智能汽车的控制

合集下载

智能汽车控制系统

智能汽车控制系统

智能汽车控制系统在当今科技飞速发展的时代,汽车已经不再仅仅是一种交通工具,而是逐渐演变成了一个智能化的移动终端。

智能汽车控制系统作为实现汽车智能化的核心技术,正引领着汽车行业的深刻变革。

智能汽车控制系统是一个复杂而又高度集成的系统,它涵盖了多个方面的技术和功能,旨在为驾驶者提供更加安全、舒适和便捷的驾驶体验。

从功能上来看,智能汽车控制系统主要包括动力控制、制动控制、转向控制、悬架控制以及各种辅助驾驶系统等。

动力控制系统负责优化发动机和电动机的工作状态,以实现最佳的燃油经济性和动力性能。

制动控制系统不仅要确保车辆在制动时的稳定性和安全性,还需要与其他系统协同工作,实现诸如自动紧急制动等高级功能。

转向控制系统则要使车辆的转向更加精准和灵活,适应不同的驾驶场景。

悬架控制系统能够根据路况和驾驶模式自动调整悬架的硬度和高度,提升车辆的舒适性和操控性。

而辅助驾驶系统,如自适应巡航控制、车道保持辅助、自动泊车等,则大大减轻了驾驶者的负担,提高了行车的安全性。

在技术实现方面,智能汽车控制系统依赖于大量的传感器、控制器和执行器。

传感器就像是汽车的“眼睛”和“耳朵”,能够实时感知车辆的状态、周围的环境以及驾驶者的操作。

常见的传感器包括车速传感器、加速度传感器、陀螺仪、摄像头、雷达等。

这些传感器收集到的信息会被传输到控制器,控制器就像是汽车的“大脑”,它会对这些信息进行快速处理和分析,并根据预设的算法和策略发出控制指令。

执行器则负责将控制指令转化为实际的动作,比如调整发动机的输出功率、改变制动压力、转动方向盘等。

为了确保智能汽车控制系统的可靠性和安全性,系统的设计和开发需要遵循严格的标准和规范。

在硬件方面,要选用高质量、高可靠性的元器件,并进行严格的测试和验证。

在软件方面,代码的编写要遵循规范,进行充分的测试和调试,以避免出现漏洞和错误。

同时,还需要建立完善的故障诊断和容错机制,当系统出现故障时,能够及时采取措施,确保车辆的安全。

智能汽车的远程控制功能

智能汽车的远程控制功能

智能汽车的远程控制功能近年来,智能科技的飞速发展改变了许多行业,其中包括汽车行业。

智能汽车的出现为我们的出行带来了许多便利和安全保障。

其中,远程控制功能作为智能汽车的重要特性之一,具备着令人兴奋的前景和无限可能。

本文将针对智能汽车的远程控制功能,探讨其技术原理、应用场景以及对我们生活的影响。

一、智能汽车远程控制功能的技术原理智能汽车的远程控制功能依赖于高科技的物联网技术和先进的车载系统。

通过将车辆与互联网连接,车主可以通过手机应用程序或其他终端设备,实现对汽车的远程监控和操作。

这是通过车联网系统实现的,该系统由车载装置、云平台和手机应用程序三个部分组成。

首先,车载装置是智能汽车远程控制的关键部件,它通过内部的传感器和芯片技术,可以监测车辆的状态和行驶信息,并将这些数据传输到云平台。

其次,云平台是连接车辆和手机应用程序的桥梁,它将车载装置传输上来的数据进行处理和分析,并将结果发送到手机应用程序。

云平台还拥有强大的数据存储和处理能力,可以为车主提供更加智能化的服务。

最后,手机应用程序是车主与智能汽车之间的纽带,通过手机应用程序,车主可以实时了解车辆的位置、车辆状态,以及进行远程操作,例如远程锁车、解锁、启动空调等。

二、智能汽车远程控制功能的应用场景智能汽车的远程控制功能在许多方面都可以得到应用。

以下列举几个典型的应用场景。

1. 远程预约服务:车主可以通过手机应用程序提前预约汽车服务,例如定期保养和维修,不需要亲自到店面进行操作,更加便捷省时。

2. 远程监控和防盗:车主可以实时监控车辆的位置和行驶状态,一旦发生异常情况,如被盗,车主可以立即追踪和报警,大大增加了车辆的安全性。

3. 远程控制车辆功能:通过手机应用程序,车主可以远程启动和熄火,调节空调、音乐以及座椅等设置,提前为乘车做好舒适准备。

4. 远程充电:智能汽车的远程控制功能还可以用于远程充电,车主可以通过手机应用程序控制汽车是否开始充电,并监控充电进度。

新能源汽车的智能控制系统研究

新能源汽车的智能控制系统研究

新能源汽车的智能控制系统研究在当今社会,新能源汽车作为汽车行业的新兴力量,正以其环保、高效的特点逐渐改变着人们的出行方式。

而在新能源汽车的众多关键技术中,智能控制系统无疑扮演着至关重要的角色。

新能源汽车的智能控制系统,就如同汽车的“大脑”,负责协调和管理车辆的各个部分,以实现安全、高效、舒适的驾驶体验。

它涵盖了多个方面,包括能源管理、动力控制、自动驾驶辅助、车辆通信等。

首先,能源管理是智能控制系统的核心任务之一。

新能源汽车通常依赖电池作为能源存储装置,如何有效地管理电池的充电和放电,以延长电池寿命、提高能源利用效率,是智能控制系统需要解决的重要问题。

这就需要对电池的状态进行实时监测,包括电量、电压、温度等参数,根据车辆的行驶状态和路况,智能地调整充电策略和动力输出。

例如,在车辆行驶过程中,如果预测到前方有长下坡路段,智能控制系统可以提前调整动力输出,利用车辆的惯性进行充电,从而回收能量,提高能源利用效率。

动力控制是另一个关键方面。

新能源汽车的动力系统与传统燃油汽车有很大的不同,其电机的输出特性需要更加精确的控制。

智能控制系统要能够根据驾驶员的操作意图,如加速、减速、转向等,迅速而准确地调整电机的输出扭矩和转速,以实现平稳、敏捷的动力响应。

同时,还需要考虑不同驾驶模式下的动力需求,如经济模式、运动模式等,为驾驶员提供多样化的选择。

自动驾驶辅助功能也是新能源汽车智能控制系统的重要组成部分。

通过各种传感器,如摄像头、雷达、激光雷达等,收集车辆周围的环境信息,智能控制系统可以识别道路标志、交通信号、其他车辆和行人等,并做出相应的决策和控制。

例如,自适应巡航控制可以根据前方车辆的速度自动调整本车的速度,保持安全距离;自动泊车功能可以帮助驾驶员在狭小的空间内轻松完成泊车操作。

这些功能不仅提高了驾驶的便利性,还能在一定程度上减少交通事故的发生。

车辆通信技术在智能控制系统中也发挥着重要作用。

新能源汽车可以通过车联网与外部世界进行通信,获取实时的交通信息、天气预报等,为驾驶决策提供参考。

智能汽车的智能车辆操控

智能汽车的智能车辆操控

智能汽车的智能车辆操控智能汽车的智能车辆操控是指通过先进的技术手段和系统,实现对汽车的操控和控制,以提升行车安全性、舒适性和便利性。

随着科技的不断发展和创新,智能汽车的智能车辆操控功能已经取得了长足的进步。

本文将介绍智能汽车的智能车辆操控的原理、技术和应用。

一、智能汽车的智能车辆操控原理智能汽车的智能车辆操控基于先进的感知、计算和控制技术,通过感知和收集车辆周围环境信息,进行数据分析和处理,最终实现车辆的智能操控。

具体而言,智能车辆操控原理主要包括以下几个方面:1.感知系统:智能汽车通过搭载各类传感器,如雷达、摄像头、激光器等,对周围环境进行感知和数据采集。

通过感知系统的数据反馈,智能汽车可以获取道路、车辆和行人等各类环境信息。

2.数据处理与分析:感知系统采集到的数据通过车载计算机进行处理和分析。

该计算机使用机器学习、人工智能等技术,对感知数据进行模式识别、目标跟踪等算法处理,以达到对环境信息的准确理解。

3.决策与规划:基于对环境信息的准确理解,智能汽车的车载计算机会进行决策和规划。

根据预设的目标和要求,计算机会生成相应的行车决策和路径规划,以保证车辆行驶的安全性和效率。

4.执行与控制:在行车决策和路径规划生成后,智能汽车通过车载控制系统对车辆进行精确控制。

控制系统会对汽车的加速、刹车、转向等动作进行实时控制和调整,以确保车辆按照规划路径行驶。

