两个基本计数原理的教学设计

合集下载

两个基本计数原理教案

两个基本计数原理教案

第一章计数原理第1节两个基本计数原理教材分析本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法.学情分析高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。

但在合作交流意识欠缺,有待加强. 目标分析⑴知识与技能①掌握分类计数原理与分步计数原理的内容②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题.⑵过程与方法①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题⑶情感、态度、价值观树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣.教学重难点分析教学重点:分类计数原理与分步计数原理的掌握教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题.教法、学法分析教法分析:①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识.教学过程一、创设情境:对于分类计数原理设计如下情境(看多媒体):该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是:第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫.第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法?设计的意图是让学生更清楚的认识到总方法数是各类方法数之和.第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律?接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.第四步由教师板书分类计数原理(加法原理)并说明由于总方法数是各类方法数之和,树立学生平时学习生活中的讲道理意识.在分类计数原理中设计如下问题情境,问题2与问题1的背景一样:都是乘车方法的计数问题.对于问题2的处理办法是:第一步由学生自主尝试分析解答,但该问题并没有问题1般简单所以就有了第二步教师电脑屏幕显示分析及解题过程,利用多媒体显示动画,辅助分析,展示不同的走法,帮助学生更直观的解决问题,然后由感性进入理性,这也符合一般的认知规律.第三步问题引申将问题引申为若从兰州到天水新增一辆4号汽车,则有多少种乘车方法?设计的意图是:通过引申让学生更加清楚的认识到总方法数是各步方法数相乘.第四步提出问题:你能否对照分类计数原理,归纳概括出问题2蕴含的计数规律,并尝试命名,这样设计一可指导学生通过类比给出分步计数原理,渗透类比思想第二也可在自主探究中掌握本节重点,当然重点的突破也为难点突破打下了知识基础第五部教师板书:分步计数原理(乘法原理),由学生说明其称为乘法原理的理由.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点.探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力.探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成”由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”.探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结.探究结果:若完成一件事情有n类方法,则用分类计数原理.若完成一件事情有n个步骤,则用分步计数原理.设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力.探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结.探究结果:1、明确要完成什么事2、判断分类还是分步3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.(二)例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。

两个基本计数原理的教学设计

两个基本计数原理的教学设计

两个基本计数原理的教学设计一、地位作用计数原理是数学中的一个重要的研究对象,本章所学的排列组合是组合数学的初步知识,这种以计数为特征的内容在中学数学中是较为独特的,它不仅影响广泛,是学习统计概率以及高等数学有关分支的准备知识,而且由于它的思想方法灵活独特,也是发展学生抽象能力和逻辑思维能力的好素材。

本节课讲的两个基本计数原理是计数原理这一章的重点内容,它们不仅是推导排列数组合数计算公式的依据,而且其基本思想方法贯穿在解决本章应用问题的始终。

从思想方法的角度看,两个原理一个是将问题进行分类处理,另一个是将问题进行分步处理,从而达到分解问题、解决问题的目的。

因此对两个原理的理解掌握和运用,成为本章内容的一个关键。

二、教学目标引导学生通过典型的、学生熟悉的实例归纳地得出分类加法计数原理和分步乘法计数原理,初步学会区分“分类”和“分步” , 能够用两个计数原理解决简单的计数问题。

通过例题引导学生体会计数原理的基本思想及应用方法。

正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,体会理论来源于实践井应用于实践的辩证唯物主义观点. 从而发展学生的思维能力,培养学生分析问题和解决问题的能力。

三、内容分析分类计数原理和分步计数原理都是设计完成一件事的不同方法的总数,它们的区别在于分类计数原理是将办事方法分为若干类,每一类方法之间是相互独立的,用任一种方法都可以完成这件事情;而分步计数原理是将办事方法分成若干步进行,各个步骤相互依存,必须是各个步骤都完成了,这件事情才完成。

