罗尔定理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
罗尔定理
如果函数满足
1.在闭区间上连续;
2.在开区间内可导;
3.在区间端点处的函数值相等,即,
那么在内至少有一点,使得。
这个定理称为罗尔定理。
证明
首先,因为在闭区间上连续,根据极值定理,在上有最大值和最小值。
如果最大值和最小值都在端点或处取得,由于,显然是一个常数函数。
那么对于任一点,我们都有。
现在假设在处取得最大值。
我们只需证明在该点导数为零。
取,由最大值定义,那么。
令,则。
因为在处可导,所以我们有。
取,那么。
这时令,则有
,所以。
于是,。
在处取得最小值的情况同理。
例子
第一个例子
半径为r的半圆
考虑函数
(其中r> 0。
)它的图像是中心位于原点的半圆。
这个函数在闭区间[−r,r]内连续,在开区间(−r,r)内可导(但在终点−r和r处不可导)。
由于f(−r) = f(r),因此根据罗尔定理,存在一个导数为零的点。
第二个例子
绝对值函数的图像
如果函数在区间内的某个点不可导,则罗尔定理的结论不一定成立。
对于某个a> 0,考虑绝对值函数:
那么f(−a) = f(a),但−a和a之间不存在导数为零的点。
这是因为,函数虽然是连续的,但它在点x= 0不可导。
注意f的导数在x= 0从-1变为1,但不取得值0。
推广形式
第二个例子表明罗尔定理下面的一般形式:
考虑一个实值,在闭区间[a,b]上的连续函数,并满足f(a) = f(b). 如果对开
区间(a,b)内的任意x,右极限
而左极限
在扩展的实数轴 [−∞,∞]上存在,那么开区间(a,b)内就存在c使得这两个极限和
中其中一个≥0,另一个≤0 (在扩展的实数轴上)。
如果对任何x左极限和右极限都相同, 那么它们对c也相等,于是在c处f的导函数存在且等于零。