二、智能汽车的智能车辆操控技术智能汽车的智能车辆操控涉及众多技术和系统,下面介绍几项关键技术:1.自动驾驶技术:自动驾驶技术是智能汽车操控领域的核心技术之一。

它是基于感知、决策和控制的一体化系统,能够实现车辆在不需要人类干预的情况下进行自主行驶。

2.车联网技术:车联网技术将车辆与互联网相连接,实现车辆与车辆、车辆与道路设施等信息的交互与共享。

通过车联网技术,智能汽车可以实现与其他车辆的协同操控和信息交互。

3.远程控制技术:远程控制技术使得车主可以通过智能手机或其他终端设备对汽车进行远程操控。

智能车辆中的智能控制技术

智能车辆中的智能控制技术

智能车辆中的智能控制技术随着人工智能和自动控制技术的不断发展,汽车行业的智能化越来越成为一种趋势。

智能车辆可以说是在智能化与汽车领域的结合,是未来汽车方向发展的必然趋势。

智能控制技术是智能车辆中的重要组成部分,本文就围绕着智能控制技术在智能车辆中的应用展开论述。

1.智能控制技术的概念智能控制指的是自动控制技术的一种,即通过先进的计算机技术将一些确定的偏差与过程模型进行分析处理,最终实现系统的自我修正、优化或者自适应,实现智能化的自动控制。

在工业自动化、机器人技术、控制理论等方面都有着广泛的应用。

2.智能控制技术在智能车辆中的应用智能车辆的智能控制技术除了传统的自动控制技术,还涵盖了一些新型技术,比如语音控制技术、人工智能技术、图像识别技术、实时网络通信技术等。

下面分别介绍这些技术在智能车辆中的应用。

2.1 语音控制技术语音控制技术拥有非常广阔的应用前景,主要用在人机交互中。

可以让驾驶员免去操控汽车各项功能的麻烦,更集中精力注意交通安全,是智能车辆中的一项重要技术。

比如,驾驶员可以通过语音控制开门、关门、打开空调、调节音量等,还可以通过语音输入导航目的地,无需在行驶途中进行手动操作。

语音控制技术的广泛应用,不仅方便了驾驶人员,同时也提高了整个驾驶过程的安全性。

2.2 人工智能技术人工智能技术是目前研究最为广泛的技术,包括机器学习、神经网络等,其应用非常广泛。

在智能车辆中,人工智能技术可以通过多个传感器、计算机处理和通信系统共同实现汽车的全面自动驾驶,是制造智能车辆的重要技术之一。

2.3 图像识别技术图像识别技术可以识别通过车载摄像头拍摄的道路信息、路标、障碍物等,将最终的结果输出给驾驶员或者自动控制系统进行决策。

借助图像识别技术,可以使驾驶员更清楚地了解周围的交通状况,提高驾驶安全性。

2.4 实时网络通信技术智能车辆之间的实时通信,可以通过实时网络通信技术实现。

这项技术可以让车辆互相通信,对危险和交通信息实时共享,大大增强了车辆的自主决策能力和抵御风险的能力。

智能车辆远程控制 远程监控与操作车辆的技术

智能车辆远程控制 远程监控与操作车辆的技术

智能车辆远程控制远程监控与操作车辆的技术智能车辆的迅猛发展正引领着汽车行业的新潮流。

随着科技的日益进步,人们对于智能化汽车的需求也在不断增加。

智能车辆的远程控制及远程监控与操作技术,成为了现代汽车技术领域的热门话题。

一、智能车辆远程控制技术的概念与应用智能车辆远程控制技术指的是通过无线通信技术,使得车主可以在远离车辆的情况下,通过手机或其他终端设备对车辆进行控制。

这项技术可以让车主在任何时间、任何地点都能够方便地实现对车辆的控制。

例如,车主可以通过手机App锁定车辆、解锁车门、开启空调以及启动发动机等操作。

智能车辆远程控制技术的应用范围广泛,不仅可以提升车主对车辆的控制感受,还能为车主提供更加便捷的用车体验。

例如,车主可以在离开办公室前提前打开车辆的空调,以确保在车辆到达时车内温度已经适宜。

此外,远程控制还能使得车辆更加安全,当车辆发生盗窃时,车主可以立即通过远程控制将车辆锁定,阻止盗贼进一步操作。

二、智能车辆远程监控技术及其应用除了远程控制,智能车辆的远程监控技术也备受关注。

通过网络和传感器等技术手段,车主可以实时监测车辆的状态,包括位置、速度、燃油消耗、车辆健康状况等等。

这项技术让车主能够更好地了解车辆的实时状况,便于做出相应的调整和安排。

智能车辆远程监控技术的应用非常广泛。

车主可以凭借远程监控技术来追踪车辆的行驶轨迹,确保车辆没有发生被盗或违规使用的情况。

同时,车主还可以通过远程监控技术了解车辆的燃油消耗情况,以便合理安排加油计划。

此外,如果车辆发生故障,车主可以通过远程监控及时得知并采取相应的应对措施,避免进一步损坏。

三、智能车辆远程操作技术的实现与安全性智能车辆远程操作技术的实现依赖于多种技术手段,如无线通信、云计算、物联网等等。

通过这些技术,车主可以轻松地通过手机或其他终端设备与车辆进行远程交互。

然而,随着智能车辆的发展,安全性问题也日益凸显。

为了确保智能车辆远程操作的安全性,汽车制造商和科技公司必须加强对车辆系统的安全防护。

电动汽车的智能远程控制

电动汽车的智能远程控制

电动汽车的智能远程控制随着科技的发展和环保意识的增强,电动汽车在近年来逐渐受到全球消费者的青睐。

相较传统燃油车,电动汽车具备清洁、低噪音等优势,使其成为了未来出行的重要选择。

然而,作为新兴的交通工具,电动汽车也面临着一些挑战,例如续航里程不够长、充电时间较长等问题。

为了解决这些问题,智能远程控制技术成为了电动汽车领域的研究热点。

本文将探讨电动汽车的智能远程控制技术及其在提升用户体验方面的作用。

一、智能远程控制的定义与原理智能远程控制是指通过无线通信技术将用户与电动汽车相连,实现对电动汽车的控制和监测。

一般来说,智能远程控制系统由终端设备(如手机、平板电脑等)、通信网络和电动汽车控制系统组成。

用户可以通过手机等设备,远程监测和控制电动汽车的状态、充电进度、车内温度等。

而控制信号则通过通信网络传送到电动汽车控制系统,进而实现各项操作。

智能远程控制技术的实现离不开网络技术和智能化设备的支持。

目前,主要的传输技术有GSM、CDMA、4G等。

在智能终端设备方面,用户可以通过简单的图形化操作界面实现对电动汽车的远程控制,如开关车门、启动引擎、调节空调等。

此外,还可以通过智能手机上的应用程序,实时查看电动汽车的定位、电量等信息。

二、智能远程控制的功能1.远程监测:用户可以随时随地通过智能终端设备,远程查看电动汽车的状态和运行情况,如车辆位置、电池电量、里程等。

这使得用户可以及时掌握车辆的动态,方便出行安排。

2.远程控制:用户可以通过智能终端设备,远程控制电动汽车的启动、熄火、开关车门等操作。

这使得用户无需亲自到达车辆旁边,大大提升了使用便利性。

3.远程预设:用户可以在智能终端设备上设置电动汽车的充电时间、空调温度等参数,使车辆在指定时间和条件下自动进行充电或调节温度。

这样不仅节省了用户的时间,还能合理利用电力资源。

4.远程故障排查:电动汽车的故障排查可以通过智能远程控制系统进行。

用户可以通过终端设备向汽车控制系统发送故障信息,并获得汽车系统的反馈,从而能够及时定位和解决问题。

简述智能汽车自动驾驶的控制方法

简述智能汽车自动驾驶的控制方法

简述智能汽车自动驾驶的控制方法本文将针对智能汽车自动驾驶的控制方法进行简要分析和探究,旨在有效提升汽车自动驾驶技术的应用效果,为智能汽车创造更加广阔的发展空间。

标签:智能汽车;自动驾驶;控制方法引言随着人们生活水平的不断提升,对于出行工具的选择提出了更高的要求。

现代科学技术的发展使得越来越多的智能汽车被广泛应用于人们的日常生活,而自动驾驶技术的应用与发展更加提升了智能汽车的使用性能。

通过智能汽车自动驾驶的控制系统能够有效满足智能汽车自动驾驶的需求,明确自动驾驶控制的方法,并在仿真验证分析中,有效提升智能汽车自动控制的效果,提高汽车自动驾驶的水平。

