(完整版)西北工业大学航空学院结构力学课后题答案第三章受剪板式薄壁结构内力和位移计算
结构力学 第三章 作业参考答案

B
M图(kN m)
(1) (2)
解: (1)求支座反力
∑M = 0 ∑F = 0
A y
取左边或者右边为隔离体,可得:
∑M ∑F
x
C
=0
⇒ FBx =
M h
(3) (4)
=0
最后容易做出结构的弯矩图。
3—18 试作图示刚架的 M 图。
C 0.8kN/m 0.5kN/m D E
14.625 4.225 12.8375
3—19 试作图示刚架的 M 图。
20kN
24 16
C
24
16
B FAx A FBy FAy
FBx
1m
2m
2m
2m
M图(kN m)
(1) (2) (3)
解:对整体:
∑M ∑F
y
A
=0
FBy × 4 + FBx ×1 = 20 × 2 FAy + FBy = 20 FAx − FBx = 0 FBx × 2 − FBy × 2 = 0
40kN m
10kN m M图(kN m)
32.5kN
20kN
20kN F(kN) S
解:求支座反力。取整体:
47.5kN
∑M ∑F
A
=0
FB × 8 − 20 ×10 − 10 ×10 × 3 − 40 = 0 FAy + FB − 10 ×10 − 20 = 0
然后即可做出弯矩图,利用弯矩图即可作出剪力图。
然后即可做出整个刚架的弯矩图。结点受力校核如下图。
D
qL 4 qL 2 qL 2
qL 4
qL 4
E
qL 2 qL 2
(完整版)西北工业大学航空学院结构力学课后题答案第二章结构的几何组成分析

第二章结构的几何组成分析2-1分析图2-27所示平面桁架的几何不变性,并计算系统的多余约束数。
(a)(a)解:视杆为约束,结点为自由体。
C=11,N=7×2=14f =11-7×2+3=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(b)(b)解:视杆和铰支座为约束,结点为自由体。
C=9+2+1=12,N=6×2=12f =12-6×2=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(c)(c)解:视杆和铰支座为约束,结点为自由体。
C=10+2×2=14,N=6×2=12f=14-12=2该桁架为有两个多余约束的几何不变系。
1217(d)(d)解:视杆和铰支座为约束,结点为自由体。
C =30+3=33,N =17×2=34f=33-34=-1故该桁架为几何可变系。
(e)(e)解:视杆为约束,结点为自由体。
C =13,N =8×2=16f=13-16+3=0将1-2-3-4、5-6-7-8看作两刚片,杆3-6、杆2-7、杆4-5相互平行,由两刚片原则知,为瞬时可变系统。
6 (f)(f)解:视杆和固定铰支座为约束,结点为自由体。
C =22+3×2=28,N =14×2=28f=28-28=0将12-13-14、7-11-12、1-2-3-4-5-6-7-8-9-10看作三刚片,三刚片由铰7、铰12、铰14连结,三铰共线,故该桁架为瞬时可变系统。
(g)(g)解:视杆和固定铰支座为约束,结点为自由体。
C=24+4×2=32,N=16×2=32f=32-32=0由于杆15-14-3、杆12-11-4、杆9-5相交于一点,故该桁架为瞬时可变系。
(h)(h)解:视杆和固定铰支座为约束,结点为自由体。
C=12+2×2=16,N=8×2=16f=16-16=0该桁架布局合理,加减二元体之后,无有应力的杆,故该桁架为无多余约束的几何不变系。
(完整版)西北工业大学航空学院结构力学课后题答案第三章静定结构的内力与变形

第三章 静定结构的内力与变形3-1 判断如图所各桁架的零力杆并计算各杆内力。
1P(a) (a)解:(1)0272210=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆2-3,杆2-4,杆4-5,杆5-6。
对于结点1:N 1-2PN 1-33001P N =⨯-2121 P N 221=-0233121=+⨯--N N P N 331-=-对于结点3:N 3-43N 3-1P N N 31343-==--对于结点4:N 4-64N 4-3P N N 33464-==--对于结点2:N 2-52N 2-1PN N 21252==--对于结点5:N 5-75N 5-2P N N 22575==--(b)(b)解:(1)082313=⨯-+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆5-4,杆6-4,杆6-7,杆6-8,杆1-5。
对于结点5:P5N 5-8P N -=-85对于结点8:N 7-88N 5-8Fθ05528785=+⨯--N N P N 55287=-对于结点7:N 7-47N 7-8P N 55247=-对于结点4:N 3-44N 7-4P N N 5524743==--对于结点3:N 1-33N 3-4P N N 5524331==--2(c)(c)解:(1)026228=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆4-3,杆4-6。
对于结点1:N 1-61N 1-3Pθ05561=+⨯-P N P N 561-=-05526131=⨯+--N N P N 231=-对于结点3:3N 3-1N 3-5P N N 21353==--(e)(d)解:(1)02112316=⨯-⨯+=f故该结构为无多余约束的几何不变结构。
(2)零力杆:杆4-5,杆5-6,杆4-6,杆7-6,杆2-3,杆2-8,杆2-9,杆1-2,杆9-11,杆8-9,杆9-11.对于结点4:4N 4-7N 3-4450PP N 2243=- P N 2274=-对于结点7:7N 4-7N 3-7N 8-7P N N 22227374=⨯-=-- P N -=-73P N 2278=-对于结点3:3N 3-4N 3-7N 8-7022734332=⨯+=---N N N P N 2283=-对于结点8:022228982=⨯⎪⎭⎫ ⎝⎛+=--N P N运用截面法:N 1-2N 9-10N 9-11PP23456789由对9点的力矩平衡:0222221=⨯⨯-⨯+⨯-P a P a a N 021=-N对于结点9:9N 2-9N 9-11N 9-10N 9-88911910922---=⨯+N N N P N 22109-=-8N 3-8(e)(e)解:(1)024125=⨯-++=f故该结构为无多余约束的几何不变结构。
西北工业大学航空学院结构力学课后题答案第三章-受剪板式薄壁结构内力和位移计算

