(b+2)=1,∵2a﹣1,b+2都为整数,∴或,解得或,∴a+b=0或﹣3.故选:A.七.因式分解-十字相乘法等(共2小题)15.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为()A.1B.5C.﹣1D.﹣5【答案】A【解答】解:∵多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,﹣6=﹣3×2.∴2x2+ax﹣6=(2x﹣3)(x+2)=2x2+x﹣6.∴a=1.故选A.16.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.7【答案】A【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.八.因式分解的应用(共8小题)17.已知x2+2x﹣1=0,则x4﹣5x2+2x的值为()A.0B.﹣1C.2D.1【答案】A【解答】解:∵x2+2x﹣1=0,∴x2=1﹣2x,x4﹣5x2+2x=(x2)2﹣5x2+2x=(1﹣2x)2﹣5(1﹣2x)+2x=1﹣4x+4x2﹣5+10x+2x=4x2+8x﹣4=4(1﹣2x)+8x﹣4=4﹣8x+8x﹣4=0,故选:A.18.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=()A.1B.3C.5D.不能确定【答案】B【解答】解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,⇒ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,⇒ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,⇒ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选:B.19.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是()A.61,63B.63,65C.65,67D.63,64【答案】B【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.20.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.2022【答案】A【解答】解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.21.已知x2+x+1=0,则x2019+x2018+x2017+…+x+1的值是()A.0B.1C.﹣1D.2【答案】B【解答】解:原式=(x2019+x2018+x2017)+(x2016+x2015+x2014)+•+(x3+x2+x)+1=x2017(x2+x+1)+x2014(x2+x+1)+•+x(x2+x+1)+1=0+0+0+•+0+1=1.故选:B.22.已知a+b=2,则a2﹣b2+4b的值为.【答案】见试题解答内容【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.23.a,b,c是△ABC的三边,若(a2+b2)(a﹣b)=c2(a﹣b),则△ABC的形状是三角形.【答案】见试题解答内容【解答】解:∵(a2+b2)(a﹣b)=c2(a﹣b)∴(a﹣b)(a2+b2﹣c2)=0∴a﹣b=0或a2+b2﹣c2=0,①当a﹣b=0时,解得:a=b,此时△ABC是等腰三角形;②直角三角形,理由如下,如图所示:在△ABC中,设AB=c,AC=b,BC=a,∠ACB=90°,四个全等直角三角拼接成边长为c的大正方形,边长为a﹣b的小正方形,由面积的和差得:S正方形ABMN=S正方形CDEF+4•S△ABC,∴=a2﹣2ab+b2+2ab=a2+b2∴a2+b2﹣c2=0即△ABC是直角三角形;故答案为等腰或直角.24.阅读材料:若m2﹣2mn+2n2﹣4n+4=0,求m,n的值.解:∵m2﹣2mn+2n2﹣4n+4=0,∴(m2﹣2mn+n2)+(n2﹣4n+4)=0,∴(m﹣n)2+(n﹣2)2=0,∴(m﹣n)2=0,(n﹣2)2=0,∴n=2,m=2.(1)a2+b2+6a﹣2b+10=0,则a=,b=.(2)已知x2+2y2﹣2xy+8y+16=0,求xy的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣8b+18=0,求△ABC的周长.【答案】见试题解答内容【解答】(1)解:由:a2+b2+6a﹣2b+10=0,得:(a+3)2+(b﹣1)2=0,∵(a+3)2≥0,(b﹣1)2≥0,∴a+3=0,b﹣1=0,∴a=﹣3,b=1.故答案为:﹣3;1.(2)由x2+2y2﹣2xy+8y+16=0得:(x﹣y)2+(y+4)2=0∴x﹣y=0,y+4=0,∴x=y=﹣4∴xy=16.答:xy的值为16.(3)由2a2+b2﹣4a﹣8b+18=0得:2(a﹣1)2+(b﹣4)2=0,∴a﹣1=0,b﹣4=0,∴a=1,b=4;已知△ABC的三边长a、b、c都是正整数,由三角形三边关系知c=4,∴△ABC的周长为9.九.分式有意义的条件(共1小题)25.当x=时,分式无意义.【答案】见试题解答内容【解答】解:根据题意得:x(x﹣1)=0,解得x1=0,x2=1.故答案为:0或1.十.分式的值为零的条件(共1小题)26.如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或0【答案】B【解答】解:根据题意,得:|x|﹣1=0且x+1≠0,解得,x=1.故选:B.十一.分式的值(共1小题)27.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1【答案】D【解答】解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.十二.分式的基本性质(共3小题)28.若=2,则=.【答案】见试题解答内容【解答】解:由=2,得x+y=2xy则===.故答案为.29.若把分式中的x和y都变为原来的3倍,那么分式的值()A.