向心力向心加速度

合集下载

高中物理向心力6个公式

高中物理向心力6个公式

高中物理向心力6个公式1. 向心加速度公式在物理学中,向心加速度是描述物体在圆周运动中受到的加速度。

它是一个向心力的度量,可以用来计算物体在圆周运动中的加速度。

向心加速度的公式为:a = v^2 / r其中,a代表向心加速度,v代表物体的线速度(即物体在圆周运动中的速度),r代表物体所处的圆周半径。

2. 向心力公式向心力是一个沿着物体运动方向指向圆心的力,它是使物体朝向圆心运动的力。

物体在圆周运动中,它的速度方向在不断改变,这是因为向心力在不断改变物体的速度方向。

向心力的公式为:F = m * a = m * v^2 / r其中,F代表向心力,m代表物体的质量,a代表向心加速度,v代表物体的线速度,r代表圆周半径。

3. 向心力与角速度的关系角速度是一个描述物体角运动的物理量,它指的是物体在单位时间内绕一个固定轴旋转的角度。

和向心力之间存在一定的关系。

向心力与角速度的关系公式为:F = m * ω^2 * r其中,F代表向心力,m代表物体的质量,ω代表角速度,r代表圆周半径。

4. 重力与向心力的关系在地球上,物体受到的向心力是由重力引起的。

当物体做圆周运动时,重力向心力平衡,使物体保持在圆周上运动。

重力与向心力的关系公式为:Fg = m * g = m * v^2 / r其中,Fg代表重力,m代表物体的质量,g代表重力加速度,v代表物体的线速度,r代表圆周半径。

5. 向心力与角频率的关系角频率是角速度的物理量之一,它指的是物体单位时间内绕一个固定轴旋转的圈数。

与向心力之间也存在一定的关系。

向心力与角频率的关系公式为:F = m * ω^2 * r其中,F代表向心力,m代表物体的质量,ω代表角频率,r代表圆周半径。

6. 向心力与转动惯量的关系转动惯量是一个描述物体转动惯性的物理量,它类似于物体的质量。

物体的转动惯量越大,其圆周运动时所受到的向心力也越大。

向心力与转动惯量的关系公式为:F = I * α,其中I代表物体的转动惯量,α代表物体的角加速度。

第4章:第2节 向心力与向心加速度

第4章:第2节 向心力与向心加速度

第2节向心力与向心加速度一、向心力及其方向阅读教材第71~73页“向心力”部分,知道向心力的概念及方向。

1.定义:做圆周运动的物体,受到的始终指向的效果力。

2.方向:始终指向,总是与运动方向。

3.作用效果:向心力只改变速度,不改变速度,因此向心力不做功。

4.来源:可能是、、或是它们的或分力。

做匀速圆周运动的物体,向心力就是物体受到的,做非匀速圆周运动的物体,向心力不是物体所受到的合外力。

二、向心力的大小阅读教材第72~73页“向心力的大小”部分,知道向心力的表达式,并会简单应用。

1.实验探究2.公式:F=或F=。

思考判断(1)探究向心力大小与哪些因素有关应采用控制变量法。

()(2)做匀速圆周运动的物体线速度越大,所需向心力越大。

()(3)做匀速圆周运动的物体运动半径越大,所需向心力越大。

()三、向心加速度阅读教材第70页“向心加速度”部分,知道向心加速度的概念,知道向心加速度方向的变化特点。

了解向心加速度与线速度、角速度及半径的几个关系表达式。

1.定义:做圆周运动的物体受到向心力的作用,存在一个由产生的加速度。

2.大小:a=或a=。

3.方向:与的方向一致,始终指向。

4.匀速圆周运动的性质:匀速圆周运动是加速度大小、方向的变加速运动。

思维拓展(1)有人说:根据a=v2r可知,向心加速度与半径成反比,根据a=ω2r可知,向心加速度与半径成正比,这是矛盾的。

你认为呢?(2)试分析做变速圆周运动的物体,其加速度的方向是否指向圆心。

答案(1)不矛盾。

说向心加速度与半径成反比是在线速度一定的情况下;说向心加速度与半径成正比是在角速度一定的情况下,所以二者并不矛盾。

(2)做变速圆周运动的物体,加速度的方向并不指向圆心。

对匀速圆周运动向心力的理解与应用[要点归纳]1.向心力的特点(1)方向:方向时刻在变化,始终指向圆心,与线速度的方向垂直。

(2)大小:F=m v2r=mrω2=mωv=m4π2T2r。

在匀速圆周运动中,向心力大小不变;在非匀速圆周运动中,其大小随速率v的变化而变化。

向心力与向心加速度

向心力与向心加速度

手 推 档 板
向心力演示仪
保持r、ω一定 保持r、m一定 F与r的关系 保持m、ω一定 r越大,F越大
1、F与m的关系
M越大,F越大 —— 控制变量法
2、F与ω的关系
ω越大,F越大
Fn=mrω2
结论:精ቤተ መጻሕፍቲ ባይዱ的实验表明:物体做圆周运动需要的向心力与物体的质量成正比,与半径成正比,与角速度的二次方成正比。即:
ω
O
A、B两球都做匀速圆周运动,A球质量为B球的3倍,A球在半径25cm的圆周上运动,B球在半径16cm的圆周上运动,A球转速为30r/min,B球转速为75r/min,求A球所受向心力与B球所受向心力之比?
线的一端系一个重物,手执线的另一端,使重物在光滑水平桌面上做匀速圆周运动。当转速(角速度)相同时,线长易断,还是线短易断?为什么?
关于匀速圆周运动,下列说法正确的是( ) 匀速圆周运动是一种匀速运动 匀速圆周运动是一种匀变速运动 匀速圆周运动是一种变加速运动 物体做圆周运动时其向心力不改变线速度的大小
C D
课堂练习:
课堂练习:
2、质量为m=1kg的物体相对转盘静止,随盘做匀速圆周运动的角速度ω=2rad/s,如果物体到转盘圆心的距离为R=0.5m,求物体做圆周运动的向心加速度及其受到的静摩擦力大小?
或:F=m
v2
r
F=mω2r
二、 向心加速度: ⑴ 大小: a =ω2r 或 a = V2/r ⑵ 方向: 沿半径指向圆心,方向不断 变化,是变加速运动。 ⑶ 物理意义: 表示速度方向变化快慢的物理量。
1、定义:
向心力
1
N
2
G
T
4
G
T
6
N