1 智能汽车自动驾驶车辆控制模型的构建在对智能汽车自动驾驶系统监督的过程中,系统的控制运行中转向和转角与对车辆的控制存在一定关系,因此,要想提升汽车运行控制的监督质量,需要在建立智能汽车自动驾驶系统控制模型的过程中,根据道路行车的实际控制情况、汽车方向盘转角的控制和汽车间距的控制构建模型。

接下来,根据智能汽车自动驾驶控制的实际需求,根据大地坐标系将整个汽车驾驶控制中的坐标体系模型进行构建,并对坐标系的控制数据模型进行适当调整,确保在对模型的控制与调整工作中有效提升对智能汽车自动驾驶控制系统的控制效果。

在对系统描述功能进行控制的过程中,能够对智能汽车自动驾驶控制系统进行监督。

根据图1可看出,在构建数据模型时,严格根据汽车仿真系统的构建要求,对汽车自动驾驶控制系统控制中的数据和模型做出了有效调整,并根据智能汽车自动驾驶控制的实际需求,开展车辆自动驾驶控制中的行驶模型的设计工作,同时,对汽车自动驾驶系统控制的过程中,对汽车的控制状况、道路情况以及仿真信息进行全面分析,确保在智能汽车自动驾驶的过程中,使汽车对前方路况的监督状态以及系统的控制反馈为一个整体,并通过调节汽车的反馈系统对汽车的智能化监督控制体系进行相应调整,进而提升对整个车辆的自动控制效果。

2 智能汽车自动驾驶车辆道路状况的识别在智能汽车自动驾驶过程中,需要明确掌握前方道路的具体情况,因此,需要通过对道路状况信息的处理与识别,确保汽车运行的安全性和稳定性。

智能车辆运动控制研究综述【可编辑全文】

智能车辆运动控制研究综述【可编辑全文】

可编辑修改精选全文完整版
智能车辆运动控制研究综述
智能车辆运动控制是指通过计算机技术和控制理论,对车辆的运动进行精确控制,以实现更高效、更安全、更舒适的驾驶体验。

随着人工智能技术的不断发展,智能车辆运动控制也得到了越来越广泛的应用和研究。

智能车辆运动控制的研究主要包括以下几个方面:
一、车辆动力学建模
车辆动力学建模是智能车辆运动控制的基础。

通过对车辆的结构、动力系统、悬挂系统等进行建模,可以准确地描述车辆的运动特性,为后续的控制算法提供基础数据。

二、车辆运动控制算法
车辆运动控制算法是智能车辆运动控制的核心。

常见的控制算法包括PID控制、模糊控制、神经网络控制等。

这些算法可以根据车辆的运动状态和目标状态,实时调整车辆的加速度、转向角度等参数,以实现精确控制。

三、车辆感知与决策
车辆感知与决策是智能车辆运动控制的重要组成部分。

通过激光雷达、摄像头、超声波等传感器,可以实时获取车辆周围的环境信息,
包括道路状况、障碍物位置等。

基于这些信息,车辆可以做出相应的决策,如避让障碍物、变道超车等。

四、车辆自主导航
车辆自主导航是智能车辆运动控制的高级应用。

通过GPS、地图等技术,车辆可以实现自主导航,即在不需要人为干预的情况下,按照预设的路线行驶。

这种技术可以大大提高驾驶的安全性和舒适性。

智能车辆运动控制是一项复杂而又重要的技术,它可以为驾驶者提供更加安全、舒适的驾驶体验,也可以为交通运输行业带来更高效、更环保的解决方案。

随着技术的不断发展,相信智能车辆运动控制将会在未来得到更广泛的应用和发展。

智能车辆的车身控制系统

智能车辆的车身控制系统

案例四:智能公交车的安全与舒适性控制
总结词
通过对智能公交车的安全与舒适性控制系统的设计和 实现进行深入探讨,提出了一种基于传感器融合和数 据挖掘技术的智能公交车安全与舒适性控制系统方案 。
详细描述
该方案包括车辆运行状态监测系统、乘客行为监测系统 、安全预警系统、舒适性控制系统等模块。车辆运行状 态监测系统通过对车辆的运行状态进行实时监测,为安 全预警系统和舒适性控制系统提供数据支持;乘客行为 监测系统通过视频监控和数据分析,实现对乘客行为的 监测和预警;安全预警系统通过数据挖掘和机器学习等 技术,实现对车辆安全隐患的预警和报警;舒适性控制 系统则通过对车辆内部环境的调节和控制,提高乘客的 乘坐舒适度。
电动化程度更高
电池技术的进步
随着电池技术的不断进步,未来的智能车辆将具备更长的续航里 程和更快的充电速度。
电动驱动系统的发展
电动驱动系统的发展将提高智能车辆的动力性能和能效。
智能化能源管理
通过智能化能源管理,实现电池荷电状态预测、充电策略优化等 功能,提高能源利用效率。
共享化程度更高
自动驾驶出租车
06

案例一:自动驾驶汽车的控制策略
总结词
通过分析自动驾驶汽车的控制系统,探讨了 自动驾驶汽车在行驶过程中如何实现稳定控 制、避障、路径规划等关键技术。
详细描述
自动驾驶汽车在行驶过程中需要实现稳定控 制、避障、路径规划等技术,这些技术的实 现需要通过传感器、控制器等设备进行信息 采集、处理和决策。其中,稳定控制需要考 虑车辆的动力学模型和行驶环境,避障需要 考虑障碍物的位置、大小和速度等信息,路 径规划需要考虑行驶路径的最优选择和实时
提高传感器精度
总结词
提升感知能力