因此,分辨清楚办事方法是分类还是分步,是科学使用两个原理的前提,也是本节课的一个难点。

四、教学过程(一)引入课题:1、高二一班男生9 名.女生20 名.从中选出1 名男生和1名女生担任主题班会主持人,有多少不同的选法?2、把我们班的同学排成一排,共有多少种不同的排法?3、一次集会共50 人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?设计意图:在运用排列、组合方法时.经常要用到分类加法计数原理与分步乘法计数原理这节课,我们从具体例子出发来学习这两个原理.(二)讲授新课1、分类加法计数原理师生活动:(1)用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?(2)从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3 班,汽车有2 班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?结论:分类加法计数原理完成一件事有两类不同方案,在第 1 类方案中有m 种不同的方法,在第2 类方案中有n 种不同的方法‘那么完成这件事共有N=m+n. 种不同的方法.(3)如果完成一件事有三类不同方案. 在第1 类方案中有m1 种不同的方法,在第2 类方案中有m2 种不同的方法,在第3 类方案中有m3 种不同的方法,那么完成这件事共有多少种不同的方法?一般归纳(略)理解:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事2、分步乘法计数原理师生活动:⑷用前6个大写英文字母和1-9九个阿拉伯数字,以A1A2A3A4…,B1B2,的方式给教室里的座位编号,总共能编出多少个不同的号码a用列举法可以列出所有可能的号码(分析略)(5)你能说说这个问趣的特征吗结论:分步乘法计数原理完成一件事有两类不同方案,在第 1 类方案中有m 种不同的方法,在第2 类方案中有n 种不同的方法.那么完成这件事共有N=mxn 种不同的方法.如果完成一件事需要三个步骤,做第I 步有m1 种不同的方法,做第2 步有m2 种不同的方法,做第3 步有m3 种不同的方法,那么完成这件事共有多少种不同的方法?一般归纳(略)理解分步乘祛计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后甲才算完成这件事.(6)分类加法计数原理与分步乘法计数原理异同点?①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.是合作完成.(三)例题讲解:课本例1 到例4(四)练习P6 1 、2、3(五)小结 1 、分类加法计数原理2、分步乘法计数原理(六)作业。

两个基本计数原理优质课课件讲课稿

两个基本计数原理优质课课件讲课稿
由分步乘法计数原理,第一类的四位奇数共有
N1=3×3×2=18(个) 第二类办法 四位奇数的个位数字为3,这件事分三个步骤完成:
第一步 从1,2,4中选取一个数字做千位数字,有3种不同的选取方法; 第二步 从1,2,4中剩余的两个数字和0共三个数字中选取一个数字做百 位数字,有3种不同的选取方法; 第三步 从剩余的两个数字中,选取一个数字做十位数字,有2种不同的 选取方法;
N=5+3+2=10(种)。
(2)从书架上任取三本书,其中数学书、语文书、英语书各一本, 可以分三个步骤完成: 第一步 从书架上层任取一本数学书,有5种不同的方法; 第二步 从书架中层任取一本语文书,有3种不同的方法; 第三步 从书架下层任取一本英语书,有2种不同的方法。
由分步乘法计数原理,可得不同的取法共有 N=5×3×2=30(种)。
由分步乘法计数原理,第二类的四位奇数共有
N2=3×3×2=18(个) 最后,由分类加法计数原理,符合条件的四位奇数共有
N=N1+N2=18+18=36(个)
(3)解法二:完成“组成无重复数字的四位奇数”这件事,可以分 四个步骤:
第一步 确定个位数字:从1,3中选取一个数字做个位数字, 有2种不同的选取方法;
由分步乘法计数原理,符合条件的四位奇数共有
N=2×3×3 ×2 =36(个).
幻灯片 8
探究成果
1.应用两个基本计数原理解题时,首先必须弄明白怎 样就能“完成这件事”?其次要做到合理分类,准确分步, 按元素的性质分类,按事件发生的过程分步是计数问题的 基本方法。
(1)银行存折的四位密码?
(2)四位数?
幻灯片 9
(3)四位奇数?
幻灯片 10
解:(1)完成“组成无重复数字的四位密码”这件事,可以 分四个步骤:

高中数学苏教版选修2-3第1章《1.1.1两个基本计数原理》优质课教案省级比赛获奖教案公开课教师面试试讲教案

高中数学苏教版选修2-3第1章《1.1.1两个基本计数原理》优质课教案省级比赛获奖教案公开课教师面试试讲教案

高中数学苏教版选修2-3第1章《1.1.1两个基本计数原理》优质课教案省级比赛获奖教案公开课教师面试试讲教案
【名师授课教案】
1教学目标
1.能说出分类计数原理和分步计数原理;
2.会用分类计数原理或分步计数原理分析和解决一些简单的实际问题
2重点难点
区分两个基本计数原理,正确地选用两个计数原理解决实际问题
3教学过程
3.1第一学时
教学活动
1【导入】课前预习
完成一件事,有类方式,在第1类方式中有种不同的方法,在第2类方式中有种不同的方法,……,在第类方式中有种不同的方法,那么完成这件事共有
种不同的方法.分类计数原理又称为原理。

注:做一件事有类方式,每一类方式中的每一种方法均完成了这件事。

完成一件事,需要分成个步骤,做第1步有种不同的方法,在第2步有种不同的方法,……,在第步有种不同的方法,那么完成这件事共有种不同的方法.分类计数原理又称为原理。

注:做一件事要分个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事。

2【讲授】例题剖析
例1某班共有男生28名、女生20名,从该班选出学生代表参加校学代会。

(1)若学校分配给该班1名代表,则有多少种不同的选法?
(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法?。

最新人教版选修2-3高二数学1.1 2 基本计数原理和排列组合教学设计

最新人教版选修2-3高二数学1.1 2 基本计数原理和排列组合教学设计

一本周教内容:选修2—3 基本计数原理和排列组合二教目标和要求1 掌握分类加法计数原理和分步乘法计数原理,并能用两个计数原理解决一些简单的问题。

2 理解排列和组合的概念,能利用计数原理推导排列数公式,组合数公式,并解决简单的实际问题。

3 让生体会思想与方法,培养生分析问题,解决问题的能力,激发生习的兴趣。

注意问题的转化,分类讨论,注重数形结合,会从不同的切入点解决问题。

三重点和难点重点:两个基本计数原理的内容;排列和组合的定义,排列数和组合数公式及其应用难点:两个计数原理的应用和应用排列组合数公式解决实际的问题四知识要点解析[]1 两个基本计数原理(1)分类加法计数原理:做一件事情,完成它有类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的办法……在第类办法中有m种不同的方法,那么完成这件事情共有N=m1+m2+…+m种不同的方法(2)分步乘法计数原理:做一件事情,完成它需要分成个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的办法……做第个步骤有m种不同的方法,那么完成这件事情共有N=m1×m2×…×m种不同的方法说明:(1)两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法(2)考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。

如果完成一件事情有类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理(3)在解决具体问题,要弄清是“分步”,还是“分类”,还要弄清“分步”或者“分类”的标准是什么,注意分类,分步不能重复,不能遗漏2 排列问题(1)排列的定义:一般的,从个不同的元素中任取m (m ≤)个元素,按照一定的顺序排成一列,叫做从个不同元素中取出m 个元素的一个排列说明:①定义中包含两个基本内容:一是“取出元素”,二是“按一定顺序排列”②一个排列就是完成一件事情的一种方法③不同的排列就是完成一件事情的不同方法④两个排列相同,需要满足两个条件:一是元素相同,二是顺序相同⑤从个不同的元素全部取出的一个排列,叫做个不同元素的一个全排列,记作n n A(2)排列数的定义:从个不同的元素中任取m (m ≤)个元素的所有排列的个数,叫做从个不同元素中任取m 个元素的排列数。

人教版数学选修2-3第一章《计数原理》教案

人教版数学选修2-3第一章《计数原理》教案

XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。

那么,完成这件工作共有n1+n2+……+n k种不同的方法。

2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。

那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。

2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。

XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。

两个基本计数原理教案

两个基本计数原理教案

§1.1 两个基本计数原理【学习目标】:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;【学习过程】一、情境引入:问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。