变为原来的3倍B.变为原来的C.变为原来的D.不变【答案】B【解答】解:用3x和3y代替式子中的x和y得:,则分式的值变为原来的.故选:B.30.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.十三.分式的加减法(共2小题)31.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【答案】B【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.32.分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和;(2)若分式的值为整数,求x的整数值.【答案】见试题解答内容【解答】解:(1)由题可得,==2﹣;(2)===x﹣1+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或0.十四.分式的化简求值(共1小题)33.先化简,再求值:,然后从0,1,2,3四个数中选择一个恰当的数代入求值.【答案】,﹣.【解答】解:原式=(﹣)•=•=,∵x≠3,0,2,∴当x=1时,原式==﹣.十五.分式方程的解(共4小题)34.若关于x的分式方程﹣1=无解,则m的值.【答案】见试题解答内容【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.35.若方程的根为正数,则k的取值范围是()A.k<2B.﹣3<k<2C.k≠﹣3D.k<2且k≠﹣3【答案】A【解答】解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),3x+3k=2x+6,3x﹣2x=6﹣3k,x=6﹣3k,∵方程的根为正数,∴6﹣3k>0,解得:k<2,∵分式方程的解为正数,x+3≠0,x+k≠0,x≠﹣3,k≠3,即k的范围是k<2,故选:A.36.已知关于x的分式方程=1的解是非负数,则m的取值范围是.【答案】见试题解答内容【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.37.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为.【答案】﹣4.【解答】解:方程的解为x=,根据题意,得,解得a<1,a为奇数且a≠﹣5.∵不等式的解集为﹣5≤x<,且只有3个整数解,∴﹣3<≤﹣2,解得﹣7<a≤1.综上:﹣7<a<1,a为奇数且a≠﹣5,∴a=﹣3,﹣1.∵﹣3﹣1=﹣4,∴符合条件的所有整数a的和为﹣4故答案为:﹣4.十六.解分式方程(共2小题)38.解方程:(1);(2).【答案】(1)无解;(2)x=﹣2.【解答】解:(1),原分式方程可化为:+2=,﹣3+2(x﹣4)=1﹣x,﹣3+2x﹣8=1﹣x,2x+x=1+8+3,3x=12,x=4,检验:把x=4代入(x﹣4)=0,∴原分式方程无解;(2),原分式方程可化为:﹣1=,1+4x﹣(x﹣2)=﹣3,1+4x﹣x+2=﹣3,4x﹣x=﹣3﹣1﹣2,3x=﹣6,x=﹣2,检验:把x=﹣2代入(x﹣2)≠0,∴原分式方程解为x=﹣2.39.代数式的值比代数式的值大4,则x=.【答案】见试题解答内容【解答】解:由题意得:﹣=4,x+2=4(2x﹣3),解得:x=2,检验:当x=2时,2x﹣3≠0,∴x=2是原方程的根,故答案为:2.十七.分式方程的增根(共1小题)40.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣1【答案】B【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.十八.由实际问题抽象出分式方程(共1小题)41.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.【答案】见试题解答内容【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.十九.分式方程的应用(共3小题)42.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【答案】见试题解答内容【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了a天,乙加工了b天,则由题意得,由①得b=75﹣1.5a③将③代入②得150a+120(75﹣1.5a)≤7800解得a≥40,当a=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.43.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【答案】见试题解答内容【解答】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件由题意得:5000≤100y+90(55﹣y)≤5050解得5≤y≤10∴共有6种选购方案.44.某项工程,乙队单独完成所需天数是甲队单独完成所需天数的1.5倍;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天刚好如期完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为2.5万元,乙队每天的施工费用为2万元,工程预算的施工费用为160万元.①若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?②若要求施工总费用不超预算又要如期完工,问甲工程队至少需要施工几天?【答案】见试题解答内容【解答】解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要1.5x天.根据题意,得:(10+30)+×30=1,解得x=60.经检验,x=60是原方程的根.∴1.5x=60×1.5=90.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)①设甲、乙两队合作完成这项工程需要y天,(+)y=1,解得:y=36,36×(2.5+2)=162(万元),∵162>160,∴不够,需追加162﹣160=2(万元),答:不够用,需追加预算2万元;②甲工程队需要施工a天,乙工程队需要施工b天,根据题意得:,由①得:2b=180﹣3a③,把③代入②得:2.5a+180﹣3a≤160,a≥40,∴甲工程队至少需要施工40天.。