车辆智能控制技术研究

车辆智能控制技术研究

车辆智能控制技术研究车辆智能控制技术是当前汽车行业的发展趋势,它从根本上提高了汽车的安全性、舒适性和可靠性。

现在,很多车型都已经配备了基于智能化技术的辅助系统,如行车辅助功能、自动刹车系统、自动驾驶系统等。

在未来,这些技术将得到更广泛的应用,给人们的出行带来更加便捷、智能化的体验。

在智能汽车领域,车辆智能控制技术是至关重要的一环。

它涵盖的内容非常广泛,包括车辆安全控制系统、车辆底盘控制系统、车身控制系统、能源管理系统等等。

下面,让我们就这些系统进行分析和探讨。

一、车辆安全控制系统车辆安全控制系统是车辆智能控制技术中最基本的一部分。

它包括了车辆稳定性控制系统、制动力分配系统、防侧滑系统、牵引力控制系统、主动转向系统等子系统。

这些子系统通过传感器感知汽车参数,然后通过控制单元对车辆进行控制,以提高车辆的稳定性和安全性。

在这些子系统中,最重要的是车辆稳定性控制系统。

它是通过感知车辆的轮速、横向加速度等参数,并对车辆进行控制,避免车辆在高速行驶、弯道行驶等情况下出现过度横向偏移或自旋的现象。

这个系统不仅给驾驶员带来了更高的行车安全感,也扩展了车辆在不同路况下的使用范围。

二、车辆底盘控制系统车辆底盘控制系统是车辆智能控制技术中另一个重要的子系统。

它包括了悬挂系统、转向系统、制动系统、轮胎温度、气压监测系统等子系统。

这些子系统与车辆安全控制系统相似,也是通过传感器感知车辆参数,并控制车辆,使车辆在高速行驶、急转弯等情况下更加稳定且易驾驶。

其中,制动系统是车辆底盘控制系统中最重要的一部分。

它通过控制刹车液压油的入口和出口,以使车辆在制动过程中更加平衡。

现代汽车中的电子制动系统可以根据车速、加速度、横向加速度等参数来预判车辆状况,进而控制刹车液压系统的工作,让车辆的制动更加平稳。

三、车身控制系统车身控制系统是车辆智能控制技术中最侧重的子系统。

它包括了车身参数监测系统、车身运动控制系统、车内环境控制系统等子系统。

电动汽车的智能控制系统设计与实现

电动汽车的智能控制系统设计与实现

电动汽车的智能控制系统设计与实现在当今的交通领域,电动汽车正逐渐成为主流选择。

其高效、环保的特点使其在应对能源危机和环境问题方面具有显著优势。

而电动汽车的性能和用户体验在很大程度上取决于其智能控制系统的设计与实现。

电动汽车的智能控制系统就像是汽车的“大脑”,它负责协调和管理各个部件的工作,以实现高效的能源利用、稳定的行驶性能和舒适的驾乘体验。

这个系统涵盖了多个方面,包括电池管理、电机控制、车辆动态控制以及人机交互等。

首先,电池管理是智能控制系统中的关键环节。

电池作为电动汽车的能量来源,其性能和寿命直接影响着车辆的续航里程和整体可靠性。

一个优秀的电池管理系统需要能够精确监测电池的电压、电流、温度等参数,并据此对电池的充电和放电过程进行智能控制。

例如,在充电时,系统要根据电池的状态选择合适的充电模式和电流大小,以避免过充和过热对电池造成损害。

在放电过程中,要合理分配电能,确保在各种行驶条件下都能提供足够的动力,同时最大限度地延长电池的使用寿命。

电机控制是另一个核心部分。

电动汽车的电机需要在不同的转速和负载条件下提供稳定而高效的动力输出。

智能控制系统通过先进的算法和控制策略,实现对电机的精确调速和转矩控制。

这不仅能够提高车辆的加速性能和行驶效率,还能降低电机的能耗和噪音。

例如,在车辆起步时,电机需要瞬间输出较大的转矩,而在高速行驶时,则要保持较低的能耗和稳定的转速。

智能控制系统能够根据驾驶员的操作和车辆的行驶状态,实时调整电机的工作参数,以满足各种行驶需求。

车辆动态控制则关系到行驶的安全性和舒适性。

它包括制动控制、悬挂调节、转向辅助等方面。

在制动过程中,智能控制系统可以协调机械制动和电机制动,实现能量回收的同时确保制动的平稳和有效。

悬挂系统可以根据路面状况和车速自动调整阻尼,提高车辆的行驶稳定性和乘坐舒适性。

转向辅助功能可以根据车辆的速度和转向角度,提供适当的助力,使驾驶更加轻松和精准。

人机交互也是智能控制系统的重要组成部分。

汽车智能远程控制技术随时随地掌控车辆

汽车智能远程控制技术随时随地掌控车辆

汽车智能远程控制技术随时随地掌控车辆随着科技的不断进步,汽车智能化已经成为了时代的潮流。

其中,汽车智能远程控制技术便是造车企业们积极研发的重要方向之一。

这一技术使得车主能够通过手机或其他终端设备,随时远程控制车辆的相关功能,极大地提升了驾驶的便利性、舒适性和安全性。

下面将为大家详细介绍汽车智能远程控制技术的发展现状及其带来的便利。

一、技术发展现状1. 无线通信技术的进步汽车智能远程控制技术主要依托于无线通信技术的发展。

随着5G 技术的逐渐成熟,车辆与终端设备之间的通信变得更加稳定和高效,确保了远程控制指令的实时传达和执行。

2. 车载智能设备的普及越来越多的汽车生产商将智能设备集成到车辆中,使得车主可以通过手机APP或其他终端设备实现对车辆的远程控制。

这意味着车主可以在任何场合随时掌控车辆,无论是开启空调、调节座椅温度,还是锁车、寻车等,一切尽在掌握。

二、技术应用场景1. 远程启动和热车在寒冷的冬季,车辆无故停放在户外时,车内温度极低,为了提供更好的驾驶体验,许多车辆都配备了远程启动和热车功能。

车主可以在家中通过手机APP远程启动车辆,提前将车内温度调至理想状态,上车时便能享受温暖舒适的驾驶环境。

2. 遥控开启/关闭车窗、天窗在炎热的夏天,车辆长时间暴露在阳光下,车内会积聚大量热量,给驾驶带来极大的不适。

因此,通过远程控制技术,车主可以在离开车辆前,通过手机APP将车窗和天窗关闭,避免热空气的进入。

同样,在到达车辆附近时,也可以通过远程控制技术提前将车窗和天窗打开,让新鲜空气迅速流进车内。

3. 寻车功能现代城市泊车位紧张,往往出现找不到自己停放车辆的情况。

而有了智能远程控制技术,车主只需通过终端设备上的APP点击一下“寻车”按钮,车辆便会发出指示声或闪烁灯光,提供定位服务,帮助车主准确、快速地找到自己的爱车。

4. 安全监控为了保障车辆的安全,智能远程控制技术还具备安全监控功能。

当车辆发生异常情况时,车主会即时接收到手机APP的报警信息,例如车辆被碰撞、发生被盗等情况。

汽车智能控制系统的设计与实现

汽车智能控制系统的设计与实现

汽车智能控制系统的设计与实现近年来,随着汽车科技的不断进步,汽车智能控制系统已经成为了汽车产业的一个重要方向。

汽车智能控制系统不仅可以提高汽车的行车安全性和舒适性,还可以实现很多高级功能,如自动泊车、自动巡航和自动驾驶等。

本文将从汽车智能控制系统的设计和实现两个方面探讨汽车智能控制系统的技术原理和发展趋势。

一、汽车智能控制系统的设计汽车智能控制系统的设计需要考虑很多因素,如传感器、控制器、通信设备等。

其中,传感器是汽车智能控制系统的核心组成部分。

传感器可以实时获取汽车的各种状态信息,如车速、转向角度、加速度、温度等。

通过这些信息,控制器可以判断汽车的行驶状态,从而实现相应的控制功能。

控制器是指负责控制汽车电子设备的中央处理器,它可以根据传感器获取的信息来计算汽车当前的状态,并给出相应的控制指令。

控制器通常集成在汽车的电子控制单元中,与各个传感器和执行器之间通过CAN总线相互连接。

通信设备是指负责汽车与外部系统通信的设备。

通信设备可以与手机、GPS导航等外部系统进行通信,从而实现自动驾驶、自动泊车等高级功能。

同时,通信设备可以嵌入车联网系统中,通过云计算和大数据分析来实现更加智能化的汽车控制。

二、汽车智能控制系统的实现目前,汽车智能控制系统的实现已经分为了几个阶段,从基础的防抱死刹车系统(ABS)和车身电子稳定系统(ESC)到高级的自动泊车、自动巡航和自动驾驶系统。

首先,基础的防抱死刹车系统(ABS)和车身电子稳定系统(ESC)可以帮助司机更好地掌握车辆的稳定性,提高行车安全性。

ABS可以避免车轮阻滞和打滑,保证刹车效果,而ESC则可以控制车身姿态,减少侧翻和侧滑事故的发生。

其次,自动泊车系统和自动巡航系统可以为驾驶员提供更加便利的驾驶体验。

自动泊车系统可以自动控制车辆完成停车过程,省去了驾驶员的停车操作;自动巡航系统可以根据道路情况自动控制车速和方向,让驾驶员更轻松地掌控车辆。

最后,自动驾驶技术已经成为汽车智能控制系统的最高级别。

智能网联汽车切换控制

智能网联汽车切换控制

随着科技的飞速发展,智能网联汽车已成为全球汽车工业发展的新趋势。

智能网联汽车通过搭载先进的传感器、控制器、执行器等装置,融合现代通信与网络技术,实现了车与X(人、车、路、云端等)之间的智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能。