向心力与向心加速度

向心力与向心加速度

向心力与向心加速度引言在物理学中,向心力和向心加速度是研究物体在圆周运动中的重要概念。

它们直接关系到物体在环绕着某一中心点旋转时所受的力和加速度的大小与方向。

本文将对向心力和向心加速度进行详细的介绍和解释,并探讨它们在实际生活中的应用。

向心力向心力是指物体在圆周运动过程中受到的指向圆心的力。

也就是说,向心力是使物体沿着圆周运动的力。

在这种运动中,物体会不断改变方向,而向心力则起到了引导物体方向的作用。

向心力的大小可以通过以下公式来计算:其中,Fc是向心力,m是物体的质量,v是物体的速度,r是物体离中心的距离。

从上面的公式可以看出,向心力的大小与物体的质量、速度和离中心距离的平方成正比。

当物体的速度增大或者离中心距离减小时,向心力也会增大。

向心加速度向心加速度是指物体在圆周运动中产生的与向心力相对应的加速度。

它表示了物体在圆周运动过程中改变速度方向所需要的加速度大小。

向心加速度可以通过以下公式计算:其中,ac是向心加速度,v是物体的速度,r是物体离中心的距离。

根据这个公式,我们可以看到向心加速度的大小只与物体的速度和离中心距离有关。

当物体的速度增大或者离中心距离减小时,向心加速度也会增大。

应用实例向心力和向心加速度在实际生活中有着广泛的应用。

下面我们将介绍一些常见的应用实例。

1. 汽车在拐弯时的向心力当汽车在转弯时,会产生一个向心力,使车辆沿着转弯弯道运动。

这个向心力的大小取决于车辆的速度和转弯的半径。

如果车辆速度过快或者转弯半径过小,向心力就会增大,容易导致车辆失控。

因此,在驾驶汽车时,司机需要根据道路情况和速度合理选择转弯半径,以保证安全行驶。

2. 旋转式摩天轮的向心力旋转式摩天轮是一个经典的游乐项目,乘客可以坐在摩天轮的车厢中,沿着一个巨大的轮盘旋转。

在旋转过程中,乘客会感受到一种向心力的作用,使他们始终保持在轮盘上。

这种向心力是通过车厢沿着圆周运动所产生的,为乘客提供了一种垂直向内的加速度体验。

第四章 第2节 向心力与向心加速度

第四章  第2节  向心力与向心加速度
2 2π2 v 2 (5)在 x 轴方向,选用向心力公式 F2r 列方程求解,必要时再在 y 轴方向按 F 合 y=0 求解。
1.未来的星际航行中,宇航员长期处于零重力 状态,为缓解这种状态带来的不适,有人 设想在未来的航天器上加装一段圆柱形 “旋转舱”,如图 424 所示。当旋转舱绕其
4.方向 总是指向 圆心。所以,不论 a 的大小是否变化,它都是一 个变化的量。
1.自主思考——判一判 (1)做匀速圆周运动的物体所受到的向心力是恒力。 (2)向心力和重力、弹力、摩擦力一样,是性质力。 (3)向心力可以由某种性质的力来充当,是效果力。 (4)匀速圆周运动是加速度不变的运动。 (5)向心加速度描述线速度大小变化的快慢。 (6)匀速圆周运动的物体所受合外力一定指向圆心。 (× ) (× ) (√ ) ( ×) ( ×) ( √)
用细线拴住的小球 在竖直面内转动至 最高点时


向心力 线的拉力提供向心 力,F=T 转盘对物体的静摩 擦力提供向心力, F=f
示意图
用细线拴住小球在 光滑水平面内做匀 速圆周运动 物体随转盘做匀速 圆周运动,且相对 转盘静止
小球在细线作用下, 重力和细线的拉力 在水平面内做圆周 的合力提供向心力, 运动 F=F合
图 425
解析:(1)木马受骑在木马上的儿童和钢杆对它的作用力做匀 速圆周运动。木马受到的向心力由钢杆提供;儿童受到木马 对他的作用力和重力作用,向心力由木马提供。 (2)儿童所受向心力由木马提供且指向圆心,由 v2 F= m r 得 62 F=40× 3 N=480 N。 答案:(1)钢杆 木马 (2)480 N
[典例]
(多选)关于北京和广州随地球自转的向心加速度, ( )
下列说法中正确的是 A.它们的方向都是沿半径指向地心 B.它们的方向都在平行于赤道的平面内指向地轴 C.北京的向心加速度比广州的向心加速度大 D.北京的向心加速度比广州的向心加速度小