因式分解与分式
因式分解练习题例1、下列各式的变形中,是否是因式分解,为什么?(5个式子均不是) (1)()()1122+-+=+-y x y x y x ; (2)()()2122--=+-x x x x ; (3)232236xy xy y x ⋅=;(4)()()()()221a y x a x y y x --=-+-;(5) .96962⎪⎭⎫ ⎝⎛++=++x x xy y xy y x1. 提公因式法——形如ma mb mc m a b c ++=++()2. 运用公式法——平方差公式:a b a b a b 22-=+-()(),完全平方公式:a ab b a b 2222±+=±()()2222222a b c ab bc ca a b c +++++=++3. 十字相乘法 x p q x pq x p x q 2+++=++()()()()()()22a p q ab p qb a pb a qb +++⋅=++4. 分组分解法 (适用于四次或四项以上,①分组后能直接提公因式 ②分组后能直接运用公式)。
例2、因式分解(本题只给出最后答案) (1) ;823x x -2(2)(2)x x x =+-(2) .9622224y y x y x +-222(3)y x =-(3) ;6363223abc c a b a a --+3()(2)a a c a b =-+(4) ().4222222a c b c b -+-()()()()b c a b c a b c a b c a =-+++--+--(5) 121164+--n n a b a =14(2)(2)n a b a b a -+- (6) ;361222422y xy y y x +--2(6)(6)y x y x y =-+--(7) .2939622++-+-y x y xy x(31)(32)x y x y =----例3、因式分解(本题只给出答案)1、()();742--+x x =(3)(5)x x +-2、()();563412422++---x x x x22(44)(45)x x x x =----3、()()()()566321+--+-x x x x22(44)(45)x x x x =----4、().566)67(22+--+-x x x x22(44)(45)x x x x =----小结: 1、 因式分解的意义左边 = 右边 ↓ ↓多项式 整式×整式(单项式或多项式)2、 因式分解的一般步骤3、多项式有因式乘积项 → 展开 → 重新整理 → 分解因式因式分解1、;25942n m -2、;4482--a a3、()();44y x y x --+4、;12222c b a ab +--5、()();2222b a cd d c ab +++6、;4215322222y a xy a x a --7、;186323b ab b a b a -+-8、.41422a b a -+-9、()().20158122-++-a a a(1)如果(-1-b )·M =b 2-1,则M =_______.(2)若x 2+ax +b 可以分解成(x +1)(x -2),则a =_______,b =_______. (3)若9x 2+2(m -4)x +16是一个完全平方式,则m 的值为_______. (4)分解因式a 2(b -c )-b +c =_______. (5)分解因式xy -2y -2+x =_______. (6)在实数范围内分解因式x 3-4x =_______.分式和分式方程知识点总结1.(2014•温州,第4题4分)要使分式有意义,则x 的取值应满足( )2.(2014•毕节地区,第10题3分)若分式的值为零,则x 的值为( )3. ( 2014•福建泉州,第10题4分)计算:+= .4. (2014•泰州,第14题,3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式+的值等于 . 5.(2014年山东泰安,第21题4分)化简(1+)÷的结果为 .6.先化简,再求值:(a 2b +ab )÷,其中a =+1,b =﹣1.7解方程: 730100-=x x. 8 解分式方程:+=1.二、填空题1. (2013浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2013福建福州,14,4分)化简1(1)(1)1m m -++的结果是 . 3. (2013山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
初中数学因式分解方法
初中数学因式分解方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种因式分解的方法叫做运用公式法。
二、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例:分解因式x3.-2x,2-xx3,-2x2,-x=x(x2-2x-1)三、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2反过来。
就可以得到:a^2+2ab+b^2=(a+b)^2和a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、因式分解,必须分解到每一个多项式因式都不能再分解为止。
四、分式的乘除法1、把一个分式的分子与分母的公因式约去,叫做分式的约分。
2、分式进行约分的目的是要把这个分式化为最简分式。
3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。
4、分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2,(x-y)^3=-(y-x)^3。
八年级上数学整式的乘除与因式分解基本知识点