第三章 受剪板式薄壁结构内力和位移计算3-1分析下图所示各平面薄壁结构的几何不变性,并计算多余约束数f 。
1(a)(b)(c) (d)(e) (f)分析:平面四边形板f=1,三角板f=0;一个“内十字”结点增加一次静不定。
结构分析有:增加元件法,去掉约束法。
解:(a)几何不变系统,有多余约束f=8.增加元件法:将开洞处的一块板补全,则系统有9个“内十字”结点。
因而f=9-1=8.(b)几何不变系统,有多余f=5.增加元件法:将开洞处的一块板补全,切开端口杆的杆端处连上,则系统有4个“内十字”结点,外部多余约束数为3,对于端口切开的杆:丁字节点6处为零力杆端切开与否对静不定次数无影响,而处于“内十字”结点处的5处,则解除一次静不定。
因而f=4+3-1-1=5.(c)几何不变系统,有多余约束f=4.有4个“内十字”结点。
因而f=4.(d)几何不变系统,有多余约束f=3.增加元件法:将开洞处的一块板补全,则系统有4个“内十字”结点。
因而f=4-1=3.(e)几何不变系统,有多余约束f=21.有21个“内十字”结点。
因而f=21.(f)几何不变系统,有多余约束f=12.有12个“内十字”结点。
因而f=12.3-2分析下图所示空间薄壁结构的几何不变性,并计算多余约束数f。
(a)(b)(c) (d)(e)(f)(g) (h)6(i)(j)67(k)(l)78(m) (n)(o)分析:三缘条盒段若以四边形面与基础连接则有1次静不定(进行结构分析:视结点为自由体有3个自由度,板和杆各自起一个约束作用),若以三边与基础相连则为无多余约束的静定结构;对于一端固定的一段空心薄壁结构,端框有n个结点,其静不定次数为(n-3),故单边连接的四缘条盒段有1次静不定;对于四缘条盒段若以相邻两面和基础相连则由结构分析可知有3次静不定;对于三缘条盒段若以一边为三角形另一边为四边形和基础相连则由结构分析可知有2次静不定,若以双边四边形形式连接三缘条盒段则静不定次数为3。
结构力学第3章习题及参考答案

解(1)C点的竖向位移
(2)CD杆与CE杆夹角的改变量
3-5图示桁架AB杆的 ,其他杆的 。试求B点水平位移。
解本题中,AB杆的应力-应变关系不是线性的,计算时要用单位荷载法最基本的公式。
解
3-9试求图示刚架在温度作用下产生的D点的水平位移。梁为高度h=0.8m的矩形截面梁,线膨胀系数为 =10-5 oC-1。
解
3-10图示桁架各杆温度上升t,已知线膨胀系数 。试求由此引起的K点竖向位移。(画出需要的图)
解
*3-11图示梁截面尺寸为b×h=0.2m×0.6m,EI为常数,线膨胀系数为 ,弹簧刚度系数k=48EI/l3(l=2m)。梁上侧温度上升10℃,下侧上升30℃,并有图示支座移动和荷载作用。试求C点的竖向位移。
解利用虚功互等定理。
1状态:1kN的外力及其引起的15个结点的已知位移。
2状态:15个结点上10kN/15的集中荷载及其引起的15个结点的未知位移。
1状态的外力在2状态位移上做的功为
2状态的外力在1状态位移上做的功为
由
得
3-6 (b)
解
3-6 (c)
解
3-6 (d)
解
3-6 (e)
解
3-6 (f)
解(1)相对水平位移
(2)相对竖向位移
对称结构在对称荷载作用下的反对称位移等于零。
(3)相对转角
3-6 (g)
解
3-6 (h)
解
3-7试求图示结构在支座位移下的指定位移。
3-7 (a)
解
3-7 (b)
解
3-8图示结构各杆件均为截面高度相同的矩形截面,内侧温度上升t,外侧不变。试求C点的竖向位移。线膨胀系数为 。
西工大飞行器结构力学课后答案

西工大飞行器结构力学课后答案第一题根据飞机结构力学的基本原理,飞机的结构力学可以被分解为静力学和动力学两个部分。
静力学是研究在静止或恒定速度下的力学行为,包括计算飞机各个部件的受力和应变情况。
而动力学则是研究在变化速度和加速度下的力学行为,包括计算飞机受到的各种动力荷载和振动情况。
第二题飞机的结构力学分析中,常用的方法包括有限元分析、静力学分析和动力学分析。
有限元分析是一种基于数值计算的方法,可以建立飞机结构的数学模型,并以此模型进行力学分析。
静力学分析是通过平衡方程来计算飞机结构的受力和应变情况,包括应力分析和变形分析。
动力学分析是通过力学方程来计算飞机在动态载荷下的振动响应和疲劳寿命。
第三题飞机的结构力学分析对于设计和制造过程中的决策具有重要意义。
在设计阶段,结构力学分析可以帮助工程师评估不同设计方案的有效性和可行性。
通过分析飞机的受力和应变情况,可以优化设计,并确保飞机在正常工作范围内具有足够的强度和刚度。
在制造阶段,结构力学分析可以帮助工程师确定合适的材料和加工工艺,以确保飞机结构的可靠性和安全性。
通过分析飞机的受力和应变情况,可以预测飞机在使用寿命内的疲劳寿命,并采取相应的措施延长飞机的使用寿命。
此外,结构力学分析还可以应用于飞机维修和事故调查过程中。
通过分析事故飞机的受力和应变情况,可以确定事故原因,并提出相应的维修和改进建议,以减少事故的发生对飞机结构的影响。
第四题对于飞行器结构力学的研究,需要掌握一些基本理论和方法。
首先是静力学的基本原理,包括力的平衡方程、应力和应变的定义和计算方法。
其次是动力学的基本原理,包括力的运动方程、振动的模型和计算方法。
此外,还需要了解一些基本的力学性能指标,如强度和刚度。
在进行结构力学分析时,需要掌握一些基本的计算方法。
常见的方法包括有限元法、解析法和试验法。
有限元法是一种基于数值计算的方法,可以建立飞机结构的数学模型,并以此模型进行力学分析。
解析法则是通过解析计算的方法进行力学分析,主要针对简单和规则的结构。
结构力学课后习题答案

