ch3.周期信号的傅里叶级数展开

合集下载

周期信号的傅里叶级数分解

周期信号的傅里叶级数分解

正弦形式
f ( t ) d 0 d n sinn 1 t n
2 2 d n an bn
d 0 a0 an d n sin n
bn d n cos n
bn n arctan a n
X

4、幅度频率特性和相位频率特性
0
T1 2 T1 2 T1
t
E 1 1 1 f (t ) [sin(1t ) sin(21t ) sin(31t ) sin(51t )] 2 3 5
X

3.奇谐函数
若波形沿时间轴平移半个周 期并相对于该轴上下反转, 此时波形并不发生变化: O T T T 2 T f (t ) f t 2 f(t)的傅氏级数偶次谐波为零,只含有奇次谐波。 a0 0 n 2,4,6时 an bn 0
利用欧拉公式
F n
1 T1 1 T1 f ( t ) cos n1 t d t j f ( t ) sinn1 t d t T1 0 T1 0 1 1 a n jbn An e j n 2 2 1 T1 1 T1 f ( t ) cos n1 t d t j f ( t ) sinn1 t d t T1 0 T1 0 1 1 a n jbn An e j n 2 2

T1
0
4 f ( t ) sinn1 t d t T1

T1
2
0
f ( t ) sinn1 t d t 0
1 1 Fn F ( n 1 ) an jbn jbn 2 2 傅里叶级数中无余弦分 量,Fn为虚函数。
X
第 15 页

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

信号与系统第6讲第3章周期信号的傅里叶级数表示

信号与系统第6讲第3章周期信号的傅里叶级数表示

sin(2 k(1/ 4)) k
sin(k k
/ 2)
根据Example3.5的结果,用性质计算傅里叶级数的系数
分析:原函数为x(t),本函数为g(t)
g (t )
x(t
1)
1 2
,周期方波的参数T
4,T1
1,
如果原函数的系数为ak,x(t 1)的系数为bk
bk
a e jk (2 / 4)1 k
在不连续点上,傅里叶级数的收敛趋势-吉伯斯现象
不连续点上收敛于不连续点的平均值 不连续点附近呈现起伏现象,起伏的峰值不随N增加而降低 峰值为不连续点差值的9%
吉伯斯现象的实际意义
不连续信号的傅里叶级数截断近似在接近不连续点有高频起伏 选择足够大的N,可以保证这些起伏的总能量可以忽略
2024/6/10
2024/6/10
信号与系统-第6讲
19
§3.5 连续时间傅里叶级数性质
(4)Example3.8 计算周期冲激串的傅里叶级数系数 根据性质计算周期方波的系数
周期冲激串可表示为x(t) (t kT ) k
ak
1 T
T / 2 (t)e jk 2t /T dt 1
T / 2
T
周期方波为g (t ),它的导数为q(t )
c0为直流分量, c0 2T1 / T
对照前面 例题验证
结果
20
§3.5 连续时间傅里叶级数性质
(5)Example3.9
1.x(t)是实信号
2.x(t)是周期信号,T 4,傅里叶级数系数ak
3.ak 0,k 1
4.傅里叶系数为bk
e
j
k
/
2
a
的信号是奇信号

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

周期信号的傅里叶级数

周期信号的傅里叶级数

计算机与信息工程学院实验报告专业:通信工程年级/班级:2012级通信工程2013—2014学年第二学期一、实验目的1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。

2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。

3、掌握用傅里叶级数进行谐波分析的方法。

4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。

二、实验仪器或设备一台装有MATLAB的计算机一台三、设计原理1. 信号的时间特性与频率特性信号可以表示为随时间变化的物理量,比如电压u(t )和电流i(t )等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。

信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。

主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。

无论是信号的时间特性还是频率特性都包含了信号的全部信息量。

2. 信号的频谱信号的时间特性和频率特性是对信号的两种不同的描述方式。

根据傅里叶级数原理,任意一个时域的周期信号f(t),只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。

例如,对于一个周期为T的时域周期信号f(t),可以用三角形式的傅里叶级数求出它的各次分量,在区间(t1,t1+T)内表示为即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

3. 信号的时间特性与频率特性关系信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1 来形象地表示。

其中图 4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图 4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。

反映各频率分量幅度的频谱称为振幅频谱。

周期信号的傅里叶级数分析

周期信号的傅里叶级数分析

29
cos(1t)
4
a1 T1
T1 2
0
f (t) cos(1t)dt
sin(1t)
b1

4 T1
T1 2
0
f (t) sin(1t)dt
cos(21t)
a2

2 T1
T1
2 T1
2
f (t) cos(21t)dt 0
sin(21t)
b2

2 T1
T1
2 T1
E
T1

2E
T1
n1
Sa(
n1
2
)
cos(n1t
)
23
二、周期锯齿脉冲信号
f
(t
)