圆周运动向心加速度与向心力

圆周运动向心加速度与向心力

向心力与向心加速度的关系
总结词
向心力的大小与向心加速度的大小成正比,方向始终指向圆心。
详细描述
在圆周运动中,向心力的大小与向心加速度的大小成正比,方向始终指向圆心。当物体 受到的向心力增大或减小时,其向心加速度也相应增大或减小,使物体始终沿着圆周路
径运动。
04 圆周运动的实例分析
匀速圆周运动的向心力
物体沿着圆周轨迹运动,速度大小保持不变, 方向时刻变化。例如:旋转木马、钟表指针 等。
在匀速圆周运动中,向心加速度的大小恒定, 方向始终指向圆心,向心力的大小也恒定, 方向始终指向圆心。
变速圆周运动的实例
要点一
变速圆周运动
物体沿着圆周轨迹运动,速度大小或方向发生变化。例如 :过山车、赛车等。
详细描述
向心加速度的大小与线速度的平方成正比,与圆周运动的半 径成反比。当线速度一定时,半径越小,向心加速度越大; 当半径一定时,线速度越大,向心加速度越大。
向心加速度的方向判断
总结词
向心加速度的方向始终指向圆心,可以通过右手定则或左手定则来判断。
详细描述
右手定则:将右手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直,此时若手掌心向下,则向心加 速度方向垂直于掌心指向上;左手定则:将左手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直, 此时若手掌心向下,则向心加速度方向垂直于掌心指向下。
感谢您的观看
向心加速度的求解方法
求解向心加速度的方法有多种,可以通过牛顿第二定律、 运动学公式等求解。
05 圆周运动的应用与拓展
圆周运动在生活中的应用
车辆转弯
车辆在转弯时,由于向心 力的作用,外侧车轮的轮 缘会受到向内的挤压力, 使车辆顺利转弯。

向心力 向心加速度

向心力 向心加速度

向心力向心加速度1. 引言在物理学中,向心力和向心加速度是描述物体在进行圆周运动时受到的力和加速度。

向心力是一个沿着半径方向的力,使物体向圆心靠拢;向心加速度则是物体在圆周运动中加速度的大小。

本文将从向心力和向心加速度的定义、计算公式以及示例应用等方面进行详细介绍。

2. 向心力向心力是指物体在做圆周运动时受到的沿着半径方向的力。

向心力的大小与物体的质量、圆周运动的角速度以及物体与圆心的距离有关。

根据牛顿第二定律,向心力与物体的质量乘以向心加速度之间存在以下关系:F_c = m * a_c其中 F_c 表示向心力,m 表示物体的质量,a_c 表示向心加速度。

3. 向心加速度向心加速度是物体在圆周运动中加速度的大小。

根据物体在圆周运动中的速度变化情况,可以推导出向心加速度的计算公式。

假设物体以恒定的角速度ω 绕圆心运动,其线速度的大小为 v,根据几何关系可得:v = ω * r其中 v 表示线速度,r 表示物体与圆心的距离。

假设物体的线速度发生了Δv 的变化,由于圆周运动的特性,线速度的变化会导致物体发生向心加速度 a_c,根据加速度的定义可得:a_c = Δv / Δt将Δv替换为ω * Δr,其中Δr 表示物体在Δt 时间内与圆心的距离变化,可得:a_c = (ω * Δr) / Δt当Δt 趋近于 0 时,上式变为微分形式:a_c = (dω * dr) / dt对上式进行进一步推导,可以得到向心加速度的计算公式:a_c = ω^2 * r4. 示例应用4.1 行星绕太阳的向心力和向心加速度行星绕太阳做椭圆轨道运动,其向心力和向心加速度的计算可以通过开普勒第二定律和牛顿定律得到。

根据开普勒第二定律,行星在其椭圆轨道上的扫面面积相等。

根据牛顿定律,向心力使得行星保持在轨道上。

当行星靠近太阳时,向心力增大;当行星离开太阳越远,向心力减小。

根据向心力的定义和计算公式,可以计算出行星绕太阳的向心力和向心加速度。

【高中物理】向心力 向心加速度 课件 高一下学期物理人教版(2019)必修第二册

【高中物理】向心力 向心加速度 课件 高一下学期物理人教版(2019)必修第二册
2.保持绳的长度和小球的质量不变,改变小球转动的速度,感受向心力 的变化。
3.保持小球的质量和小球转动的速度不变,改变绳的长度,感受向心力 的变化。
猜想:向心力大小可能与小球质量、转动速度、转动半径有关。
探究向心力大小的表达式
1、体验向心力的大小 猜想:向心力大小可能与 _物__体__质__量__、_轨__道__半__径__、__运__动__快__慢_____ 有关 2、演示实验:用向心力演示器演示
【例1】 关于向心力的说法正确的是( B )
A.物体由于做圆周运动而产生了向心力 B.向心力不改变圆周运动中物体线速度的大小 C.对做匀速圆周运动的物体进行受力分析时,一定不要漏掉向心力 D.做匀速圆周运动的物体其向心力是不变的
【训练1】 如图所示,一圆盘可绕过圆盘中心O且垂直于 盘面的竖直轴转动,在圆盘上放一小木块A,它随圆盘 一起做匀速圆周运动,则关于木块A的受力,下列说法
【训练1】 (多选)如图所示,质量相等的A、B两物体紧贴 在绕中心轴OO′匀速转动的圆筒的竖直内壁上,随圆筒
一起做匀速圆周运动,则下列关系中正确的是( BC)
A.运动周期TA>TB B.筒壁对物体的弹力FNA>FNB C.线速度vA>vB D.物体受到的摩擦力FfA>FfB
03
变速圆周运动
当沿圆周运动的物体所受的合力指向圆心时,物体做匀速圆周运动。
ω
Ff FN
G
F合=FN = Fn
3.圆锥摆做匀速圆周运动
θ
F
小球绕中心做匀速圆周运动
G=mg
F合O r
小球所受绳子拉力和重力的合力充当向心力
F合=mgtanθ = Fn
4.小球在圆锥筒中做匀速圆周运动