一天中,火车有4 班, 汽车有2班,轮船有3班。

那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?问题2:如图,由A村去B村的道路有3条,由B村去C村的道路有2条。

从A村经B村去C 村,共有多少种不同的走法?二、新课导学:1. 分类计数原理(又称为加法原理):完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有_______________________________ 种不同的方法.2. 分步计数原理(又称为乘法原理):完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事有 __________________________种不同的方法.思考1:分类计数原理与分步计数原理的共同点,区别:三、例题欣赏:例1.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?例2.(1) 在图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2) 在图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法例3.为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码,在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个,这样的密码共有多少个?(3) 密码为4-6位,每位均为0到9这10个数字中的一个,这样的密码共有多少个?例4.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,不同的涂色方案有多少种?变题1:如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?变题2:若颜色是2种,4种,5种又会什么样的结果呢?【针对训练】班级姓名学号1.某中学的一幢5层教学楼有3处楼梯口,问从1楼到5楼共有___________不同的走法?2.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有__________种?3.四名研究生各从A 、B 、 C 三位教授中选一位作自己的导师,共有______种选法;三名教授各从四名研究生中选一位作自己的学生,共有_____种选法。

计数原理教案

计数原理教案

计数原理教案计数原理是数学中的一个重要概念,也是许多数学问题的基础。

通过计数原理,我们可以解决许多与排列、组合、概率等相关的问题。

本节课将围绕计数原理展开讲解,帮助学生深入理解这一概念,并掌握相关的解题方法。

一、基本概念。

1. 计数原理的概念。

计数原理是指在一系列事件中,每个事件发生的可能性个数的乘积等于所有事件发生的可能性个数的总数。

计数原理包括加法原理和乘法原理两种基本形式。

2. 加法原理。

加法原理是指如果一个事件可以分解成若干个互不相容的事件之一,那么这个事件发生的可能性个数等于各个互不相容事件发生的可能性个数之和。

3. 乘法原理。

乘法原理是指如果一个事件发生的可能性个数等于m,另一个事件发生的可能性个数等于n,那么这两个事件同时发生的可能性个数等于m与n的乘积。

二、排列与组合。

1. 排列的概念与计算方法。

排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列。

排列的计算方法是n(n-1)(n-2)...(n-m+1)。

2. 组合的概念与计算方法。

组合是指从n个不同元素中取出m(m≤n)个元素,不考虑元素的顺序。

组合的计算方法是C(n,m)=n!/(m!(n-m)!)。

三、应用实例分析。

1. 生日问题。

假设有5个人,问他们的生日都不相同的概率是多少?这是一个典型的排列问题,根据排列的计算方法可得出答案。