结构力学课后习题答案结构力学是一门研究结构在外力作用下的内力、变形和稳定性的学科。
课后习题是帮助学生巩固理论知识和提高解题技巧的重要环节。
以下是一些结构力学课后习题的参考答案,供学习者参考:第一章:结构力学基础1. 静定结构与超静定结构的区别:静定结构是指在已知外力作用下,其内力和位移可以通过静力平衡方程和几何关系唯一确定的结构。
超静定结构则是指静力平衡方程和几何关系不足以唯一确定其内力和位移的结构。
2. 弯矩图的绘制方法:绘制弯矩图首先需要确定结构的支反力,然后通过截面平衡条件,逐步求出各截面的弯矩值,并将其绘制成图形。
第二章:静定梁的内力分析1. 简支梁的内力计算:对于简支梁,可以通过静力平衡条件和截面平衡条件来计算梁的内力,包括剪力和弯矩。
2. 悬臂梁的内力计算:悬臂梁的内力计算需要考虑梁端的外力和力矩,通过静力平衡条件求解。
第三章:静定桁架的内力分析1. 节点法的应用:节点法是通过在桁架的节点上施加平衡条件来求解节点的反力,进而求得杆件的内力。
2. 截面法的应用:截面法是通过选取桁架的某一截面,对该截面进行平衡分析,求得截面两侧杆件的内力。
第四章:静定拱的内力分析1. 三铰拱的内力计算:三铰拱的内力计算通常需要利用静力平衡条件和几何关系,计算出拱的反力和弯矩。
2. 双铰拱和无铰拱的内力特点:双铰拱和无铰拱的内力计算更为复杂,需要考虑更多的平衡条件和几何关系。
第五章:超静定结构的内力分析1. 力法的应用:力法是通过建立力的平衡方程来求解超静定结构的内力,通常需要引入多余未知力。
2. 位移法的应用:位移法是通过建立位移的平衡方程来求解超静定结构的内力,通常需要引入位移未知数。
第六章:结构的稳定性分析1. 欧拉临界载荷的计算:欧拉临界载荷是指细长杆件在轴向压力作用下失稳的临界载荷,可以通过欧拉公式计算。
2. 非线性稳定性分析:对于非线性问题,稳定性分析需要考虑材料的非线性特性和几何非线性,通常需要采用数值方法求解。
飞机结构力学第三章

第三章结构变形计算一、单位载荷法3-1、求图3-4所示结构的下列各种变形时,广义单位力应如何施加?1、求1点水平位移。
答:在1点沿水平方向施加2、求2点和4点在垂直方向上的相对位移。
答:在2点和4点垂直方向上施加单位力偶。
3、求结构端部1-1、杆的角位移答:在1点和1、点沿水平方向施加单位力偶4、求杆1-1、和3-3、的相对角位移3-2、图3-5示出一空间盒式结构,求下列变形时,广义单位力应如何施加?1、求翼肋Ⅰ、Ⅱ之间的相对转角。
答:在Ⅰ、Ⅱ翼肋上施加一对相反的平面单位力矩。
2、求1-1、-1、、杆的伸长。
答:在1点和1、、点施加沿杆方向的相反的单位力。
3、求节点1和2、之间沿1-2、方向的相对位移答:在1点和2、点施加沿1-2、方向的相反的单位力。
4、求上部开口1-2-2、-1、的剪切变形。
5、求肋Ⅰ、Ⅲ之间的相对翘曲角。
二、结构变形计算3-3、(例题)已知图3-7中所示平面桁架结构,各杆截面积均为f,材料相同,弹性模量均为E,在节点7上受一向下的力P作用。
求:用单位载荷法,计算节点2的垂直位移。
解:结构是逐次连接节点法形成的简单桁架,是静定结构,且不可移动。
(1)求解<P>状态由节点6平衡得:由节点2平衡得:由节点7平衡得:由节点3平衡得:由节点5平衡得:将各杆轴力标在图中。
(2)根据题意加单位载荷,求解<1>状态。
在节点2加向下的垂直力1,单位力由2-5,1-5,4-5杆承受并传到基础上,其余各杆的力均为零。
将各杆内力标在图上,或列在表中。
将<P>状态下的结构变形形态作为虚位移,施加在<1>状态上,因<1>状态,可利用虚位移原理,得:编号杆长度L1 1-2 A 0 2p 02 1-5 p pa3 2-3 A 0 2p 04 2-5 A -1 0 05 3-5 a 0 p 06 3-6 A 0 0 07 3-7 a 0 p 08 4-5 A -1 -3p 3pa9 5-6 A 0 -p 010 6-7 A 0 -p 0答:2点垂直位移大小为,方向向下。
结构力学第三版课后习题答案精选全文

20kN/m
M图
4.5kN
8.98
4
4.5
6 11
4.5 FQ图
M图 (kN.m)
FQ图(kN)
37
3.3 静定平面刚架
必作题: P.109 3-3 (b) (d) (f) (j) P.110 3-4 (a — i) P.111 3-7 (a) P.112 3-8 (a) (d)
选作题: P.109 3-3 (a) (e) (g) (l) P.112 3-8 (c) P.112 3-9 (a) P.113 3-11
2
P.37 2-1(b)
1
2
3
三链杆交于一点,瞬变
3
P.37 2-2(b)
4几何不变,无多余约束5P.37 2-3(c)
有一个多余 约束
1
2 3
几何不变,有一个多余约束
6
P.37 2-4(d)
O(I、III) O(II、III) I
II
1
2
O(I、II)
III
铰O(I、II)、 O(II、III)的连线与1、2两链 杆不平行,体系几何不变,无多余约束
2.5m 5m 5m 2.5m
FN图
60
3.4 静定平面桁架
必作题:
P.113 P.114 P.115
选作题:
P.116 P.117
3-13 (b) (d) (f) 3-14 (a) (b) (c) 3-17 (a) (d)
3-18 (a) 3-20
P.116 3-18 (b)
61
P.113 3-13 (b) 分析桁架类型,指出零杆
FP
联合桁架,10根零杆。
62
P.113 3-13 (d) 分析桁架类型,指出零杆
西北工业大学结构力学课后题答案第三章__静定结构的内力与变形