向心加速度和向心力

向心加速度和向心力
思 考
加速度的定义式是什么?
速度的变化量Δv
Δv a = Δt
如何确 定Δv的 方向?
a 的方向与Δv 的方向相同
用 矢 量 图 表 示 速 度 变 化 量
曲线运动中的速度的变化量:
v1
v2
Δv
作法:从同一点作出物体在一段时间的始末两 个速度矢量v1和v2,从初速度v1的末端至末速度 v2的末端所作的矢量就是速度的变化量△v 。
[答案]
3R
2.要注意竖直平面内圆周运动的两种临界的不同: 分类 实例 最高点无支撑 球与绳连接、水流星、翻滚过 山车 最高点有支撑 球与杆连接,车过拱 桥、球过竖直管道、 套在圆环上的物体等
图示 重力、弹力 F 弹向下、 向上或等于零 v2 mg± F 弹=m r
弹向下或等于零 在最高 重力、弹力 F 2 v 点受力 mg+ F 弹 = m r
D
A
3.如图3所示,O1为皮带传动的主动轮的轴心, 轮半径为r1,O2为从动轮的轴心,轮半径为r2,r3 为固定在从动轮上的小轮的半径.已知r2=2r1, r3=1.5r1.A、B、C分别是3个轮边缘上的点,则 质点A、B、C的向心加速度之比是(假设皮带不打 滑)( ) A.1∶2∶3 B.2∶4∶3 C.8∶4∶3 D.3∶6∶2
[答案] (1)
sin θ+μcos θ gr cos θ-μsin θ
9如图 8所示,半径为R、内径很
小的光滑半圆管竖直放置,两个质量 均为m的小球A、B以不同的速度进入 管内。A通过最高点C 时,对管壁上部压力为3 mg,B通过最高 点C时,对管壁下部压力为0.75 mg,求A、B两球落地点间的距
力加速度g取10 m/s2)
(1)为使汽车转弯时不打滑,汽车行驶的最大速度 是多少?