2. 球的排列组合问题。

有红、黄、蓝三种颜色的球各3个,问排成一排有多少种不同的排列方式?这是一个典型的排列问题,根据排列的计算方法可得出答案。

3. 奖学金发放问题。

某班级有10名同学,奖学金要发给其中的3名同学,问有多少种不同的发放方式?这是一个典型的组合问题,根据组合的计算方法可得出答案。

四、练习与作业。

1. 请同学们结合课上所学知识,完成《计数原理》相关练习题。

2. 布置作业,请同学们自行查阅相关资料,总结排列与组合的应用实例,并写出解题思路。

五、课堂小结。

本节课我们学习了计数原理的基本概念,包括加法原理和乘法原理,以及排列与组合的概念和计算方法。

计数原理教案 -完整版教学设计

计数原理教案 -完整版教学设计

10.1计数原理教案数学组徐牡丹 2017年11月【教学目标】1.正确理解分类计数原理与分步计数原理,会利用两个原理解决简单的实际问题。

2.提高利用数学思想方法分析、解决实际问题的能力。

3.通过分类计数原理与分步计数原理的发现过程,感受生活中的数学思想,提高数学的应用意识。

【教学重点】两个计数原理的理解。

【教学难点】分类计数原理与分步计数原理的区别。

【教学方法】本节课主要采用问题教学法和引导发现法。

老师创设问题情景,引导学生观察发现分类计数原理与分步计数原理,并通过例题讲解,使学生进一步深化对定理的理解。

最后通过抽签选择回答问题的方式,进行知识巩固。

【教学过程】一、创设情境,兴趣导入观察一段简短视频——丽水旅游宣传片片断,吸引学生注意力,接着提出问题:“彭书彬和胡陈俊从温州到丽水旅游,他们可以乘火车,也可以乘客车,火车每天有3班,汽车有2班.他们乘坐这两种交通工具从温州到丽水共有多少种不同的走法?”学生回答之后,教师引导解释,今天我们要学的内容就是统计完成一件事情有多少种方法,这里我们是要完成什么事情,怎样完成呢?若还有4辆出租车可供选择呢?二、动脉思考,探索新知一般地,完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m 2种不同的方法,……,在第n类方式中有m n种不同的方法。

那么完成这件事共有多少种不同的方法?学生讨论交流得到公式,教师板书:1.分类计数原理请学生根据分类计数原理完成例1,并进行解释:例1书架上有3本不同的语文书,2本不同的数学书,2本不同的英语书,(1)从书架上任取一本书,有多少种不同的结果;(2)从中任选三本不同科目的书,有多少种不同的结果?教师用树形图进行解释第(2)小题,再推广到一般情况:一般地,如果完成一件事,需要分成n个步骤,完成第1个步骤有种方法,完成第2个步骤有种方法,……,完成第n个步骤有种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有多少种不同的方法?学生讨论交流得到公式,教师板书:2.分步计数原理请学生根据分步计数原理尝试完成例2、例3,并进行解释:例2从宁柳凤、胡文文、王美、毛威、柳雪菲5个候选人中,选出2个人分别担任班长和团支部书记,会有多少种选举结果呢?例3手机密码通常由4个数字组成,那么可以设置多少个4位不同的密码?这两个例题稍难,教师从定义上加以引导三、运用知识,强化练习宝箱任务:教师用抽签助手随机抽取一位同学答题,该同学可选择适合自己的难度的宝箱,答对则获得相应过程学分,答错不得分。

基本计数原理教案

基本计数原理教案

书架上第1层放有4本不同的计算机书,第
本不同的文艺书. 从2类书中各取1本书,有多少种不同
?
练习
1.一件工作可以用两种方法完成,有5个人会用第一
种方法完成,另有4个人会用第二种方法完成,从这9个
人中选出一个人来完成这项工作,不同的选法共有____种,
说明:本教学设计通过电视节目《汉字英雄》引入,大大激发了学生的学习兴趣,然
后各用三个实例,层层递进,归纳出分类加法计数原理和分步乘法计数原理的特点和
定义,然后教师引导学生对两个原理进行辨析,最后用几个典型例题和练习是学生巩
固对概念的认识。