Q
对于结点 2:
2
N2-4
N 2 −4 = Q
F4
N 2-4
4
对于结点 4:
N 1-4
2
杆件 内力
2
N 1− 4 = − N 2 − 4 = − Q
1-2 0 1-4
N1−4 = − 2Q
2-3 0 2-4 3-4 0
− 2Q
Q
3-2 平面桁架的形状、尺寸和受载情况如图所示,求桁架中 3 个指定元件的内力。
N 1− 2 = 0
N 9-10
N 9-8
9
对于结点 9:
N 9-11
N 9 −10 + 2
杆件 内力 杆件 内力 杆件 内力 7-8 1-2 0 3-8
2
× N 9 −11 = N 9 −8
2-3 0 4-5 0
N 9 −10 = − 2
2-8 0
2
P
3-4 3-7
2-9
2
5-6
2
P
−P
6-7 0
2P
− 5P
P
2P
1 a
2
3
4
5
10 a
9
8
7
6
P
11 a a a a
(e) (d)解: ( 1) f = 16 + 3 × 2 − 11 × 2 = 0 故该结构为无多余约束的几何不变结构。 ( 2)零力杆:杆 4-5,杆 5-6,杆 4-6,杆 7-6,杆 2-3,杆 2-8,杆 2-9,杆 1-2,杆 9-11, 杆 8-9,杆 9-11.
拉力图:
8P/√3
+ +
-
P/3
17P/3
+
结构力学 第三章 作业参考答案

∑M = 0 ∑F = 0 ∑F = 0
A
FBy × l − q × l ×
l =0 2
(1) (2) (3)
y
FAy + FBy = 0 FAx + FBx − q × l = 0
FBx × l − FBy × l =0 2
x
取右边部分为隔离体:
∑M
C
=0
(4)
解以上方程可得:
ql ⎧ ⎪ FAx = 4 ⎪ 3ql ⎪ => ⎨ FBx = 4 ⎪ ql ⎪ ⎪ FAy = FBy = 2 ⎩
3—10 试不计算反力绘出梁的 M 图。
16
12
4
A
B
8 2m 2m 4m 4m
12 4m
6m
2m
解:从悬臂端和 AB 开始作图。利用区段叠加法和铰结点的弯矩为零,即可做出全部的弯矩图。
3—12 试不计算反力绘出梁的 M 图。
5
华南农业大学 水利与土木工程学院(College of water conservancy and Civil Engineering, SCAU)
1m
D 80
30
40 E
20 40
40 C F
80 E
40
A
解: (1) 求支座反力
B
40
∑F = 0 ∑M = 0 ∑F = 0
y A x
FC − 10 × 4 − 20 = 0 FA − FB = 0
⇒ FC = 60 kN ⇒ FC = 10 kN
(1) (2) (3)
FB ×1 − 50 − 10 × 4 × 6 − 20 × 10 = 0 ⇒ FB = 10 kN
(1)
西北工业大学飞行器结构力学电子教案7资料

q23 0
同理可得 q12 、q31 也都等于零 。 所以,对三角形板:
q12 q23 q31 0
三角形板在受剪板式计 算模型中是不受力的。
(2)长方形板的平衡
长方形板四个边上的四个未知剪流q12、q14、 q32、q34,板在其作用下处于平衡 由平面力系有三个平衡方程,可得:
采用了上述简化假设的受剪板式薄壁结构计算模型中,只 包含两类结构元件:承受轴力的杆和承受剪流的板,杆和板之 间只有剪流作用。
▄ 受剪板式薄壁结构计算模型的几个例子。
图(a)机身圆形框,可以简化为由若 干段直梁所组成的受力模型
图(b)机翼,可以简化为由若干个盒式结构 组成的受力模型
机翼盒式模型
机身笼式计算模型
即杆子两端的轴力仅相当于一个独 N ( x) N12 q12 x 杆轴力沿杆轴线线性变化,其斜率为 立变量 。 N ( x) 因此,受剪杆相当于起一个约束。 q12 x
(4) 杆轴力的内力图,有4中可能。
返回
飞行器结构力学基础
——电子教学教案
西北工业大学航空学院 航空结构工程系
第七章
受剪板式薄壁结构内力和位移 计算
第二讲 7.3 静定平面薄壁结构内力计算
一、平面薄壁结构的组成分析
受剪板式薄壁结构的计算模型是由结点、杆和板元件组成。如果这些元件 的中心点和中线都在同一平面内,则称为平面薄壁结构,它只能承受作用在 此平面内的外载荷。
▄ 飞机薄壁结构典型元件受力分析及其理想化
(1)蒙皮
在结构作为一个整体的受力和传力过程中,蒙皮的主要作用是支承和传递由于剪 切和扭转而引起的剪应力,同时它还部分支承和传递由于弯曲而引起的正应力。正应 力主要由较强的长桁和突缘等纵向元件承担,蒙皮在这方面的作用是第二位的。因此, 在对蒙皮进行理想化的时候,假设蒙皮只承受并传递剪应力;蒙皮实际上具有的承受 并传递正应力的能力将人为地附加到纵向元件(如长桁)上去。 由于蒙皮壁厚一般很薄,可近似认 为蒙皮上的剪应力大小沿厚度方向不变化, 且剪应力沿厚度中线的切线方向。因为剪 应力的值沿厚度方向不变,所以可以用剪 应力沿厚度方向的合力 q = τ ×t 来替代剪 应力,称 q 为剪流,用半箭头表示。
西北工业大学航空发动机结构分析课后答案第3章