整式的乘除与因式分解基本知识点一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a __________________210242333222=-++-+-x xy x y x xy xy y x2、同底数幂的乘法法则:a m ·a n =a m+n (m ,n 是正整数). 同底数幂相乘,底数不变,指数相加.例如:________3=⋅a a ;________32=⋅⋅a a a3、幂的乘方法则:(a m )n =a mn (m ,n 是正整数).幂的乘方,底数不变,指数相乘. 例如:_________)(32=a ;_________)(25=x ;()334)()(a a =4、积的乘方的法则:(a b)m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a 5、同底数幂的除法法则:a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n). 同底数幂相除,底数不变,指数相减. 规定:10=a例如:________3=÷a a ;________210=÷a a ;________55=÷a a 6、单项式乘法法则y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅- 7、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.y x y x 2324÷ ()xy y x 6242-÷ ()()58103106⨯÷⨯8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.)(c b a m ++ )532(2+--y x x )25(32b ab a ab +--9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)6)(2(-+x x )12)(32(+--y x y x ))((22b ab a b a +-+10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.()x x xy ÷+56; ()()a ab a 4482-÷-()b a b a b a 232454520÷- c c b c a 2121222÷⎪⎭⎫ ⎝⎛-11、整式乘法的平方差公式:(a +b)(a -b)=a 2-b 2.两个数的和与这两个数的差的积,等于这两个数的平方差.例如:(4a -1)(4a+1)=___________; (3a -2b )(2b+3a )=___________;()()11-+mn mn = ; =--+-)3)(3(x x ;12、整式乘法的完全平方公式:(a +b)2=a 2+2a b+b 2,(a -b)2=a 2-2a b+b 2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 例如:()____________522=+b a ; ()_______________32=-y x()_____________22=+-ab ; ()______________122=--m二、因式分解: 1、提公因式法:4y xy - 32x x + x 2+12x 3+4x )1()1(-+-a n a m 2、公式法.:(1)、平方差公式:))((22b a b a b a -+=-12-x 2294b a - 22)(16z y x +- 22)2()2(b a b a --+(2)、完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-442+-m m 2269y xy x ++ 924162++x x 36)(12)(2++-+b a b a3、分组分解法:1a b ab +++ ab -c +b -ac a 2-2ab +b 2-c 24、“十字相乘法”:即式子x 2+(p+q)x+pq 的因式分解. x 2+(p+q)x+pq=(x+p)(x+q).x 2+7x +6 (2)、x 2-5x -6 (3)、x 2-5x +6整式的乘法[同底数幂的乘法]a m ·a n =a m+n (m 、n 都是正整数) [幂的乘方](a m )n =a mn (m ,n 都是正整数) [积的乘方](ab)n =a n b n (n 是正整数) [单项式乘以单项式]单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. [单项式乘以多项式]单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. [多项式乘以多项式]多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.平方差公式[平方差公式] (a +b)(a -b)=a 2-b 21. 公式的结构特征:⑴左边是两个二项式相乘,这两个二项式中,有一项完全相同,另一项互为相反数.⑵右边是这两个数的平方差,即完全相同的项与互为相反数的项的平方差(同号项2-异号项2).2. 公式的应用:⑴公式中的字母a ,b 可以表示具体的数,也可以表示单项式或多项式,只要符合公式的结构特征,就可以用此公式进行计算.⑵公式中的a b22是不可颠倒的,注意是同号项的平方减去异号项的平方,还要注意字母的系数和指数.⑶为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数.如:(a+b)( a - b)= a2 -b2↓↓↓↓↓↓计算:(1+2x)(1-2x)= ( 1 )2-( 2x )2 =1-4x2[完全平方公式]两数和(或差)的平方,等于它们的平方和加(或减)它们的积的2倍.公式特征:左边是一个二项式的平方,右边是一个三项式(首平方,尾平方,二倍乘积在中央).公式变形:(a+b)2=(a-b)2+4ab a2 + b2 = (a+b)2-2ab(a-b)2=(a+b)2-4ab a2 + b2 = (a-b)2+2ab(a+b)2- (a-b)2=4ab[公式的推广] (a+b+c)2=a2+b2+c2+2ab+2bc+2ac[同底数幂的除法]a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).a0=1(a≠0)任何非零数的零次幂是1.