在智能网联汽车的发展过程中,切换控制技术起着至关重要的作用。

本文将探讨智能网联汽车切换控制的技术、挑战与未来展望。

一、智能网联汽车切换控制技术1. 智能网联汽车切换控制概述智能网联汽车切换控制是指根据驾驶环境、车辆状态和驾驶员意愿,实现自动驾驶模式与人工驾驶模式之间的无缝切换。

切换控制技术是智能网联汽车实现安全、高效、舒适行驶的关键技术之一。

2. 智能网联汽车切换控制技术分类(1)基于传感器信息的切换控制该技术通过分析车辆传感器获取的环境信息,判断是否需要切换驾驶模式。

例如,当车辆传感器检测到道路状况不佳、交通拥堵或驾驶员疲劳时,系统会自动切换至人工驾驶模式。

(2)基于驾驶员意愿的切换控制该技术通过分析驾驶员的操作意图,判断是否需要切换驾驶模式。

例如,当驾驶员通过操作方向盘、踏板或语音指令表达出希望切换驾驶模式的意愿时,系统会自动进行切换。

(3)基于车辆状态的切换控制该技术通过分析车辆状态,如电池电量、续航里程等,判断是否需要切换驾驶模式。

例如,当车辆电量不足时,系统会自动切换至人工驾驶模式,以确保车辆安全行驶。

二、智能网联汽车切换控制挑战1. 切换控制算法的复杂度智能网联汽车切换控制算法需要考虑多种因素,如环境信息、驾驶员意愿、车辆状态等,这使得切换控制算法的复杂度较高。

2. 切换过程中的安全风险在切换过程中,若控制系统出现故障或驾驶员操作失误,可能导致交通事故。

因此,如何确保切换过程中的安全风险是智能网联汽车切换控制技术面临的重要挑战。

3. 法律法规和伦理问题智能网联汽车切换控制技术涉及到法律法规和伦理问题。

例如,在自动驾驶模式与人工驾驶模式切换过程中,如何界定责任、保护驾驶员权益等问题亟待解决。

智能车辆控制系统研究与实现

智能车辆控制系统研究与实现

智能车辆控制系统研究与实现随着科技的不断发展,智能化已经逐渐渗透到汽车行业。

智能车辆控制系统是当前汽车行业的热门研究领域之一。

本文将从智能车辆控制系统的定义、组成结构、技术特点等方面对其进行深入探讨。

一、智能车辆控制系统的定义智能车辆控制系统是一种基于计算机与先进控制策略相结合,对汽车进行智能化控制的系统。

简单来说,它是一种通过智能化技术来提高汽车性能和安全性的控制系统。

二、智能车辆控制系统的组成结构智能车辆控制系统由多个模块组成,主要包括感知系统、决策系统和执行系统。

其中,感知系统负责采集汽车周围的信息,决策系统负责根据采集的信息做出决策,执行系统负责控制汽车实际执行命令。

1. 感知系统感知系统是智能车辆控制系统的核心组成部分,它包括传感器、摄像机、激光雷达、雷达等。

这些设备能够采集汽车周围的信息,如距离、速度、方向等。

通过这些信息,车辆可以了解周围环境的变化,从而更好地进行驾驶。

2. 决策系统决策系统的作用是根据感知系统采集的信息,对所面临的各种情况进行分析,然后做出最佳决策。

决策系统通常由多个算法和模型组成,包括自主学习、模糊逻辑、神经网络等。

3. 执行系统执行系统负责控制汽车实际执行命令。

它包括控制设备和执行器,例如刹车、油门、转向器等。

这些设备会根据决策系统的指示,控制汽车的运动,使其实现所需的操作。

三、智能车辆控制系统的技术特点智能车辆控制系统是一种复杂的技术体系,其具有以下几个技术特点。

1. 实时性智能车辆控制系统需要快速地处理大量的数据,以实时地做出决策。

这就要求系统有较快的计算能力和较高的数据传输速度。

2. 精度高智能车辆控制系统需要对汽车周围的环境进行精确的感知和分析,以便更好地了解周围的情况。

这就要求系统有高精度的传感器和分析算法。

3. 可靠性智能车辆控制系统是保证安全驾驶的重要保障,因此它的可靠性非常重要。

系统需要能够在不同的环境和不同的情况下稳定地运行,并能够对各种异常情况做出及时响应。

智能汽车技术第5章运动控制技术

智能汽车技术第5章运动控制技术

图5-8 线控制动系统的两种技术路线
5.3.2电控液压式制动系统
1.基本组成与工作原理
典型的电控液压式制动(Electro Hydraulic Brake,EHB) 系统由制动踏板行程(位置)传感器、 电子控制单元(EHB ECU)、执行机构(液压泵、备用阀和制动器)等组成。
转向控制模块一方面控制转向执行模块,
确保车辆能够精准地实现驾驶人输入的转向指 令,并确保车辆的操纵稳定性;另一方面,控 制转矩反馈电动机,确保其能够给驾驶人以足 够的、清晰的路感。
图5-2 线控转向系统的组成
3.转向执行模块 转向执行模块包括角位移传感器、转向电动机、齿轮齿条转向机构和其他机械转向装置等。
同时,线控转向系统还可以实时监控转向轮转角和汽车响应情况,并根据控制策略,主动做出 补偿操作,提高了汽车的操纵稳定性。
3)优化驾驶路感。传统转向系统通过机械连接将车辆运动状态和路面信息反馈给驾驶人,不能 主动过滤路面干扰因素。线控转向系统可以滤除路面颠簸等干扰因素,提取出最能够反映汽车实际 行驶状态和路面信息的因素,作为路感模拟的依据,并考虑到驾驶人的习惯,由主控制器控制路感 电动机产生良好的路感,提高驾驶人的驾驶体验。
线控转向系统取消了 转向盘与转向执行机构之 间的机械连接,采用电控 技术来完成驾驶人转向指 令的传输和路感反馈。
图5-1 线控转向
5.2.2线控转向系统的组成
如图5-2所示,线控转向系统由转向盘模块、转向控制模块和转向执行模块组成。
1.转向盘模块
转向盘模块包括转向盘、转矩传感器、转向 角传感器、转矩反馈电动机和机械传动装置。
图5-4 汽车线控转向系统的工作原理
与此同时,转向控制模块根据车辆的转向轮转角信号、轮胎力信号和驾驶人的意图,通过路感 模拟决策发出指令控制转矩反馈电动机输出力矩,以反馈路面信息。

智能车辆域控制器名词解释

智能车辆域控制器名词解释

智能车辆域控制器名词解释
智能车辆域控制器是一种用于车辆系统中的控制单元,通过集成多种传感器、处理器和软件来监控和管理车辆的各种功能和系统。

智能车辆域控制器通常被安装在车辆的引擎舱或底盘控制单元中,用于控制发动机、变速器、制动系统、车身稳定控制系统等。

智能车辆域控制器的主要功能包括:
1. 实时数据采集与处理:智能车辆域控制器可以通过各种传感器实时采集车辆的各种数据,如车速、转向角度、油门开度、制动压力等,然后通过内置的处理器进行处理和分析,从而实现车辆的智能控制。

2. 系统控制与调节:智能车辆域控制器可以根据车辆的实时状态和行驶环境,控制车辆的各种系统,如发动机控制系统可以调节燃油喷射量和点火时机,变速器控制系统可以实现自动换挡,制动系统控制系统可以实现防抱死制动等。

3. 故障诊断与修复:智能车辆域控制器可以监测车辆系统的各种参数,一旦发现异常情况,可以通过内置的诊断系统进行故障诊断,并提供相应的故障代码,方便车辆维修人员快速定位和修复问题。