第三章压气机1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些?3.在盘鼓式转子中恰当半径是什么?在什么情况下是盘加强鼓?恰当半径:在盘鼓式转子中,随着圆周速度的增大,鼓筒和轮盘都会发生形变,这里有三种情况:一是在小半径处,轮盘的自由变形大于鼓筒的自由变形;二是在大半径处,轮盘的自由变形小于鼓筒的自由变形;三是在中间某个半径处,两者的自由变形相等。
对于第三种情况,联成一体后,相互没有约束,即没有力的作用,这个半径称为恰当半径。
在第二种情况下,实际变形处于两者自由变形之间,对于鼓筒,自由变形变小,轮盘则相反。
这种情况是盘加强鼓。
5.转子级间联接方法有哪些?转子级间联接方法有用拉杆联接、短螺栓连接和长轴螺栓连接等几种。
7.如何区分盘鼓式转子和加强的盘式转子?区分方法在于辨别转子的传扭方式。
鼓盘式转子靠鼓筒传扭,而加强的盘式转子主要靠轴来传扭。
9.风扇叶片叶身凸台的作用是什么?风扇叶片叶身凸台的作用:在叶片较长的情况下,为了避免发生危险的共振或颤震,叶身中部常常带一个减振凸台。
11.压气机机匣的功能是什么?压气机机匣是发动机的主要承力壳体之一,又是气流通道的外壁。
工作时,机匣承受静子的重力、惯性力,内外空气压差,整流器上的扭矩,轴向力,相邻组合件传来的弯矩、扭矩和轴向力等。
此外,机匣还承受着热负荷和振动负荷,传递支撑所受的各种载荷,如径向力、剪力和弯矩等。
13.列举整流叶片与机匣联接的三种基本方法。
一、在锻造的分半式机匣内,机匣壁较厚,整流叶片用各种形式的榫头直接固定在机匣内壁机械加工的特定环槽内。
二、整流叶片还可以通过焊接直接与机匣联接。
三、在目前大多数整体式机匣和分段式机匣内,整流叶片广泛采用间接固定的方案。
即整流叶片安装在专门的整环或半环内,组成整流器或整流器半环,然后固定在机匣内。
15.简述篦齿密封的基本原理。
篦齿密封装置是由篦齿所形成的若干个空腔组成。
工作时,封气装置两侧总的压差没有变化,但是由于篦齿的分割,漏气截面两端(相邻空腔)的压差减小。
(2024版)西北工业大学航空学院结构力学课后题答案第四章-力法

可编辑修改精选全文完整版第四章 力法4-1 利用对称与反对称条件,简化图4-15所示各平面刚架结构,要求画出简化图及其位移边界条件。
P P(a)(a)解:对称结构,在对称载荷作用下,在对称轴上反对称内力为零。
由静力平衡条件∑=0X可得23P N =再由两个静力平衡条件,剩余4个未知力,为二次静不定。
本题中通过对称性条件的使用,将6次静不定的问题转化为2次静不定。
1PP(b)(b)解:对称结构,在反对称载荷作用下,在对称轴上对称的内力为零。
受力分析如图所示有2根对称轴,结合平衡方程,剩下三个未知数,为3次静不定。
本题中通过对称性条件的使用,将6次静不定问题转化为3次静不定。
(c)(c)解:对称结构,在对称载荷作用下,在对称轴上反对称内力为零。
有一根对称轴,减少了两个静不定度本题中通过对称性条件的使用,将3次静不定问题转化为1次静不定。
4-2图4-16所示桁架各杆的EA均相同,求桁架各杆的内力。
(a)(a)解:1、分析结构静不定次数。
结构有4个结点8个自由度,6根杆6个约束,3个外部约束。
因此结构静不定次数为1,f=1。
2、取基本状态。
切开2-4杆,取<P>,<1>状态,各杆内力如图。
1234P-P √2P<P>1234P<1>11√22√22√22√22计算影响系数∑=∆EAl N N i p P 11()2422222+=⎪⎪⎭⎫ ⎝⎛⨯+⨯=EA Pa P P EA a ∑=EAl N i1211δ()22222142222+=⎪⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯=EA a EA a 列正则方程:()()02242221=+++P X解之()P X 42321-=3、由11N X N N P +=,得()P X N 423220112-=⎪⎪⎭⎫ ⎝⎛-⋅+= ()P X P N 42212113+=⋅+=()P X N 423220114-=⎪⎪⎭⎫ ⎝⎛-⋅+=()P X N 423220123-=⎪⎪⎭⎫ ⎝⎛-⋅+=()P X N 423210124-=⋅+=()P X P N 42122134+-=⎪⎪⎭⎫ ⎝⎛-⋅+-=4、校核。
结构力学第三章习题及答案精品资料

结构力学第三章习题及答案静定结构计算习题)解:首先分析几何组成:AB 为基本部分,EC 为附属部分画出层叠图,如图 (b)所示。
按先属附后基本的原则计算各支反力(c)图。
之後,逐段作出梁的弯矩图和剪力图。
3 — 1试做图示静定梁的M 、F Q 图。
36.67KNM 图(单位:KN/m)13.313.333—3试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果解:(1)计算支反力F Ax =48kN (―) M A =60 KN ?m (右侧受拉) (2) 逐杆绘M 图 (3) 绘F Q 图 (4) 绘N 图)3—7试做图示静定刚架的内力(M 、F QF N )图,并校核所得结果F Q 图(单F N 图(单20KN/m(5)校核:内力图作出后应进行校核。
(略)r P IT°'25qL0.25q|D解:(1)计算支反力FAx=20kN (J) F A y=38kN( T ) F B y=62kN( T )⑵逐杆绘M 图 ⑶绘F Q 图⑷(5)校核:内力图作出后应进行校核。
(略)做图示 静定刚 架的内38(MKN)F N 图(单位:KN )0.25qL£o ・ 25qL (£6220F Q 、 图,并校核所得结0.25qLF N图解:(1)计算支反力FAx=0.75qL (J) FAY=-0.25qL( ) FBY=0.25qL( T )(2) 逐杆绘於图(3) 绘F Q图(4) 绘N图(5) 校核:内力图作出后应进行校核。
(略) 3-11试做图示静定刚架的内力(力、Fo、F N)图,并校核所得结果解:(1) 计算支反力F BX=40KN (J) F AY=30KN ( T ) F B y=50kN( T )(2) 逐杆绘〃图(3) 绘F Q图(4) 绘N图(5) 校核:内力图作出后应进行校核。
(略)120解:1、由已知设抛物线方程为y=ax+bx+c 坐标系如图(a)所示,有图可以看出,x=0 y=0 ; x=10 y=4 ; x=20 y=0 可以求得M图(单位:KN/m)3-17试求图示抛物线三钱拱的支座反力,501 24y X25524y X25_5X D5m0.4F N81 =-5分析桁架的几何组成:此桁架为简单桁架,由基本三角形 345按二元体规则依 次装入新结点构成。
结构力学第三版答案