[单项式除以单项式]单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.[多项式除以单项式]多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.[因式分解]把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解(或分解因式). [提公因式法]ac +bc=(a +b )c[公式法][十字相乘法]一、训练平台1.下列各式中,计算正确的是( ) ×27=28×22=210+26=27+26=2122.当x=23时,3(x+5)(x-3)-5(x-2)(x+3)的值等于( )239 D.239 3.已知x-y=3,x-z=21,则(y-z)2+5(y-z)+425的值等于( )A.425 B.25 254.设n 为正整数,若a 2n =5,则2a 6n -4的值为( )D.不能确定5.(a +b)(a -2b)= .6.(2a +2= .7.(a +4b)(m+n)= . 8.计算.(1)(2a -b 2)(b 2+2a )= ;(2)(5a -b)(-5a +b)= .9.分解因式. (1)1-4m+4m 2;(2)7x 3-7x.10.先化简,再求值.[(x-y)2+(x+y)(x-y)]÷2x ,其中x=3,y=. 二、探究平台1.分解因式(a -b)(a 2-a b+b 2)-a b(b-a )为( ) A.(a -b)(a 2+b 2)B.(a -b)2(a +b)C.(a -b)3(a -b)32.下列计算正确的是( ) ÷a 2=a 4(a ≠0) ÷a 4=a (a ≠0) ÷a 6=a 3(a ≠0)D.(a 2b)3=a 6b3.下列各题是在有理数范围内分解因式,结果正确的是( )=(-x+4)(-x-4) +x 3n =x n (2+x 3)41=41(1+2x)(1-2x) 4.分解因式:-a 2+4a b-4b 2= .5.如果x 2+2(m-3)x+25能用公式法分解因式,那么m 的值是 .6.(3x 3+3x)÷(x 2+1)= . . 8.计算.(1)12345678921234567890123456789112345678902⨯-;(2)20032002200220002002220022323-+-⨯-.9.分解因式.(1)x(m-x)(m-y)-m(x-m)(y-m); (2)x 4-81x 2y 2.10.112--x x +x(1+x1),其中x=2-1.三、交流平台1.一条水渠其横断面为梯形,如图15-23所示,根据图中的长度求出横断面面积的代数式,并计算当a=2,b=时的面积.2.已知多项式x3+kx+6有一个因式x+3,当k为何值时,能分解成三个一次因式的积?并将它分解.3.如果x+y=0,试求x3+x2y+xy2+y3的值.4.试说明无论m,n为任何有理数,多项式4m2+12m+25+9n2-24n的值为非负数.第十六章分式知识点和典型例习题【知识网络】【思想方法】1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2-b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数. (1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值. (四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a (2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值. 题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根. 题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a xbb x a a ≠+=+. 3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
八年级数学(上册)-因式分解的方法汇总
(3)原式=
x4 2x2 1 2x(x2 1) x2 (x2 1)2 2x(x2 1) x2 (x2 x 1)2
方法八:待定系数法
对所给的数学问题,根据已知条件和要求,先设出问题 的多项式表达形式(含待定的字母系数),然后利用已 知条件,确定或消去所设待定系数,使问题获解的这种 方法叫待定系数法,用待定系数法解题目的一般步骤是:
解法三:将三次项 x3 拆成 9x3 8x3
解法四:添加两项 x2 x2
对应练习
分解因式:
(1)x9 x6 x 3 3
(2)(m2 1)(n2 1) 4mn
方法七:配方法
把一个式子或一个式子的部分写成完全 平方式或几个完全平方式的和的形式, 这种方法叫配方法。配方法的关键是通 过拆项或添项,将原多项式配上某些需 要的项,以便得到完全平方式 ,然后在 此基础上分解因式。
(1999x 1)(x 1999)
(5)原式= (x y)2 2(x y) 2xy(x y) 4xy (xy)2 2xy 1
(x y xy)2 2(x y xy) 1 (x y xy 1)2 (x 1)2 ( y 1)2
因式分解的方法
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法; 七、配方法; 八、待定系数法。
方法一:提分因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察等分解的代数式,尽可能地找出它 们的分因数(式)
方法二:公式法
=a(m+n)+b(m+n)
=(a+b)(m+n)
2024-2025学年鲁教版(五四制)八年级数学上册期中考试知识梳理课件
知识点6:同分母分式的加减
同分母分式相加减,分母不变,把分子相加减;
上述法则可用式子表为:
知识点7:异分母分式的加减
异分母分式相加减,先通分,变为同分母的分式,再加减.