本设计充分发挥了教师的主导和学生的主体作用,利用多媒体辅助
教学手段和生活中的实例大大激发了学生的学习兴趣,很好地完成了教学目标。

教学设计1:3.1.1 第1课时 基本计数原理

教学设计1:3.1.1 第1课时 基本计数原理

3.1.1第1课时基本计数原理【教学目标】1.通过两个计数原理的学习,培养逻辑推理的素养.2.借助两个计数原理解决一些简单的实际问题,提升数学运算的素养.【教学重难点】1.通过实例,能归纳总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)【教学过程】一、情境引入二、新知初探1.分类加法计数原理完成一件事,如果有n类办法且:第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事,如果需要分成n个步骤,且:做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.思考:在分步乘法计数原理中,第1步采用的方法与第2步采用的方法之间有影响吗?[提示]无论第1步采用哪种方法,都不影响第2步方法的选取.拓展:两个计数原理的区别与联系:三、合作探究【例1】(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?[解](1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22(种).(2)法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二:按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).[规律方法]利用分类加法计数原理计数时的解题流程提醒:确定分类标准时要确保每一类都能独立的完成这件事.【例2】一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?[思路点拨]根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.[解]按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.[规律方法]利用分步乘法计数原理计数时的解题流程提醒:分步时要注意不能遗漏步骤,否则就不能完成这件事.[探究问题]如何区分一个问题是“分类”还是“分步”?[提示]如果完成这件事,可以分几种情况,每种情况中任何一种方法都可以完成任务,则是分类;而从其中任何一种情况中任取一种方法只能完成一部分任务,且只有依次完成各种情况,才完成这件事,则是分步.【例3】现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?[思路点拨][解](1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理,共有5+2+7=14(种)不同的选法.(2)分为三步:国画、油画、水彩画各有5种,2种,7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10(种)不同的选法;第二类是一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法;第三类是一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法.所以共有10+35+14=59(种)不同的选法.[规律方法]1.当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法.2.分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.3.混合问题一般是先分类再分步.[跟进训练]一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张手机卡供自己使用,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动卡和一张联通卡供自己使用,问一共有多少种不同的取法?[解](1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.四、课堂总结1.使用两个原理解题的本质 分类→将问题分成互相排斥的几类,逐类解决→分类加法计数原理分步→把问题分化为几个互相关联的步骤,逐步解决→分步乘法计数原理 2.利用两个计数原理解决实际问题的常用方法列举法――→种数较少将各种情况一一列举间接法――→正面复杂用总数减去不满足条件的种数五、课堂练习1.某校开设A 类选修课3门,B 类选修课4门,若要求从两类课程中选一门,则不同的选法共有( )A .3种B .4种C .7种D .12种【答案】C【解析】选择课程的方法有2类:从A 类课程中选一门有3种不同方法,从B 类课程中选1门有4种不同方法,∴共有不同选法3+4=7种.2.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .81 【答案】B【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B .3.某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A .1种B .2种C .3种D .4种 【答案】C【解析】分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.4.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【答案】12【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.5.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?解:(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).。

两个原理教学设计 (1)

两个原理教学设计 (1)

课题:1.1.1分类加法计数原理与分步乘法(问题导学+讲练结合)主备人:高二数学备课组赵宇一、高考考纲要求:通过实例,总结出分类加法计数原理,分步乘法计数原理,能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。

二、学习目标:通过实例,总结出分类加法计数原理,分步乘法计数原理,能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。

第一课时:三、教学过程【温故知新】问题串形式呈现——学生自主完成【学生动手】(标明学生的参与方式)1.学生自学课本,并完成课后练习和习题。

2.结合自己的独立思考,交流讨论自学成果4.听课,释疑,总结。

5.在教师点拨的相应环节完成练习册必要的练习。

【小组交流】(阅读或讨论等)1.小组之间相互检查温故知新中的掌握程度,写在笔记本上,下课后进行组内检查,并及时经行订正。

2.小组成员之间相互解释两个原理的区别3.教师点拨的相应部分,小组成员之间相互检查完成情况,并进行学习好的同学向没有完成的同学进行讲解。

【教师点拨】(环节突出)1.【知识拓展】使用两个原理解题的本质题型一分类加法计数原理的应用例1[2017·宁夏高二检测] 有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有多少种不同的取法?[跟踪训练1]高二(1)班有学生50人,男生30人;高二(2)班有学生60人,女生30人;高二(3)班有学生55人,男生35人.(1)从中选一名学生任学生会主席,有多少种不同选法?(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选一名学生任学生会体育部长,有多少种不同的选法?题型二分步乘法计数原理的应用例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b ∈M),问:(1)P(a,b)可表示平面上多少个不同的点?(2)P(a,b)可表示平面上多少个第二象限的点?(3)P(a,b)可表示多少个不在直线y=x上的点?[跟踪训练2]书架的第一层放有6本不同的数学书,第二层放有6本不同的语文书,第三层放有5本不同的英语书.(1)从这些书中任取一本数学、一本语文和一本英语共三本书的不同取法有多少种?(2)从这些书中任取三本,并且在书架上按次序排好,有多少种不同的排法?题型三两个计数原理的辨析例3某校高中三年级一班有优秀团员8人,二班有优秀团员10人,三班有优秀团员6人,学校组织他们去参观某爱国主义教育基地.(1)推选1人为总负责人,有多少种不同的选法?(2)每班选1人为小组长,有多少种不同的选法?(3)从他们中选出2个人管理生活,要求这2个人不同班,有多少种不同的选法?[跟踪训练3]有一项活动,需在3名老师、8名男同学和5名女同学中选部分人员参加.(1)若只需一人参加,有多少种不同的选法?(2)若需老师、男同学、女同学各一人参加,有多少种不同的选法?(3)若需一名老师、一名同学参加,有多少种不同的选法?四、教学反思课后反思:五、个案补充个案补充:课题:分类加法计数原理与分步乘法计数原理的综合应用(问题导学+讲练结合)主备人:高二数学备课组赵宇高考考纲要求:分类加法计数原理和分步乘法计数原理是处理计数问题的两种基本思想方法,教学中应引导学生根据计数原理分析,处理问题,而不是机械地套用公式。