结构力学第三版答案《结构力学第三版答案》第一章:引言结构力学是研究结构在作用力下的变形和内力分布规律的科学。
本章主要介绍了结构力学的基本概念和基本原理,以及学习本书的基本内容和要求。
第二章:平衡力学本章介绍了结构力学中的平衡条件。
通过平衡条件的分析,可以确定结构体系受力状态下的平衡问题。
同时,结构体系中不平衡力的计算和分析也是本章的重点内容。
第三章:结构的静力学分析本章主要介绍了结构的静力学分析方法。
通过应力和应变的计算,可以确定结构结构在作用力下的变形和内力分布规律。
本章还介绍了结构中杆件和梁的静力学分析方法。
第四章:结构的变形分析本章介绍了结构的变形分析方法。
通过位移和变形的计算,可以确定结构在加载过程中的变形程度和变形规律。
本章还介绍了结构中梁和柱的变形分析方法,并且给出了相关的计算例题。
第五章:结构材料力学性能本章介绍了结构材料的力学性能。
通过结构材料的力学性能的分析和计算,可以确定结构材料的可用性和适用性。
本章还介绍了结构材料的疲劳性能和塑性性能,并给出了相关的计算例题。
第六章:结构稳定性分析本章介绍了结构的稳定性分析方法。
通过结构的稳定性分析可以确定结构体系在受到外界扰动时的稳定性,以及判断结构体系发生失稳的条件。
本章还介绍了常见的结构失稳形式和相应的分析方法。
第七章:结构动力学分析本章介绍了结构的动力学分析方法。
通过结构的动力学分析可以确定结构体系在受到外界振动和激励时的响应规律,以及判断结构体系的振动特性。
本章还介绍了结构动力学中的共振和阻尼问题,并给出了相关的计算例题。
第八章:结构设计原理本章介绍了结构设计的基本原理和设计方法。
通过结构设计的原则和方法,可以确定结构体系的结构形式和尺寸,以满足结构的强度、刚度和稳定性等要求。
本章还介绍了常见的结构构件的设计原则和设计方法。
第九章:结构施工与检验本章介绍了结构施工和检验的基本要点。
通过结构施工的过程中的测量和检验,可以确保结构施工的质量和安全性。
西北工业大学机械原理课后答案第3章-1

第三章 平面机构的运动分析题3-3 试求图示各机构在图示位置时全部瞬心的位置(用符号P ij 直接标注在图上) 解:1P 13(P 34)13∞题3-4 在图示在齿轮-连杆机构中,试用瞬心法求齿轮1与齿轮3 的传动比w1/w3.P 13P 23P 363D 652C 4B P 16A 1P 12解:1〕计算此机构所有瞬心的数目152)1(=-=N N K2〕为求传动比31ωω需求出如下三个瞬心16P 、36P 、13P 如图3-2所示。
3〕传动比31ω计算公式为:1316133631P P P P =ωω题3-6在图a 所示的四杆机构中,l AB =60mm ,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求:231) 当φ=165°时,点C 的速度Vc ;2) 当φ=165°时,构件3的BC 线上速度最小的一点E 的位置及速度的大小; 3) 当Vc=0时,φ角之值〔有两个解〕 解:1) 以选定比例尺,绘制机构运动简图。
(图3-3 ) 2〕求V C ,定出瞬心P 13的位置。
如图3-3〔a 〕s rad BP ll v l AB AB B 56.21323===μωω s m CP v l C 4.0313==ωμ 3〕定出构件3的BC 线上速度最小的点E 的位置。
因为BC 线上速度最小的点必与P 13点的距离最近,所以过P 13点引BC 线延长线的垂线交于E 点。
如图3-3〔a 〕s m EP v l E 375.0313==ωμ4〕当0=C v 时,P 13与C 点重合,即AB 与BC 共线有两个位置。
作出0=C v 的两个位置。
量得 ︒=4.261φ ︒=6.2262φ题3-12 在图示的各机构中,设已知各构件的尺寸、原动件1以等角速度ω1顺时针方向转动。
试用图解法求机构在图示位置时构件3上C 点的速度及加速度。
解:a)速度方程:32233C C C B C B C v v v v v +=+=加速度方程:r C C k C C C t B C n B C B t C nC a a a a a a a a 232323333++=++=+b) 速度方程:2323B B B B v v v +=加速度方程:r B B K B B B t B nB a a a a a 2323233++=+c) 速度方程:2323B B B B v v v +=加速度方程:r B B K B B B t B nB a a a a a 2323233++=+题3-14 在图示的摇块机构中,已知l AB =30mm ,l AC =100mm ,l BD =50mm ,l DE =40mm 。
(完整版)西北工业大学航空学院结构力学课后题答案第二章结构的几何组成分析