上述法则可用式子表为:
题型五 已知分式恒等式,确定分子或分母
x3
A
B
x 1 x 1 x 1 x 1
【点拨】本题主要考查了分式的性质,熟练掌握分式的性质是解题的关
键.根据分式的分子分母都乘以或除以一个不为0的整数,分式的值不变,
即可得到答案.
知识点3:分式的约分,最简分式
与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变
分式的值,这样的分式变形叫做分式的约分。如果一个分式的分子与分母没有相同
B.-x2+y2
C.-x2-y2
)
D.(-9 x)2-(-y)2
1 2 2 1 2 2 1
1
x -y =( x) -y =( x+y)( x-y),故不符合题意;
4
2
2
2
B.-x2+y2= y2-x2 = (y +x)( y-x),故不符合题意;
C.-x2-y2=-(x2+y2),不符合平方差公式的特点,故符合题意;
故选:B.
【点拨】此题考查了因式分解的意义,分解因式就是把一个多项式化为几个整式的积的形
式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.
题型二 根据因式分解的结果求参数
2
若 -3-10 = ( + ) ( + ),则 + =
八年级数学重点知识点(全)初二数学
5.等腰三角形的定义:
初二数学知识点
几何表达式举例:
有两条边相等的三角形叫做等腰三角形.
A
(1) ∵ΔABC 是等腰三角形
(如图)
∴ AB = AC
(2) ∵AB = AC
B
C
∴ΔABC 是等腰三角形
6.等边三角形的定义:
几何表达式举例:
有三条边相等的三角形叫做等边三角形.
A
(如图)
(1)∵ΔABC 是等边三角形 ∴AB=BC=AC
A
E
B
C
F
G
11.全等三角形的判定: “SAS”“ASA”“AAS”“SSS”“HL”. (如图)
A
E
B
C
F
G
(1)(2)
A
E
C
B
G
F
(3)
几何表达式举例: (1) ∵ΔABC≌ΔEFG
∴ AB = EF ……… (2) ∵ΔABC≌ΔEFG
∴∠A=∠E ………
几何表达式举例: (1) ∵ AB = EF
式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求
化为最简分式.
7.分式的乘除法法则: a c = ac , a c = a d = ad . b d bd b d b c bc
8.分式的乘方: a n b
=
an bn
.(n为正整数).
9.负整指数计算法则:
∴EF⊥AB OA=OB (2) ∵EF⊥AB OA=OB
∴EF 是 AB 的垂直平分线
14.线段垂直平分线的性质定理及逆定理:
几何表达式举例:
(1)线段垂直平分线上的点和这条线段的 两个端点的距离相等;(如图)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学因式分解与分式测试题
一、选择题(每小题3分,共54分)
1.下列各式中从左到右的变形,是因式分解的是(
)
A .(a +3)(a -3)=a 2
-9 B.x 2
+x -5=(x -2)(x +3)+1 C.a 2
b +ab 2
=ab (a +b ) D.x 2
+1=x (x +x
1)
2.多项式xyz z
y x z
y x 6822
226
43可提出的公因式是(
)
A.
2
2
2
z y x B.
xyz C. xyz 2 D.2
2
2
2z
y x 3、已知的值是则
2
2
,4,6xy y
x xy
y
x
(
)A. 10 B.—10 C. 24 D.