向心力和向心加速度

向心力和向心加速度

龙文教育一对一个性化辅导教案学生志涛学校育才年级高一次数科目物理教师红日期时段课题向心力和向心加速度教学重点1、理解向心力的概念及其表达式的含义2、.知道向心力的大小与哪些因素有关,并能用来进行计算教学难点掌握向心加速度和线速度、角速度的关系,能够用向心加速度公式求解有关问题.教学目标掌握本节的相关知识判断教学步骤及教学容1、知识点的讲解与分析向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=mv2r.3.方向:总是沿半径指向圆心,方向时刻改变.2、知识与生活的结合向心加速度1.定义:做匀速圆周运动的物体的加速度指向圆心,这个加速度称为向心加速度.2.大小:a=v2r=ω2r.3、例题讲解如图6所示为A、B两物体做匀速圆周运动的向心加速度随半径变化的图像,其中A为双曲线的一个分支,由图可知( )A.A物体运动的线速度大小不变 B.A物体运动的角速度大小不变C.B物体运动的角速度大小不变 D.B物体运动的角速度与半径成正比管理人员签字:日期:年月日向心力和向心加速度一、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F =m ω2r =m v 2r.3.方向:总是沿半径指向圆心,方向时刻改变. 二、向心加速度1.定义:做匀速圆周运动的物体的加速度指向圆心,这个加速度称为向心加速度.2.大小:a =v 2r=ω2r .3.方向:沿半径指向圆心,方向始终与运动方向垂直. [要点提炼]1.向心力的方向:总是沿着半径指向圆心,始终与线速度的方向垂直,方向时刻改变,所以向心力是变力.2.向心力的作用:只改变线速度的方向,不改变线速度的大小.3.向心力是效果力:向心力是根据力的作用效果命名的,不是性质力,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,或某个力的分力.注意在分析物体受力时,不能说物体还受一个向心力的作用,向心力可以是某一种性质力,也可以是几个性质力的合力或某一性质力的分力.一、对向心力的理解例1 (多选)关于做匀速圆周运动的物体所受的向心力,下列说确的是( ) A .因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力 B .因向心力指向圆心,且与线速度的方向垂直,所以它不能改变线速度的大小 C .它是物体所受的合力D .向心力和向心加速度的方向都是不变的图3例2 如图3所示,有一个水平大圆盘绕过圆心的竖直轴匀速转动,小强站在距圆心为r 处的P 点相对圆盘静止.关于小强的受力,下列说确的是( ) A .小强在P 点不动,因此不受摩擦力作用B .若使圆盘以较小的转速转动时,小强在P 点受到的摩擦力为零C .小强随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D .如果小强随圆盘一起做变速圆周运动,那么其所受摩擦力仍指向圆心二、对向心加速度的理解及计算图4例3 如图4所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮的2倍,大轮上的一点S 到转动轴的距离是大轮半径的13.当大轮边缘上P 点的向心加速度是12 m/s 2时,大轮上的S 点和小轮边缘上的Q 点的向心加速度分别是多少?三、圆周运动的动力学问题图5例4 如图5所示,半径为r 的圆筒绕竖直中心轴OO ′旋转,小物块a 靠在圆筒的壁上,它与圆筒壁间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力.现要使a 不下落,则圆筒转动的角速度ω至少为( ) A.μgr B.μg C.gr D.g μr1.(多选)(对向心力的理解)下列关于向心力的说法中正确的是( ) A .物体受到向心力的作用才可能做圆周运动B .向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出C .向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力D.向心力只改变物体运动的方向,不改变物体运动的快慢2.(多选)(向心力来源分析)在马戏团表演的场地里,表演者骑在大象背上,大象绕着场地走动,若大象是沿着半径为R的圆周匀速走动,则关于大象和表演者的受力情况,下面说确的是( )A.表演者骑在大象背上不动,他受到的力是平衡力B.表演者的向心力是地面摩擦力通过大象作用于他的C.大象和表演者所受向心力大小与两者的质量成正比D.大象与表演者一起做匀速圆周运动的向心力是地面摩擦力提供的图63.(多选)(对向心加速度的理解及计算)如图6所示为A、B两物体做匀速圆周运动的向心加速度随半径变化的图像,其中A为双曲线的一个分支,由图可知( )A.A物体运动的线速度大小不变 B.A物体运动的角速度大小不变C.B物体运动的角速度大小不变 D.B物体运动的角速度与半径成正比图74.(圆周运动中的动力学问题)如图7所示,质量为1 kg的小球用细绳悬挂于O点,将小球拉离竖直位置释放后,到达最低点时的速度为2 m/s,已知球心到悬点的距离为1 m,重力加速度g=10 m/s2,求小球在最低点时对绳的拉力的大小.题组一对向心力的理解及其来源分析1.下列关于向心力的说法中正确的是( )A.物体由于做圆周运动而产生了一个向心力B.向心力会改变做圆周运动物体的速度大小C.做匀速圆周运动的物体其向心力即为其所受的合力D.做匀速圆周运动的物体其向心力是不变的图12.如图1所示,物体A、B随水平圆盘绕轴匀速转动,物体B在水平方向所受的作用力有( )A.圆盘对B及A对B的摩擦力,两力都指向圆心B.圆盘对B的摩擦力指向圆心,A对B的摩擦力背离圆心C.圆盘对B及A对B的摩擦力和向心力D.圆盘对B的摩擦力和向心力3.在水平面上,小猴拉着小滑块做匀速圆周运动,O点为圆心,能正确表示小滑块受到的牵引力F及摩擦力f的图是( )图24.多选)如图2所示,一小球用细绳悬挂于O点,将其拉离竖直位置一个角度后释放,则小球以O点为圆心做圆周运动,运动中小球所需的向心力是( )A.绳的拉力 B.重力和绳的拉力的合力C.重力和绳拉力的合力沿绳方向的分力 D.绳的拉力和重力沿绳方向的分力的合力图35.多选)一个小物块从壁粗糙的半球形碗边下滑,在下滑过程中由于摩擦力的作用,物块的速率恰好保持不变,如图3所示,下列说法中正确的是( )A.物块所受合外力为零 B.物块所受合外力越来越大C.物块所受合外力大小保持不变,但方向时刻改变 D.物块所受摩擦力大小变化题组二对向心力加速度的理解及其计算6.关于向心加速度,下列说法中正确的是( )A.向心加速度越大,物体速率变化得越快 B.向心加速度的大小与轨道半径成反比C.向心加速度的方向始终与线速度方向垂直 D.在匀速圆周运动中向心加速度是恒量图47.如图4所示,一圆环以直径AB为轴做匀速转动,P、Q、R是环上的三点,则下列说确的是( )A.向心加速度的大小a P=a Q=a R B.任意时刻P、Q、R三点向心加速度的方向不同C.线速度v P>v Q>v R D.任意时刻P、Q、R三点的线速度方向均不同图58.多选)如图5所示为摩擦传动装置,B轮转动时带动A轮跟着转动,已知转动过程中轮缘间无打滑现象,下列说法中正确的是( )A.A、B两轮转动的方向相同 B.A与B转动方向相反C.A、B转动的角速度之比为1∶3 D.A、B轮缘上点的向心加速度之比为3∶1图69.如图6所示,质量为m的木块从半径为R的半球形碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么( )A.加速度为零 B.加速度大小不变,方向时刻改变,但不一定指向圆心C.加速度恒定 D.加速度大小不变,方向时刻指向圆心图710.多选)一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方L2处钉有一颗光滑钉子.如图7所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )A .小球的角速度突然增大B .小球的向心加速度突然增大为原来的两倍C .小球的线速度突然减小到零D .细线对小球的拉力突然增大为原来的两倍 题组三 圆周运动中的动力学问题11.多选)在光滑的水平面上,用长为l 的细线拴一质量为m 的小球,使小球以角速度ω做匀速圆周运动.下列说法中正确的是( )A .l 、ω不变,m 越大线越易被拉断B .m 、ω不变,l 越小线越易被拉断C .m 、l 不变,ω越大线越易被拉断D .m 不变,l 减半且角速度加倍时,线的拉力不变图812.如图8所示,在光滑杆上穿着两个小球m 1、m 2,有m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r 1与r 2之比为( )A .1∶1B .1∶ 2C .2∶1D .1∶2图913.多选)如图9所示,在水平转台上放一个质量M =2 kg 的木块,它与转台间最大静摩擦力f max =6.0 N ,绳的一端系在木块上,穿过转台的中心孔O (孔光滑,忽略小滑轮的影响),另一端悬挂一个质量m =1.0 kg 的物体,当转台以角速度ω=5 rad/s 匀速转动时,木块相对转台静止,则木块到O 点的距离可能是(g 取10 m/s 2,M 、m 均视为质点)( ) A .0.04 m B .0.08 m C .0.16 m D .0.32 m图1014.如图10所示,水平转盘上放有质量为m 的物体(可视为质点),连接物体和转轴的绳子长为r,物体与转盘间的最大静摩擦力是其压力的μ倍,转盘的角速度由零逐渐增大,求:(1)绳子对物体的拉力为零时的最大角速度;(2)当角速度为3μg2r时,绳子对物体拉力的大小.。

高考物理考点18 向心加速度与向心力Word版含解析

高考物理考点18 向心加速度与向心力Word版含解析

一、圆周运动中的动力学分析1.向心加速度:描述速度方向变化快慢的物理量。

公式:r Tv r v r a n 22224πωω====。

2.向心力:作用效果产生向心加速度,F n =ma n 。

3.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

4.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。

(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力。

解决圆周运动问题的主要步骤(1)审清题意,确定研究对象;(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等; (3)分析物体的受力情况,画出受力示意图,确定向心力的来源; (4)根据牛顿运动定律及向心力公式列方程。

二、竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”。

2.绳、杆模型涉及的临界问题3.竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同。

(2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点。

(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况。

(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向。

(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程。

(2018·四川省攀枝花市第十二中学)甲、乙两质点做匀速圆周运动,甲的质量与转动半径都分别是乙的一半,当甲转动60圈时,乙正好转45圈,则甲与乙的向心力之比为A.4:9 B.4:3 C.3:4 D.9:4【参考答案】A1.如图所示,一个圆盘在水平面内匀速转动,盘面上有一个小物体在随圆盘一起做匀速圆周运动。