第二章结构的几何组成分析2-1分析图2-27所示平面桁架的几何不变性,并计算系统的多余约束数。
(a)(a)解:视杆为约束,结点为自由体。
C=11,N=7×2=14f =11-7×2+3=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(b)(b)解:视杆和铰支座为约束,结点为自由体。
C=9+2+1=12,N=6×2=12f =12-6×2=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(c)(c)解:视杆和铰支座为约束,结点为自由体。
C=10+2×2=14,N=6×2=12f=14-12=2该桁架为有两个多余约束的几何不变系。
1217(d)(d)解:视杆和铰支座为约束,结点为自由体。
C =30+3=33,N =17×2=34f=33-34=-1故该桁架为几何可变系。
(e)(e)解:视杆为约束,结点为自由体。
C =13,N =8×2=16f=13-16+3=0将1-2-3-4、5-6-7-8看作两刚片,杆3-6、杆2-7、杆4-5相互平行,由两刚片原则知,为瞬时可变系统。
6 (f)(f)解:视杆和固定铰支座为约束,结点为自由体。
C =22+3×2=28,N =14×2=28f=28-28=0将12-13-14、7-11-12、1-2-3-4-5-6-7-8-9-10看作三刚片,三刚片由铰7、铰12、铰14连结,三铰共线,故该桁架为瞬时可变系统。
(g)(g)解:视杆和固定铰支座为约束,结点为自由体。
C=24+4×2=32,N=16×2=32f=32-32=0由于杆15-14-3、杆12-11-4、杆9-5相交于一点,故该桁架为瞬时可变系。
(h)(h)解:视杆和固定铰支座为约束,结点为自由体。
C=12+2×2=16,N=8×2=16f=16-16=0该桁架布局合理,加减二元体之后,无有应力的杆,故该桁架为无多余约束的几何不变系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 受剪板式薄壁结构内力和位移计算3-1分析下图所示各平面薄壁结构的几何不变性,并计算多余约束数f 。
1(a)(b)(c) (d)(e) (f)分析:平面四边形板f=1,三角板f=0;一个“内十字”结点增加一次静不定。
结构分析有:增加元件法,去掉约束法。
解:(a)几何不变系统,有多余约束f=8.增加元件法:将开洞处的一块板补全,则系统有9个“内十字”结点。
因而f=9-1=8.(b)几何不变系统,有多余f=5.增加元件法:将开洞处的一块板补全,切开端口杆的杆端处连上,则系统有4个“内十字”结点,外部多余约束数为3,对于端口切开的杆:丁字节点6处为零力杆端切开与否对静不定次数无影响,而处于“内十字”结点处的5处,则解除一次静不定。
因而f=4+3-1-1=5.(c)几何不变系统,有多余约束f=4.有4个“内十字”结点。
因而f=4.(d)几何不变系统,有多余约束f=3.增加元件法:将开洞处的一块板补全,则系统有4个“内十字”结点。
因而f=4-1=3.(e)几何不变系统,有多余约束f=21.有21个“内十字”结点。
因而f=21.(f)几何不变系统,有多余约束f=12.有12个“内十字”结点。
因而f=12.3-2分析下图所示空间薄壁结构的几何不变性,并计算多余约束数f。
(a)(b)(c) (d)(e)(f)(g) (h)6(i)(j)67(k)(l)78(m)(n)(o)分析:三缘条盒段若以四边形面与基础连接则有1次静不定(进行结构分析:视结点为自由体有3个自由度,板和杆各自起一个约束作用),若以三边与基础相连则为无多余约束的静定结构;对于一端固定的一段空心薄壁结构,端框有n个结点,其静不定次数为(n-3),故单边连接的四缘条盒段有1次静不定;对于四缘条盒段若以相邻两面和基础相连则由结构分析可知有3次静不定;对于三缘条盒段若以一边为三角形另一边为四边形和基础相连则由结构分析可知有2次静不定,若以双边四边形形式连接三缘条盒段则静不定次数为3。
解:(a)几何不变系统,多余约束数f=4。
增加元件法:将开洞处的板1-2-3-4补全,为5个单边连接的四缘条盒段。
因而f=5-1=4。
(b)几何不变系统,多余约束数f=3.增加元件法:将开洞处的板1-2-5-6、2-3-4-5补全,依次为一个三缘条盒段以四边形面与基础连接有1次静不定和四个四缘条盒段单边连接有1次静不定。
因而f=1+4-2=3.(c) 几何不变系统,多余约束数f=4.一个单边连接四缘条盒段,一个双边连接四缘条盒段。
因而f=1+3=4.(d)几何不变系统,多余约束数f=3.一个单边连接三缘条盒段,一个双边连接四缘条盒段。
因而f=3.(e)几何不变系统,多余约束数f=8.一个单边连接三缘条盒段,两个双边连接四缘条盒段,一个双边连接三缘条盒段。
因而f=2×3+2=8.(f) 几何不变系统,多余约束数f=2.进行结构分析,短的四缘条盒段与基础为单边连接静不定次数为1,在此基础上增加了4个结点,5个板,8根杆。
因而f=1+5+8-4×3=2.(g) 几何不变系统,多余约束数f=2.以自由短四缘条盒段为基础,静定结构;以四边形形式单边连接三缘条盒段,静不定次数为1;单边连接四缘条盒段,静不定次数为1。
因而f=1+1=2.(h) 几何不变系统,多余约束数f=10.以四边形形式单边连接三缘条盒段,静不定次数为1;连个双边连接的四缘条盒段,静不定次数为2×3;双边四边形形式连接三缘条盒段,静不定次数为3。
因而f=1+2×3+3=10.(i) 几何不变系统,多余约束数f=2.两个以单边四边形方式连接的三缘条盒段。
f=2×1=2.(j)几何不变系统,多余约束数f=5.单层端框有六个结点的有一个隔框笼式结构静不定次数为1;单端固定的单层端框有六个结点的有一个隔框笼式结构静不定次数为(6-3+1).因而f=1+(6-3+1)=5。
(k) 几何不变系统,多余约束数f=3.单端固定的单层端框有六个结点的空心笼式结构静不定次数为(6-3)。
因而f=3.(l) 几何不变系统,多余约束数f=14.为两个单端固定的单层端框有八个结点的有两个隔框笼式结构静不定次数2×(8-3+2).因而f=14.(m)几何不变系统,多余约束数f=7.单端固定的单层端框有八个结点的空心笼式结构静不定次数(8-3);增加元件法:将开洞处的板补全后为单端固定的单层端框有六个结点的空心笼式结构静不定次数((6-3)-1)。