两个计数原理的教学设计

两个计数原理的教学设计

两个计数原理的教学设计作者:汤华平来源:《启迪·下旬刊》2019年第12期一、教材内容两个计数原理是处理计数问题的最基本也是最重要的方法,它和我们生活的实际联系比较紧密,学生们很容易理解,学习过程会比较轻松。

二、教学目标:1、知识与技能:通过实际运用举例选择计数的方法,并能根据具体的问题选择恰当的原理解决问题。

2、過程与方法。

结合实际运用举例推导出两个计数原理,再回归到实际问题解决问题,是学生体验到发现数学,运用数学的过程。

3、情感态度价值观:数学的工具学科的作用,利用两个计数原理解决实际问题,从而提高学生学习数学,研究数学的兴趣。

收获一种成就感。

三、教学重难点教学重点:归纳得出两个计数原理,能应用两个计数原理解决简单的实际问题教学难点:根据实际问题选择合适的计数原理,分清两个计数原理的异同点。

四、教学组织与方法通过实际问题的举例引导学生从已有的方法中发现原理,归纳原理进一步深刻认识原理,在发现的过程中学会学习、探究从而提升思维,主要采用了启发式和探究式教学。

创设一个以教师引导为主导学生探究为主体的课堂五、教学流程创设情境--提出问题---探索尝试---引导归纳---拓展应用六、教学过程(1)问题①一套芭比娃娃的礼服有5套,套装有4套。

那么给这个芭比娃娃的穿衣搭配有多少种方式?问题②上面这套芭比娃娃还有3双靴子,现在打扮这个芭比娃娃有多少种搭配方式?上述问题比较简单,但它实际是我们数学中的一个很重要的问题----计数问题,在涉及到比较复杂的问题时我们有该怎么来计数呢?我们今天就来研究学习新的内容---计数原理。

设计意图:通过比较鲜艳简单的游戏让学生在头脑构建计数原理的模糊概念。

(2)实例探索,解决归纳得出计数原理一:分类计数原理实例1、我们去超市购物到收银台付账时,收银员问我们:现金,手机支付还是银行卡?即我们在付款时可以选择3种支付形式中的任意一种。

现在现金支付,手机支付微信支付,支付宝支付两种形式,银行卡支付有工行,农行和建行3种银行卡即银行卡支付有3中形式。

两个基本计数原理

两个基本计数原理

能种植同一种作物,不同的种植方法共有
种(以数字作答)
42
四、子集问题
规同律子:集n有元个集2 合n。A{a1,a2,...,an}的不
例:集合A={a,b,c,d,e},它的子集个数 为 ,真子集个数为 ,非空 子集个数为 ,非空真子集个数为