向心力、向心加速度

向心力、向心加速度

向心力、向心加速度1. 引言在物理学中,向心力与向心加速度是描述物体在圆周运动中受到的力和加速度。

向心力是指沿着半径方向向圆心指向的力,而向心加速度是物体在圆周运动中的加速度,指向圆心。

在本文中,我们将详细讨论向心力和向心加速度的概念、计算方法以及在实际生活和科学研究中的应用。

2. 向心力的概念和计算方法2.1 向心力的概念向心力是指物体在圆周运动中受到的沿着半径方向的力,它的作用方向始终指向圆心。

向心力的存在使得物体保持在圆周运动中,而不会沿半径方向飞出或飞入圆心。

2.2 向心力的计算方法根据牛顿第二定律(F=ma),向心力的计算可以通过以下公式得到:F = m * a_c其中,F表示向心力,m表示物体的质量,a_c表示物体在圆周运动中的向心加速度。

3. 向心加速度的概念和计算方法3.1 向心加速度的概念向心加速度是指物体在圆周运动中的加速度,它的方向始终指向圆心。

向心加速度的存在使得物体在圆周运动中加速,因此也被称为“圆周加速度”。

3.2 向心加速度的计算方法向心加速度可以用以下公式来计算:a_c = v^2 / r其中,a_c表示向心加速度,v表示物体的速度,r表示物体运动的半径。

4. 向心力和向心加速度的应用向心力和向心加速度在物理学和工程学中有许多应用。

以下是其中的几个例子:4.1 离心机离心机是一种利用向心力原理进行分离或加工的设备。

通过快速旋转容器,使得物质在向心力的作用下分离,常用于化学、生物等领域的实验和工业生产中。

4.2 路边栅栏的设计在道路旁设置栅栏时,需要考虑到车辆可能发生失控状况。

为了将失控的车辆引导到安全区域,栅栏的设计需要考虑向心力。

合理设置栅栏的形状和倾斜角度可以使失控的车辆受到向心力的作用,使其保持在道路边缘,减少事故发生的风险。

4.3 环形轨道上的列车运行在一些特定的交通工具,如环形轨道上的列车或过山车,向心力是保证乘客安全和行驶稳定的重要因素。

合理计算列车运行速度和曲线半径,确保乘客在运动过程中不会受到过大的向心力,是保证乘客舒适度的关键。

向心加速度公式的推导方法

向心加速度公式的推导方法

向心加速度公式的推导方法
要推导向心加速度的公式,可以运用牛顿第二定律和圆周运动的相关知识来进行推导。

以下是一种常见的推导方法:
推导步骤如下:
步骤一:假设有一个物体在做匀速圆周运动,其速度大小为v,质量为m。

步骤二:由于物体做匀速圆周运动,因此存在一个向心力Fc使得物体向圆心做加速运动。

步骤三:根据牛顿第二定律,向心力Fc等于物体的质量m乘以向心加速度ac,即Fc = mac。

步骤四:由于在圆周运动中物体的加速度方向与速度方向垂直(向心加速度与速度垂直),因此可以将圆周运动分解为一个径向分量和一个切向分量。

步骤五:将向心力Fc分解为一个径向力Fr和一个切向力Ft。

步骤六:根据牛顿第二定律,径向力Fr等于物体的质量m乘以径向的加速度ar,即
Fr = mar。

由于在圆周运动中径向加速度ar等于零,所以径向力Fr等于零。

步骤七:由于在圆周运动中切向速度的大小与半径成正比(v = ωr,其中ω为角速度,r为半径),所以切向加速度at等于半径r乘以角加速度α,即at = rα。

步骤八:根据牛顿第二定律,切向力Ft等于物体的质量m乘以切向加速度at,即Ft = mat。

由于物体做匀速圆周运动,即角速度ω为常数,因此角加速度为零,所以切向力Ft等于零。

步骤九:因此,向心力Fc等于零径向力Fr和零切向力Ft之和,即Fc = Fr + Ft = 0 + 0 = 0。

步骤十:根据步骤三,Fc = mac,可以得到向心加速度ac等于零。

结论:所以,在匀速圆周运动下,物体的向心加速度ac等于零。

这就是推导向心加速度公式的一个常见方法。

向心力 向心加速度

向心力  向心加速度

向心力向心加速度一、向心力、向心加速度基本概念1、曲线运动物体,合力沿速度方向的分力产生一个加速度改变速度大小,沿垂直速度方向的分力产生另一个加速度改变速度方向;换句话说只要力沿速度方向上就产生一个改变速度大小的加速度,只要力沿垂直速度方向就产生一个改变速度方向的加速度;2、做圆周运动的物体,其合力在速度方向上产生一个加速度改变速度大小,垂直于速度方向上的力产生加速度改变速度方向,由匀速圆周运动的特点可得,其合力在任意时刻都垂直于速度方向,从而在任意时刻产生一个加速度改变速度的方向,而不改变速度大小,而且这个力大小不变,才能保证在任意时间内改变速度方向的程度相同;由此我们可得匀速圆周运动的物体,合外力时刻垂直于速度方向,沿着半径指向圆心产生的加速度也时刻垂直于速度方向,沿着半径指向圆心改变速度方向而不改变速度大小,我们把这样的在在匀速圆周运动中时刻指向圆心改变速度方向的力就叫做向心力,此力产生的加速度只改变速度方向不改变速度大小且沿半径指向圆心叫做向心加速度;3、概念的理解:(1)向心力是个效果力,而不是个性质力,他来源可以是几个力的合力也可以是某个力的分力,还可以是单个力;没有产生它的原因,而是物体在做圆周运动过程中为了描述圆周运动而引进的一个效果力来表述匀速圆周运动的原因;即物体做匀速圆周运动动的原因是,物体受到的向心力就是物体的合外力,其大小恒定,方向时刻垂直于速度方向沿半径指向圆心,产生向心加速度时刻改变速度方向的原因;(2)向心力方向时刻垂直于速度方向,沿着半径指向圆心;所以向心力是个变力,同样向心加速度方向时刻垂直于速度反方向,沿半径指向圆心,时刻在变化;(3)向心力的作用就是产生向心加速度,只改变速度方向不改变速度大小;不是说质点做匀速圆周运动而产生向心力向心加速度,而是由于物体有向心力产生向心加速度而是物体做匀速圆周运动;(4)非匀变速圆周运动的向心力与匀变速运动的一样,大小相等,方向时刻垂直于速度反方向沿半径指向圆心,单飞匀速圆周运动处有个向心力外还有另一个力始终沿着速度方向,改变速度大小的变化,才是的速率不同;4、只要是物体做曲线运动,就一定有个向心力,产生一个向心加速度来改变速度的方向,只是这个向心力大小和方向都时刻在改变,使得在不同时间点对物体速度方向改变强度不同而不能做圆周运动结果做一般的曲线运动;只要已知物体曲线运动在曲线某点处,则向心力一定是指向该点对应圆周的半径;二、向心力和向心加速度计算1、向心加速度a的计算:有前面我们可得,a=△v/△t,由此进一步可得向心加速度得算公式an=v2/r 或an=w2r;2、由牛顿第二定律可得物体的向心力等于其质量和其向心加速度的乘积;即Fn=man=mv2/r=mw2r;3、由向心加速度和向心力计算可得:若已知物体在做圆周运动时的受力情况,就会已知物体做圆周运动的具体情况;进而解决有关圆周运动的问题;4、物体向心力向心加速度与牛二规律的关系:牛顿第二定律是给出物体速度大小的改变与其自身受力的关系;而向心力与向心加速度是给出了物体速度方向的改变与受力的关系;5、对一般的非匀速圆周运动,其合力肯定可以分解为沿垂直去速度方向的分力Fn和沿速度方向的分力Ft,其中Fn的大小不变,方向时刻沿半径指向圆心,提供了圆周运动的的向心力Fn,产生相对的向心加速度an是物体做圆周运动;而沿速度方向的分力Ft 