—24
4.若多项式281n
x 能分解成2
492323x
x x ,那么n=( )
A 、2 B
、4 C
、6 D
、8 5、两个连续奇数是自然数)的平方差是和x x x (1212(
)
A. 16的倍数
B.6的倍数
C.8
的倍数 D.3的倍数
6、
等于2009
2008
)
2(2
(
)
A. 20082
B.
2009
2
C. 2008
2
D.2009
2
7、下列各式中,不能用完全平方公式分解的是( )
A. xy y
x
22
2
B.
xy y
x
22
2
C.
xy y
x
22
2
D.xy
y
x
22
2
8、无论的值都是取何值,多项式、13642
2
y x y
x y x (
)
A. 正数
B. 负数
C.
零 D.
非负数9、若0y
x
xy
,则分式
x
y
11(
)
A 、
xy
1 B 、x y C 、1 D
、-1
10、三角形的三边a 、b 、c 满足2
2
3
0a b c
b c b
,则这个三角形的形状是
( )
A 、等腰三角形
B 、等边三角形
C 、直角三角形
D 、等腰直角三角形
11.化简
a b a b
a
b 等于( )
A.
222
2
a b a
b
B.
2
22
()a b a
b
C.
222
2
a b a
b
D.
2
2
2
()a b a
b
12..若分式
x2-4x-2
的值为零,则x 的值是( )
A.2或-2
B.2
C.-2
D.4
13.不改变分式
52223
x
y
x y
的值,把分子、分母中各项系数化为整数,结果是( )
A.
2154x y x
y
B.
4523x y x y C.
61542x y x y
D.
121546x y x
y
14.分式:①
2
23
a a
,②2
2
a b a
b
,③
412()
a
a b ,④
12
x
中,最简分式有( )
A.1个
B.2个
C.3
个 D.4
个
15.下列各式:
x
x x x
y x
x x 2
2
2
5,1,
2
,3
4,
1
51其中分式共有(
)个。
A 、2
B 、3
C 、4 D
、1 16.计算
2
2
x
x ÷(1-x
2),所得正确结果是 (
)
A .x
B .-
x
1 C .
x
1 D .-
x x 2
17、若把分式
xy
y
x
2中的x 和y 都扩大3倍,那么分式的值(
)A 、扩大3倍 B 、不变 C
、缩小3倍 D
、缩小6倍
二:填空题(每小题3分,共21分)18.当a
时,分式
3
21a a 有意义
19. 分解因式:m 3
-4m = . 20.利用分解因式计算:2
2
49
2981012101
2。
21.若x 2
-kx+16是x 的完全平方式,则k =__________。
22.已知2
2
21440x y x
xy y
,则x
y =___________。
23. 计算(x+y)·
2
2
2
2
x y x
y
y x
=____________.
24.某农场原计划用m 天完成n 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷. 三:因式分解(每小题3分,共9分)①3
2
2
2a
a b
ab
②2
2
)
(16)
(9n m n m ③a 2(x -y )+b 2
(y -x )
四:计算:(每小题4分,共12分)①
2
2
221106532x
y x
y y
x ②2
2
111
1
1
21
x x x
x
x ③)
2
52
(2
3x
x x
x 五:求下列各代数式的值:(每小题6分,共12分)1、,8n
m
,15mn 求2
2
n mn m
的值。
2、3
,3
2,1)
(
)2(
2
2
2
2
2
2
b
a
b
a
a
b
a
a b
ab a
a
b
a
a 其中
六:解答题(每小题6分,共12分)
1.某农场修建水库,需要一种空心混凝土管道,它的规格是内径d=30cm,外径D=70cm,长200cm,利用分解因式计算浇制一节这样的管道约需要多少立方米的
混凝土?(兀取3.14,结果精确到0.01)
2.甲、乙承包一项工程,合作b天能完成,甲单独做需a天完成,则乙单独完成这项工程需要几天?
八年级数学答题纸
题号一二三四五六书写(3分)得分
一:选择题(每题3分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
答案
二:填空题(每题3分)
18:_______________ 19:_______________; 20:_____________;
21:__________________ 22:_______________; 23:____________;
24:________________
三:因式分解(每题3分)
①②
②
四:计算(每题4分)
①②
③
五:求代数式的值(每题6分)1:
2:
六:解答题(每题6分)
1:
2:。