4. 软件升级与功能扩展:智能车辆域控制器通常可以通过外部接口或者无线网络进行软件升级,从而实现新功能的添加或者系统的优化,提升车辆的性能和安全性。

总的来说,智能车辆域控制器在现代汽车中扮演着至关重要的角色,它的智能化和自动化程度越来越高,不仅提升了车辆的性能和安全性,也为车辆的维护和维修提供了更多的便利和支持。

随着车辆智能化技术的不断发展和创新,智能车辆域控制器的功能和性能也将不断得到提升,为驾驶员提供更加便捷、舒适和安全的驾驶体验。

智能汽车控制系统功能与系统特点

智能汽车控制系统功能与系统特点

智能汽车控制系统功能与系统特点概述智能汽车控制系统是一种基于先进技术的车辆控制系统,旨在提供更安全、更高效的驾驶体验。

本文将介绍智能汽车控制系统的主要功能和系统特点。

功能1. 自动驾驶功能:智能汽车控制系统能够通过使用传感器和相应的算法,判断并自动控制车辆的行驶。

这包括自动巡航、自动泊车和自动避障等功能。

通过自动驾驶功能,驾驶员可以更加轻松地驾驶车辆,并减少驾驶过程中的疲劳。

2. 交通信息监测:智能汽车控制系统可以实时监测和分析交通信息,包括道路拥堵、交通事故和交通信号等。

通过获取这些信息,系统可以提供最佳的行驶路线和实时交通提示,减少驾驶时间和改善行驶效率。

3. 车辆诊断与维护:智能汽车控制系统可以对车辆的各种部件进行诊断,并发出警报或建议进行维修。

系统可以监测引擎、制动系统、轮胎和电池等关键部件的状态,提早预知潜在故障,并帮助驾驶员避免不必要的事故和损失。

系统特点1. 先进的传感器技术:智能汽车控制系统采用了先进的传感器技术,如雷达、摄像头和激光扫描仪。

这些传感器能够实时获取车辆周围的环境信息,并将其传输给系统进行分析和决策。

2. 高效的处理算法:智能汽车控制系统使用高效的处理算法,能够快速、准确地处理从传感器获取的数据,并做出相应的驾驶决策。

这些算法基于人工智能和机器研究技术,能够不断研究和改进,提高系统的性能和智能化水平。

3. 可靠的通信系统:智能汽车控制系统依赖于可靠的通信系统,能够实现车辆与车辆、车辆与基础设施之间的实时通信。

通过与其他车辆和交通管理系统的互联互通,系统可以获取更全面的交通信息,并做出更加准确的驾驶决策。

结论智能汽车控制系统的功能和系统特点使得驾驶变得更加安全、便捷和高效。

随着科技的不断进步,智能汽车控制系统将继续演化和改进,为驾驶员提供更好的驾驶体验和道路安全保障。

*注意:本文所述智能汽车控制系统为一般性描述,实际系统特点可能因不同厂商和车型而有所差异。

请以具体车辆和产品说明为准。

电动汽车的智能车辆远程控制

电动汽车的智能车辆远程控制

电动汽车的智能车辆远程控制随着科技的不断发展,现代社会对汽车的需求也在不断变化。

为了满足用户的更高要求,越来越多的汽车制造商开始推出智能车辆远程控制技术,使得车主可以通过手机或其他智能设备远程控制车辆的各项功能。

本文将详细介绍电动汽车的智能车辆远程控制技术及其带来的便利。

一、技术原理智能车辆远程控制技术是通过无线电通信技术与车辆电子系统相结合,实现远程控制车辆的各项功能。

用户可以通过手机应用程序或其他指定设备与车辆进行通信,将指令传输到车辆的电子系统中,从而对车辆进行远程控制。

二、远程锁车和解锁智能车辆远程控制技术中最基本的功能之一是远程锁车和解锁。

当用户离开车辆时,可以通过手机上的应用程序锁定车门,以确保车辆的安全。

同样,当用户回到车辆附近时,也可以通过应用程序解锁车门,方便进入车辆。

三、远程启动和熄火另一个重要功能是远程启动和熄火。

用户可以在离开车辆一段距离内,通过应用程序预先设置车辆的启动时间,让车辆在指定时间自动启动,以提前为用户提供舒适的驾驶环境。

同样,当需要熄火时,用户也可以通过应用程序发送指令进行远程熄火,避免车辆在停车场等地长时间运行。

四、远程空调控制在炎热的夏季和寒冷的冬季,远程空调控制功能可以为用户提供更好的驾驶体验。

通过智能车辆远程控制技术,用户可以在上车之前通过应用程序打开车辆空调,保证舒适的驾驶环境。

五、远程电池管理对于电动汽车来说,电池的状态是一个关键的信息。

智能车辆远程控制技术使得用户可以通过应用程序实时监测和管理车辆的电池状态。

用户可以查看电池的剩余电量、充电状态和充电效率等信息,并根据需要远程启动和停止充电过程。

六、远程车辆定位智能车辆远程控制技术还可以帮助用户准确地定位车辆的位置。

通过应用程序,用户可以获取车辆的GPS定位信息,并在手机上显示车辆所在位置。

这对于车辆防盗和寻找停车位置都非常有帮助。

七、远程驾驶辅助随着无人驾驶技术的进步,智能车辆远程控制技术也开始向远程驾驶辅助领域发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能汽车的控制ABSTRACTFrom the beginning of the artificial intelligence there was a desire of having a fully automated intelligent car. Numbers of experiments have been done and some of them were very much fruitful. As a result now we have intelligent smart cars. These cars are intelligent and can take some of the decision of their own. But they actually assist the driver for a limited amount of time. None of them are fully automated. We think a fully automated transportation can only be possible by having a combination of intelligent car and traffic system as well the environment like road on which the car actually moves. In this paper we have tried to discuss a new idea for an autonomous transportation system- a complete solution.General TermsArtificial Intelligence, Intelligent CarKeywordsIntelligent Transportation, GPS (Global Positioning System), ACC (Adaptive Cruise Control),AHS (Automated Highway Systems), Smart Cars, DLCC (Dynamic Laser Cruise Control).1. INTRODUCTIONAutonomous or Adaptive Cruise Control (ACC) is mostly used intelligent system for smart car controlling. Normally a radar or laser setup is used that allows the vehicle to slow when the front vehicle is slowing down and speed up to the preset speed that the traffic allows when no vehicle is in front. But these systems can only take control or take decision in straight roads where there is no possibility of taking decision about changing the route. But in this paper we tried to offer a system when it is fully autonomous. Here we have not only considered the intelligence in the car but also in the traffic system, so that an intelligent network can be established which is able to take decision for end to end transportation without any human interaction.2. THE CHALLENGEThere are basically two challenges related with this intelligent transportation system. Those are –1. Technical Challenge2. Social ChallengeAs technical challenge we face problems in designing the sensors and the control systems and also problem in source to destination decisions. On the other hand as a Social Challenge we found the problems like- getting people to trust into automated car, getting legislators permission for being car ontothe public roads, and untangling the legal issues of liability for any mishaps with no in charge. Now the solutions to get a automated car can be broken into four sub-systems like-1. Sensing: knowing where an obstacle is and what is around it which means sensing the surrounding.2. Navigation: getting to the target location from the present location.3. Motion planning: Moving on the road, avoiding obstacles, avoiding harm to the people, and obey to the rules of the road which means actually taking decision of breaking, accelerating, turning etc.4. Control of the vehicle itself: actuating the system's decisions.3. AVAILABLE SYSTEMSTypically for ACC most popular systems are-1. Laser Based ACC2. Radar Based ACCPresently the laser based ACC which is low cost but available. It is available in near luxury cars within 400-600 USD/euro. But the problem with this is it fails to detect and track well in adverse weather conditions. These cars are also unable to track dirty non reflective vehicles. Laser-based sensors have to be exposed and typically found in the lower grill offset. On the other hand Radar based ACC gives better performance then laser based ACC sacrificing more cost. They are available in luxury cars within 1000-3000 USD/euro. Available systems basically focus on automatic speed adaptation technique and intelligent breaking. They don’t bother about route choosing and track changing. Normally they the front car and maintain safe distance from that car in order to take speed adaptation decisions. Here is a figure that shows how it is been done. Jaguar Cars and Mercedes-Benz first offered radar-based systems in 1999. Mercedes-Benz offered the ‘Distronic Plus’ system that can halt the car if necessary on their S-Class luxury sedans in 2006. Audi Q7 also offers this feature. Toyota's图Figure 1: Adaptive Cruise Control (ACC)Lexus first brought laser-based systems to the US market with the 2001 Lexus LS430 "DLCC" (Dynamic Laser Cruise Control). It also offered radar-based systems on its IS, ES, GS and LS models and the laser based on its RX model. Acura RL features Collision Mitigation Braking System. It can alert drivers of objects if the distance is less. It brakes slightly and tugs at the seatbelts too. Even if the driver doesn’t react then the RL retracts, locks the seatbelts and brakes hard. Lexus LS430/460 also offers the system.4.PAST RESEARCHESDifferent Research groups did researches on different issues related to the system. Among them some were very fruitful that showed new pathways. Automated highway systems (AHS) are an effort to construct special lanes on existing highways that would be equipped with magnets or other infrastructure to allow vehicles to stay in the center of the lane,while communicating with other vehicles (and with a central system) to avoid collision and manage traffic. AHS allows specially equipped cars to join the system using special 'acceleration lanes' and to leave through 'deceleration lanes'. When leaving the system each car verifies that its driver is ready to take control of the vehicle, and if that is not the case, the system parks the car safely in an area. The implementation of the AHS demo is done in 1997 near San Diego, sponsored by the US government, in coordination with the State of California and Carnegie Mellon University. The test site is a 12-kilometer, high-occupancy-vehicle (HOV) segment of Interstate 15, 16 kilometers north of downtown San Diego. The event generated much press coverage which was a great achievement. The technology is become the subject of a book. This united effort by the US government seems to have been pretty much abandoned because of social and political forces, above all else the desire to create a less futuristic and more marketable solution. As in 2007, a three-year project is underway to allow robot controlled vehicles, including buses and trucks, to use a special lane along 20 Interstate 805. The intention is to allow the vehicles to travel at shorter following distances and thereby allow more vehicles to use the lanes. The vehicles will still have drivers since they need to enter and exit the special lanes. Before entering those lanes car should have take help from the driver who starts up the car, speed up into a certain limit, enter into a safe state as well as a safe lane and then take over the control of the car into itself. Here car is half automated where car needs some assistant from the human as before being automated. The system is being designed by Swoop Technology, based in San Diego country. Over here we have analyzed the past research which was