满足牛顿第二定律,产生切向加速度at改变速度的大小;6、对曲线运动而言,曲线运动物体的合力一定可以分解为垂直于该点速度方向的力Fn和沿着速度方向的力Ft,其中Fn就是向心力提供向心加速度at,改变速度方向,只是这个Fn不像圆周运动的那样它的大小是变化的所以物体只能做曲线运动不能做圆周运动;Ft就是切向力产生切向加速度,满足牛顿第二定律改变速度的大小;三、圆周运动的相关问题1、物体在竖直平面圆周运动与轨道作用力间关系(过山车、汽车过桥)(1)当竖直平面上的圆周运动时,在最高处对轨道的压力小于本身重力;因为在圆周运动的最高处重力和轨道对其弹力的合力提供了物体运圆周动的向心力:Fn=mg-N=mv2r,所以N=mg-mv2r,所以对轨道的压力小于自身重力;为什么桥梁建造为拱形的原因;(2)当物体在轨道的最低点运动时,轨道弹力大于自身重力,因为绳子拉力和重力的合力提供向心力,N-mg=mv2r,即N=mg+mv2r;(3)当物体运动速度足够大时,在轨道最上端有N=mg-mv3r=0,此时物体对轨道压力或绳子拉力为0;2、物体在弯道上的圆周运动(汽车、火车转弯)(1)火车转弯:轨道是外高内低,所以理想状态下(轨道对火车轮没有弹力情况),火车自身的重力的一个分力提供了火车圆周运动向心力,一般是Fn=mgsinA,而sinA=tanA;但一般非理想时重力沿水平面分力和轨道弹力的合力共同提供向心力;(2)汽车转弯时轨道是外高内低的所以汽车自身重力沿水平面分力和对地面的摩擦力共同提供了向心力,当轨道是平面时,只有摩擦力提供向心力;3、物体在竖直平面内做圆周运动时零界问题(1)如果物体是由绳子相连做圆周运动,要是物体可以到达最高点,则在最高点处时,速度应该满足,mg=mv2r,当小于这个速度时,物体每到最高处就下落了;因为绳子只有拉力而没有弹力,(2)当物体在有轨道的圆周面运动或由一个杆子支持,只要物体在没有到达最高处时有速度,就一定可以当大最高点,当速度大于(1)中所求的零界速度,杆子或轨道对物体有竖直向下的力,当小于时,对物体有竖直向上的力;(3)在竖直面内运动时,物体在最低点时足有最大的速度,所以此时物体对轨道或绳子杆子的作用力最大,四、向心运动、离心运动1、做圆周运动的物体,由于惯性,物体总是沿着切线放方向飞出,它实际没有飞出,这是因为向心力拉着它,使其改变速度方向,不沿切线飞出;这就是圆周运动的实质,也是曲线运动的实质;但是当向心力消失后,物体一定会由于自身惯性而言切线方向飞出;2、我们知道物体受到的向心力与其线速度和角速度有的定的公式关系;但当其中变化时就会出现不同的运动形式(1)当物体所受向心力突然增大时,由与速度不能满足使其向心力和速度平衡,这是在力的作用下会拉动物体向内部移动,使物体做圆周运动的半径减小,速度增大,从而达到一个新的条件下的向心力和物体速度间的关系,这时物体向圆心靠近的运动称为向心运动;(2)当物体的向心力突然减小时,同样平很打破,由于速度此时大,由于惯性原因,向心力无法拉住它,这时物体远离圆心运动,使物体圆周运动的半径增大,速度减小,达到一个新的圆周运动,满足关系式,这样的物体远离圆心的运动就是离心运动;(3)当向心力不变,物体的速度增大时,由于惯性物体做离心运动;(4)当向心力不变,物体的速度减小时,由于向心力的拉动物体做向心运动;3、有关离心运动在实际中的应用(1)依靠离心运动的应用:①甩衣服脱水远离,衣服上的水由于速度很高,而衣服对其吸附力和摩擦力所提供的向心力远不能满足,而使水做离心运动,脱离衣服②伞上水珠一转就会飞出远离就是离心运动,(2)关于离心运动的防止:公路转弯一般要外高内低目的是增大汽车转弯过程的向心力,司机开车到转弯时要减速的原因;五、航天器失重的原理1、失重是由于物体对其支持力的压力或悬挂物的拉力为零的现象;2、竖直下落物体当期加速度为g时,有牛顿第二定律分析可得其两物体间作用力为零;3、地球上空飞行的航天器人处于完全失重状态为什么:有匀速圆周运动的性质可以得到,航天器做匀速圆周运动对一物体有G-N=mw2r;对而物体同样有G+N=mw2r,所以两式可得N 为零,所以可能(1)航天器(包括内部所有东西及构成元件)都处于完全失重状态,一切有重力原因产生的力都消失;(2)航天器(包括内部元件和所有东西)做匀速圆周运动的向心力都是自身重力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②由库仑力提供;⑤由重力、支持力的合力提供(如图7);
③由重力、支持力、拉力的合力提供;⑥由静摩擦力提供即合力(如图8);
小结:分析匀速圆周运动向心力的来源,在具体问题中首先要对物体进行受力分析,根据受力来加以确定,由合力提供,也可能弹力、摩擦力等中的某一种力提供。
课堂小结:1.匀速圆周运动时,向心加速度表示速度方向变化的快慢。向心加速度大小不变,方向指向圆心,时刻在变化,所以不是匀变速运动。
②电子绕原子核运动时;
③小球在光滑的水平桌面上运动;(如图2)
④小球在水平面内运动;(如图3)
⑤玻璃球沿碗(透明)的内壁在水平面内运动;(如图4)(不计摩擦)
演示:
⑥使转台匀速转动,转台上的物体也随之做匀速圆周运动,转台与物体间没有相对滑动。(如图5)
(学生观察并分析,教师讲评)
①由万有引力提供;④由重力、拉力的合力提供(如图6)
(可由学生自己先推导)
讲评(师生共同完成):牛顿运动定律既适用于直线运动,也适用于曲线运动。
由牛顿第二定律:F合=ma
由向心力公式:F合பைடு நூலகம்F向=mω2r
提问:加速度的方向如何?
引导学生:与合外力方向一致,即指向圆心。
讲述:故名向心加速度。
板书:向心加速度
1.向心加速度:表示速度方向变化的快慢。
分析:如图1所示,F向⊥v物体在运动方向上不受力,因而在这个方向(即切线方向)上没有加速度,速度大小不会改变。由牛顿第二定律,F合→a,合力提供向心力,向心力的作用只是改变速度的方向,不改变速度大小,由此产生的加速度方向指向圆心,表示速度方向变化的快慢。
2.向心力来源
布置作业:课后习题4.5
课后记:向心力的来源掌握不好,课堂上应再重讲
向心加速度:a=v2/r=152/375=0.6(m/s2)
向心力:F=mv2/r=5×105×152/375=3×105(N)
或F=ma=5×105×0.6=3×105(N)
也可先求向心力,再根据F=ma求加速度。
板书:2.向心力实例分析
例1下列物体做匀速圆周运动时,向心力分别由什么力提供?
①人造地球卫星绕地球运动时;
教法
讲练法