因而f=7.(n) 几何不变系统,多余约束数f=32.一个三缘条盒段以四边形面与基础连接结构静不定次数为1;七个单边连接的四缘条盒段结构静不定次数为7;七个四缘条盒段双边连接结构静不定次数为7×3;再加两根杆和一个四边形板,三个约束。
因而f=1+7+7×3+3=32.(o) 几何不变系统,多余约束数f=31.一个自由的单层端框有10个结点的空心笼式结构为静定结构;三个单端固定的单层端框有10个结点的空心笼式结构静不定次数为3×(10-3);增加元件法:将开洞处的板补全后为依次连接两个单端固定的单层端框有9个结点的空心笼式结构静不定次数 2×((9-3)-1).因而f=31.3-3 平面薄壁结构的形状、尺寸及受载情况如下图所示。
求各元件内力并作内力图。
2(a) (b)(c) (d)1234567P aa aa1234578aaPP2P2P(e) (f)PPaaa2a2345678(g)(a)解:(a)静定结构。
零力杆端:023=-N ,014=-N ,043=-N ,012=-N 。
取2-3杆aP q =;取杆3-4a Pb qb N /34==-; 取1-2杆a Pb qb N /21==-;取1-4杆P qa N ==-41校核总体平衡,满足。
内力图:(b)静定结构。
零力杆端:0,0,0234312===---N N N .取总体平衡分析得:P N P N =-=--1241, 取2-3杆cP q 223=;取2-1杆P N =-21,cP q =; 从而c P q q q 2//23214==;取1-4杆1414/2N q c P P -=-=-;验证结构剩余局部3-4杆的平衡,满足。
内力图:PPb/aq=P/aP(c)静定结构。
零力杆端:0,0,0,0,0,0653654343212======------N N N N N N 分析总体平衡得:P N P N ==--4521, 对称结构,受对称载荷,内力具有对称性。
取1-2杆q=P/c;取2-3杆c Pb qb N /23==-; 取1-6杆c Pb N /16=-验证结构剩余局部3-6杆的平衡,满足。
内力图:PP P0.5P(d)静定结构。
零力杆端:,0,0,0,0,0,0,0,0,0,09687986545968949924323===========-----------N N N N N N N N N N N分析总体平衡得P N P N ==--6721,. 对称结构,受对称载荷,内力具有对称性。
a P q /=;取4-9杆,取3-4杆,a Pb qb N /34==-;取2-3杆,P qa N ==-32;取1-2杆,012=q ;取2-9杆,a Pb qb N /92-=-=-PPPb/cPPq=P/cq=P/cPb/c取结点2,12-N 32-N ,P N N ==--3212.验证其余局部结构平衡,满足。
内力图:(e)静定结构。
零力杆端:0,0,0,063345445====----N N N N取4-5杆得0=q ,即4-3-6-5板上无剪流分布。
从而043=-N ,则320N -=取总体平衡60M =∑,得1222N P -=-, 取结点2 得272P N -=,232P N -=- 取杆3-2,有02P q a=取杆6-3,有632P N -=-校核总体平衡,满足。
内力图:PPPPPPb/aPb/aq=P/aq=P/a(f)静定结构。
零力杆端:.0,00,0,0,0,0,02152233454568767========--------N N N N N N N N杆3-4 2P q a=杆2-3 232N q a P -=-=- 杆5-4 542N q a P -== 杆7-6 32Pq a=, 杆5-6 5632N q a P -== 杆8-7 8732N q a P -=-=- 节点5 有 522N P -= ,58N P -= 杆2-5 122q a q a P += ,得 1P q a= 杆1-2 211N q a P -=-=-杆1-8 8110N q a P -++= ,得812N P -=- 校核总体平衡,满足。
内力图:0.5PP(g)静定结构。
零力杆端:,0,0,0,0,0,0,05654348576877121========--------N N N N N N N N取2-3杆得P N =-32;取结点2得''2821,N P N P --==; 取1-2杆得12q a =;取1-7杆得P N 2217=-; 取3-4杆得aPq 221=; 取3-8杆得P a a Pa aq a a q N 22218338==⨯==--; 取结点8得P N 278=-;取7-8杆得aP q 222=; 取2-8杆得82128N q a N --=-+=; 取结点8得P N N 22858-=-=--;PP2P杆3-434q-==则38qa-=,544qa-=内力图:3-4空间薄壁结构的形状、尺寸及受载情况如下图,求各元件的内力并作内力图。
1H(a)(b)2PP2P(c) (d)HH 1(e) (f) 解:(a)静定结构,受自平衡力系。
零力杆端:2343321234144121873767267656487858856515--------------------N N N N N N N N N N N N N N N N N N N N 、、、、、、、、、、、、、、、、、、、由杆1-2,2-3,3-4,8-7,1-4,5-8,知六个面的剪流大小相等,记为q 取2-6杆,由P Lq=2得LP q 2=; 分别取其余各杆进行分析可得:P N P N P N P N =-==-=----73845162,,, 内力图:(b)静定结构。
零力杆端:843414437323326212412151,,,,,,,,,,,------------N N N N N N N N N N N N记面1-2-6-5内剪流为1q ,面2-3-7-6内剪流为2q ,面4-3-7-8内剪流为3q ,面1-4-8-5内剪流为4q取杆1-2 有1q q = , 取杆4-3 有3q q = 取杆2-3 有22231H q q qH == , 取杆1-4 有14142H q q q H == 取杆2-6 有21()H q qL P H += 得112()PH q L H H =+ 取杆1-5 有1512()0H qq L N H -++= 得1512PH N H -=- 取杆3-7 有273231()()H N q q L qq L P H -=-+=-+=- 取杆4-8 有11843422()()H PH N q q L q q L H H -=+=+= 内力图:PPPP(c)静定结构。