reached up to a level of assisting driver for taking decision while driving but still it needs most of the involvement of the drivers. Those researches show the pathway of the automated car.5. OUR CONTRIBUTION5.1. Identifying the basic things that need to be autonomousIn order to drive a car, a system would need to:1. Understand its environment (Sensors)2. Identify where it is and where it wants to go (Navigation)3. Identify its way in the traffic (Motion planning)4. Operate the staring of the vehicle (Actuation)It is concluded that almost 2½of these problems are already solved which varies in terms of environment and place. Navigation and Actuation problem solved completely, and Sensors partially, but improving fast. The main unsolved part is the motion planning which is our main concern.5.1.1 SensorsSensors employed in driverless cars vary from the minimalist ARGO project's monochrome stereoscopy to Mobileye's inter-modal (video, infra-red, laser, radar) approach. The minimalist approach imitates the human situation most closely, while the multi-modal approach is "greedy" in the sense that it seeks to obtain as much information as is possible by current technology, even at the occasional cost of one car's detection system interfering with another's thus create another problem.5.1.2 NavigationThe ability to plot a route from where the vehicle is to where the user wants to be has been available for several years. These systems, based on the US military's Global Positioning System are now available as standard car fittings, and use satellite transmissions to ascertain the current location, and an on-board street database to derive a route to the target. The more sophisticated systems also receive radio updates on road blockages, and adapt accordingly. There are also sensors that greatly affect the whole nature of it.5.1.3 Control of vehicleAs automotive technology matures, more and more functions of the underlying engine, gearbox etc. are no longer directly controlled by the driver by mechanical means, but rather via a computer, which receives instructions from the driver as inputs and delivers the desired effect by means of electronic throttle control, and other drive-by-wire elements. Therefore, the technology for a computer to control all aspects of a vehicle is well understood.5.2 Some things which assists a human as well a automated carThese systems warn or inform the driver about events that may have passed unnoticed, such asLane Departure Warning System (LDWS)Visibility aids for the driver, to cover blind spots and enhanced vision systems such as radar Wireless vehicle safety communications and night vision.Infrastructure-based, driver warning/information-giving systems.6. LATEST ACHIEVEMENTGoogle modified Toyota prius [6] uses an array of sensors to navigate a public road without human involvement. It includes different types of sensors like –•GPS: The Global Positioning System (GPS) [1] is a space-based global navigation satellite system that provides reliable location and time information in all weather and at all times and anywhere on or near the Earth when and where there is an unobstructed line of sight to four or more GPS satellites.•Motion Sensor: This one is used for monitoring the speed of the car.•LIDAR: A rotating sensor on the roof which scans around图Figure 2: Autonomous Speed Adaptation with Intelligent Highway200 feet in all the direction of the car to generate a precise three dimensional map on the car’s surrounding.•Position estimator: A sensor mounted on the left rear wheel which measures the small movement made by the car and to accurately locate its position on the map.•Video Camera: A camera near the rear view mirror deflects traffic lights and helps the car`s onboard computer recognize moving obstacle like pedestrian and bicyclists. •Radar: Four standard automotive radar sensors, three in front and one in the rear, help to determine the position of the distant objects. By using these kind of sensors this car overcome the problem of Navigating and actuating itself, hence using various types ofsensor it also achieved good sensing capability but still motion planning is a challenging issue for that car on which factor basically we emphasizes. 7. OUR PROPOSAL Here in this paper we are actually trying to offer a complete end to end solution we have divided our proposal into five specific parts:1.Route Analysis2.Autonomous Speed Adaptationne Detection & Change4.Intelligent Breaking System5.Artificial vision image processing6.Avoid Collusion7.Security Issues7.1. Route AnalysisWhen we are starting with our car we need to fix our route towards our destination. Now with an intelligent system we only need to specify our destination. From the GPS [1] the car knows its present position and from the digital map it knows all the routes towards the destination. It then finds out all alternatives of the routes and gives the best low cost and low distance solution. It also gives an option that from the possible solution which one the owner would like to have. If he gives a choice it follows the gives route. Else it would follow the low cost route or the optimum solution. This is the first step of the journey where the route is already been fixed. Now the car has to move towards the destination on the route it has selected.7.2. Autonomous Speed AdaptationThis is actually a well recognized system that is already in use. But we are offering a few modifications on the present system Causes for these modifications are described here. In the present system the speed adaptation [2] is basically done depending on the front vehicle. If the vehicle slows down the car slows its speed and if the car accelerate then the car accelerates. Here the driver has to set the speed limit that up to which speed it can accelerate and also have to be concerned about the signals. That means though we are actually saying that it is automatic but much of the decisions are given by the driver. Again when there is no vehicle in front then it can not take any decision depending on the signal that the red light is on and it needs to be slow down. We offer that the previous adaptation system would be in use but in addition to it the highway should be made intelligent also. In the signal positions the signal posts should communicate with all the vehicles that already a red signal has been shown so slow down or green light is on you can move. When ever the car is entering any speed zone the speed limit posts should inform the cars that this is a speed limit area so the maximum speed limit should be that. So the car can itself take the maximum speed decision. In this way two of the human dependency can be reduced.Fig. 3: Lane Detection7.3. Lane Detection and ChangeLane detection is a major concern in order to move automatically on the road. From the GPS [1] we know that where there is a curve on the road but how much bend is there it is not clear from the GPS or the digital map [1]. Again from the Radar or Laser sensor it ispossible to get a view that there is curve if obstacle is there though it is tough to have a correct estimation about the bend and even sometimes hard to notify the curve. But if we can estimate that in which lane we are now and always keep our car on the track then with the bend of the lane the car will also take a turn itself. So no problem arises with taking a decision in a curve road. That makes the automation possible in any kind of road not only in straight ones. Now this lane detection can be achieved by having roadside wireless signals. These signals will always transmit that where is it residing and how many lanes are there in the road. From these readings the car knows that in which lane he is now. And by measuring the distance it ensures that it resides always in the same lane. Again lane changing is also a difficult decision to take. In present smart cars we have to change the lane manually. So for the time human interaction is needed. This makes actually the whole automation useless as the driver has to be concern always about the change of the lane. But this can be made automated using two more radar or sensor device in the car. The figure shows that how this can be done. Two laser or radar devices residing on the sides will always search that is there any vehicle moving either of the sides. Another laser or radar device on the back checks that is there any vehicle trying to overtake. If it finds on the possibilities negative it takes the decision for having a lane change. This way the lane 图Figure 4: Lane Changing Decisionchanging can be made automated. But using three more devices is a costly choice. So we can perform the task using one device. This will have time scheduled checking on three of the sides and gives the same output that we want to have.7.4. Intelligent Breaking SystemAs speed adaptation