教学活动过程
复习提问1:上节课我们学习了匀速圆周运动以及向心力。当物体做匀速圆周运动时需要向心力,这个力的方向如何?大小如何计算?
提问2:物体做匀速圆周运动时,速度是否发生变化?
引导学生回答:速度大小不变,方向变。
思考:速度方向变化,是否存在加速度?
(学生可能答存在,也可能迟疑。)
引导学生分析:速度是矢量,速度方向变化仍是速度有变化,有变化就有加速度,这个加速度表示速度方向变化的快慢。
引入:那么,匀速圆周运动的加速度是怎样产生的?它的大小和方向如何呢?下面我们就来讨论这一问题。
(二)教学过程设计
启发思考:物体运动时的加速度是如何产生的?根据是什么?
引导学生:由合外力产生,根据牛顿运动定律,力是改变物体运动状态的原因,即力是产生加速度的原因。
再思考:那么,能否根据上节课的结论来推导加速度呢?
②一列火车的质量为500t,拐弯时沿着圆弧形轨道前进,圆弧半径为375m,通过弯道时的车速为54km/h,火车所需要的向心力是多大?产生的向心加速度是多大?
讲解:
①在讨论向心加速度与半径的关系时,必须注意不同的条件。
②火车拐弯时的圆周运动无论是否匀速率,都可利用公式求出拐弯瞬时的向心力和加速度。注意单位换算,v=54km/h=15m/s。
适用范围说明:向心力和向心加速度的公式是从匀速圆周运动得出的,但也适用于一般的圆周运动。一般的圆周运动,速度的大小有变化,向心力和向心加速度的大小也随着变化,利用公式求物体在圆周某一位置时的向心力和向心加速度的大小,必须用该点的速度瞬时值。
反馈练习(巩固新知识):
①从匀速圆周运动的向心加速度公式a=ω2r得出,a与半径r成正比,但从a=v2/r又得出,a与半径r成反比。那么,a与半径r到底成正比还是反比?两者是否相互矛盾?
教学课题
向心力向心加速度
教案序号
教学目标
(1)理解向心加速度表示速度方向变化快慢;
(2)掌握向心加速度与半径的关系;
(3)学会分析向心力的来源,并能初步应用公式计算
教学
重难点
1.重点:向心力的来源。
2.难点:变速圆周运动中物体的受力、竖直面内的圆周运动最高点速度极值。演示实验与理论推导相结合。
课型
新授
相关文档
最新文档