五、综合问题:
例4 若直线方程ax+by=0中的a,b可以从 0,1,2,3,4这五个数字中任取两个不同的数字, 则方程所表示的不同的直线共有多少条?
分析: 按密码位数,从左到右 依次设置第一位、第二位、第三 位, 需分为三步完成;
第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置
N = 10×10×10 = 103 种三位数的密码。
变式训练:各位上的数字不允许重复又怎样?
课堂小结
1、分类加法计数原理:完成一件事,有n类办法,在 第1类办法中有m1种不同的方法,在第2类办法中有m2 种不同的方法……在第n类办法中有mn种不同的方法. 那么 完成这件事共有 N m 1 m 2 种不 同m 的n方法.
最后结果,只须一种方法 这件事,只有各个步骤都完成
就可完成这件事。
了,才能完成这件事。
区别3 各类办法是互相独立的。 各步之间是互相关联的。
即:类类独立,步步关联。
3.如图,用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域 只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有 种。
分析:如图,A、B、C三个区域两两相邻,
A
B
A与D不相邻,因此A、B、C三个区域的颜色
两两不同,A、D两个区域可以同色,也可以不 同色,但D与B、C不同色。由此可见我们需根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个基本计数原理的教学设计
一、地位作用
计数原理是数学中的一个重要的研究对象,本章所学的排列组合是组合数学的初步知识,这种以计数为特征的内容在中学数学中是较为独特的,它不仅影响广泛,是学习统计概率以及高等数学有关分支的准备知识,而且由于它的思想方法灵活独特,也是发展学生抽象能力和逻辑思维能力的好素材。

本节课讲的两个基本计数原理是计数原理这一章的重点内容,它们不仅是推导排列数组合数计算公式的依据,而且其基本思想方法贯穿在解决本章应用问题的始终。

从思想方法的角度看,两个原理一个是将问题进行分类处理,另一个是将问题进行分步处理,从而达到分解问题、解决问题的目的。

因此对两个原理的理解掌握和运用,成为本章内容的一个关键。

二、教学目标
引导学生通过典型的、学生熟悉的实例归纳地得出分类加法计数原理和分步乘法计数原理,初步学会区分“分类”和“分步”,能够用两个计数原理解决简单的计数问题。

通过例题引导学生体会计数原理的基本思想及应用方法。

正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,体会理论来源于实践井应用于实践的辩证唯物主义观点.从而发展学生的思维能力,培养学生分析问题和解决问题的能力。

三、内容分析
分类计数原理和分步计数原理都是设计完成一件事的不同方法的总数,它们的区别在于分类计数原理是将办事方法分为若干类,每一类方法之间是相互独立的,用任一种方法都可以完成这件事情;而分步计数原理是将办事方法分成若干步进行,各个步骤相互依存,必须是各个步骤都完成了,这件事情才完成。

因此,分辨清楚办事方法是分类还是分步,是科学使用两个原理的前提,也是本节课的一个难点。

四、教学过程
(一)引入课题:
1、高二一班男生9名.女生20名.从中选出1名男生和1名女生担任主题班会主持人,有多少不同的选法?
2、把我们班的同学排成一排,共有多少种不同的排法?
3、一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?
设计意图:在运用排列、组合方法时.经常要用到分类加法计数原理与分步乘法计数原理这节课,我们从具体例子出发来学习这两个原理.
(二)讲授新课
1、分类加法计数原理
师生活动:
(1)用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?
(2)从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
结论:分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法‘那么完成这件事共有N=m+n.种不同的方法. (3)如果完成一件事有三类不同方案.在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?
一般归纳(略)
理解:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事
2、分步乘法计数原理
师生活动:
(4)用前6个大写英文字母和1-9九个阿拉伯数字,以A1A2A3A4…,B1B2…的方式给教室里的座位编号,总共能编出多少个不同的号码a
用列举法可以列出所有可能的号码(分析略)
(5)你能说说这个问趣的特征吗
结论:分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=mxn种不同的方法.
如果完成一件事需要三个步骤,做第I步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?
一般归纳(略)
理解分步乘祛计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后甲才算完成这件事.
(6)分类加法计数原理与分步乘法计数原理异同点?
①相同点:都是完成一件事的不同方法种数的问题
②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.是合作完成.
(三)例题讲解:课本例1到例4
(四)练习P6 1、2、3
(五)小结1、分类加法计数原理
2、分步乘法计数原理
(六)作业。

相关文档
最新文档