is needed thus is the speed control. So we need to be concerned about the breaking system. Now the breaking system mostly depends on finding any obstacles. If it finds any obstacle it would slow down. It would also measureits speed and size. Now that requires a video camera to take effect. Now this analysis result helps the car to take decision that when and how to break. It first slows itself down gradually and when it finds a break situation it breaks with some more additional tasks. It should tight the seatbelt to ensure the safety of the passengers, give horn to alert others and in an extreme situation it should give a signal to the driver to notify him about the situation.7.5 Artificial vision image processingThis one is the feather which could be achieved by image processing. Actual automated system could be achieved only when we incorporate our car with a sensor which can sense like human & take decision like human. In GPS we get data which is not precisely instant. Other sensor that we use can sense the things or obstacles in front of our car but for getting instant feedback we need image processing software which gets image from the Video Camera. After processing that our onboard computer takes necessary steps for motion control of the automated car. This image processing basically helps us for avoid the accident in case of sudden obstacles come in front of the automated car which is basically acts like human intelligence.7.6. Avoid CollusionThe cars will avoid collisions with obstacles located in the environment using laser (long range) and ultrasonic (short-range) sensors. Laser will be used for identifying the obstacles which is in front of that car. On the other hand short range sensor like ultra sonic sensor will be used for avoiding the collusion of the adjacent lane cars or been struck the road divider. Road divider will also have some short range sensor which will be sensed by the car when it crosses the certain threshold limit of the distance between the car and the divider.7.7. Assistance in TurningAll of the intelligent that have already developed is well suited for the straight road. Some of the statistics shows that around 90% time car is autonomous that means in that time car was independent of driver though he was present; rest of the 10% time those intelligent cars needs the assistant of the drivers. It is true that that 10% time was the situation when the car needs to take left or right turn as because then more intelligent decision should have to take by the car which is not achieved by the intelligent car yet. Over this situation our proposal is to use ultra sonic senor on the divider of the road which will be sensed by the car. By using the intensity of that sensor output our car will know how closer he is to the divider. When this distance is tends to be shorter then it takes necessary steps for making that distance constant, like take left turn when divider is on right or vice versa. Thus we can achieve the problem of left and right turning. On the meantime cars ultra sonic sensor is used for detecting the adjacent lanes cars position to avoid the collusion with those car.7.8. SecurityDifferent security issues should be maintained with intelligence. This can be done by applying different systems. Our proposed systems are-a. The starting should be done as a button press and that button should have a finger print analysis system. The owner and the user of the car all have their finger prints prerecorded. This ensures that no other person is able to start the car by any illegal mean.b. Airbags [5] should be controlled centrally and the car should have the decision taking capability that within what time they should be exposed depending on the speed of the cars and the force of the collision.c. The car should always have communication with the central traffic system so that at any mishap it can inform the central system. The central system should always track the vehicle. This ensures help on the spot at any case of emergency.8. ADVANTAGES & DISADVANTAGESThe benefits we are expecting to have are as follows:1.It would be fully autonomous system from end to end without any human interaction. So it gives a full relax in driving that means the driverless transportation would be possible.2. The intelligent car is fully aware of its own condition. So there is no need to be concerned about the condition of the vehicle. It is checked automatically and problem can be detected and fixed from the central system.3. The security issues makes the automated car a much safer driving experience. It is also aware of the conditions of the passengers and at any disturbance with their health condition and at any emergency situation it can inform the central system and take necessary actions.4. We expect to have a much lower rate of accidents as automation will add more accuracy in driving. Moreover the automated driving will not depend on the mental condition of the driver. So no hamper would be there.5. Customization would become an easy task as with a single soft copy of a module we can define the full customization of the vehicle. The car recognizes the user and it itself makes the customizations.The basic drawback of this proposal would face is the cost. The devices we are about to use here will make the cost increase. But it should be acceptable as a new technology always comes a bit costly. Moreover the car is offering no driver and diagnosis needed that saves money. So in spite of its cost hopefully it would be a fruitful proposal to be implemented in near future.9. CONCLUSIONThis proposal gives a view to a complete automation of the transportation system. But further works should be done to find out its faults and to solve them. But as far as we understood we think that it can give a complete guideline for the system and should be very much helpful for further researches. We think that with a full automated transportation the dream of having the automated society will come to true. Automated transportation will be one major step in that dream come true. By using multiple sensors effectively we can achieve the automated car, which will relief the people of taking burden of driving a car that saves thousand of working hour of human. We believe if our proposal in incorporated with the recent advancement then with 5 year we will find the fully self dependent automated car. Over here is a factor of cost as for getting one automated car people have to spend more but that will be in return when they can save thousands of working hours as well as get safe, easy, comfortable, optimum and reliable journey. REFERENCES[1] Basnayake C; Mezentsev O; Lachapelle G; Cannon M (2004): "A Portable Vehicular Navigation System Using HighSensitivity GPS Augmented with Inertial Sensors and Map-Matching", SAE Paper 2004-01-0748.[2] Carsten O ; Tate F (2005): "Intelligent Speed Adaptation: Accident Savings and Cost-Benefit Analysis",Accident Analysis and Prevention 37, pp.407-416.[3] ETSC (2006): "Intelligent Speed Assistance Myths and Reality: ETSC Position on ISA", European Transport SafetyCouncil, May 2006[4] Regan M; Triggs T; Young K; Tomasevic N; Mitsopoulos E; Stephan K ; Tingvall C (2006) :"On-road Evaluation of ISA,Following Distance Warning and Seat Belt Reminder Systems: Final Results of the TAC Safecar Project", Monash UniversityAccident Research Centre, September 2006.[5] Carsten O (2001) : "ISA: the Best Collision Avoidance System?", Proceedings of 17th Conference onthe Enhanced Safety of Vehicles, Netherlands.AUTHORSMd. Nazmul Hasan has completed his graduation from Islamic University of Technology (IUT) in November 2008. After his graduation he has joined in Stamford University Bangladesh as a lecturer of Computer Science department and till now he is serving here. He is also been working as a part time faculty member of Islamic University of Technology (IUT). His research interest includes Distributed Systems, Parallel Processing, Sensor Network, Cellular Network, Artificial Intelligence etc.S. M. Didar-Al-Alam has completed his graduation form Islamic University of Technology (IUT) in November 2008. Just after his graduation he joined Islamic University of Technology (IUT) as a Lecturer in Department of Computer Science and Information Technology (CIT) and till now he is serving IUT. His major research interests are related to the field of Artificial Intelligence, Wireless Communication & Networking, Ubiquitous Computing.Sikder Rezwanul Huq has completed his graduation from Islamic University of Technology (IUT) in November 2009. After his graduation he has joined at Stamford University Bangladesh as lecturer of Computer Science department and working to date. His research interest includes Grid Computing, Distributed Systems, Parallel Processing, Sensor Network, Artificial Intelligence etc.。

相关文档
最新文档