E

(sin
1t

1 2
sin
21t

1 3
sin
31t

....)
24
三、周期三角脉冲信号
f
(t)

E 2

4E
2
(cos1t

1 9
cos31t

1 25
c
os51t
.....)
a0 c0
an cn cosn bn cn sin n cn
tan n


bn an
n

arctan
bn an
an2 bn2
2

f (t) c0 cn cosn1t n n1
cn an2 bn2 幅度谱
n

arctan

f (t) a0 (an cos n1t bn sin n1t) n1

周期信号的傅里叶级数表

周期信号的傅里叶级数表

傅里叶级数与复变函数的关系
傅里叶级数可以看作是复数域中的三角函数,即复数域中的正弦和余弦。在复数域中,正弦和余弦函数表现为复指数函数的 形式。
复数的使用使得傅里叶级数的系数可以表示为实数,从而简化了计算。此外,复数的共轭也提供了相位信息,这在信号处理 中非常重要。
傅里叶级数与小波分析的关系
小波分析是傅里叶分析的进一步发展,它提供了更灵活的时频分析工具。小波变 换可以看作是傅里叶变换的一种扩展,它允许我们在不同的频率段使用不同的基 本函数。
三角函数形式
傅里叶级数的另一种表示形式,利用三角函数来表示周期信号。
傅里叶级数的三角函数形式
01
02
03
正弦形式
余弦形式
系数
傅里叶级数的正弦函数形式,用 于表示只包含正弦波的周期信号。
傅里叶级数的余弦函数形式,用 于表示只包含余弦波的周期信号。
在傅里叶级数中,每个正弦或余 弦函数都对应一个系数,表示该 函数在周期信号中的贡献程度。
03
傅里叶级数的性质
傅里叶级数的收敛性
傅里叶级数在数学上具有收敛性,意味着它可以将一个 周期函数表示为无穷级数,每个项都是正弦或余弦函数。
收敛的速度取决于函数的特性,例如,对于具有快速衰 减的周期函数,傅里叶级数收敛得更快。
傅里叶级数的对称性
傅里叶级数的对称性质是指,对于一个周期函数,其傅里叶级数的正弦和余弦项具有对称性。 这意味着,对于一个给定的周期函数,其傅里叶级数的正弦和余弦项的系数是相同的。
周期信号的傅里叶级 数表
目录
• 傅里叶级数简介 • 周期信号的傅里叶级数表示 • 傅里叶级数的性质 • 傅里叶级数的应用实例 • 傅里叶级数与其他数学工具的关系
01

周期信号的傅里叶级数分析实验报告

周期信号的傅里叶级数分析实验报告

周期信号的傅里叶级数分析实验报告信号与系统实验报告实验名称:周期信号的傅里叶级数分析姓名:学号:班级:时间:一、实验目的1、掌握周期信号的频谱分析2、学会对一般周期信号在时域上进行合成二、实验基本原理在“信号与系统”中,任何周期信号只要满足狄利赫利条件就可以用傅立叶级数表示,即可分解成直流分量及一系列谐波分量之和。

以周期矩形脉冲信号为例,设周期矩形脉冲信号()f t 的脉冲宽带为τ,脉冲幅度为E ,周期为1T ,如图1所示。

图1 周期矩形脉冲信号的波形它可以展开成如下三角形式的傅立叶级数:(1-1)从上式可得出直流分量、基波及各次谐波分量的幅度: 01E c T τ=(1-2) n c =112Sa()2n E T Ωττ(1-3)根据式(1-2)、(1-3)可以分别画出周期矩形脉冲信号三角形式表示的幅度谱和相位谱,如图2所示。

t111112()Sa()cos 2n E E n f t n t T T ττΩτΩ∞==+∑(a)(b)图2周期矩形脉冲信号的频谱从上图中可以看出,周期矩形脉冲信号可以分解成无穷多个频率分量,也就nΩ是是说,周期信号是由多个单一频率的正弦信号合成的,各正弦信号的频率1Ω的整数倍。

周期信号频率1同样,任一周期信号也可以由一系列单一的频率分量按式(1-1)式所定的频率、幅度和相位进行合成。

理论上需要谐波个数为无限,但由于谐波幅度随着谐波次数的增加信号幅度减少,因而只需取一定数目的谐波数即可。

1、周期方波信号的傅里叶级数分析(1)五路谐波分量的幅值(2)逐步加入分解后的信号波形1)一次谐波的波形2)一、二次谐波合成的波形3)一、二、三次谐波合成的波形4)一、二、三、四次谐波合成的波形5)一、二、三、四、五次谐波合成的波形(3)画出周期方波信号的幅度谱2、周期半波信号的傅里叶级数分析(1)五路谐波分量的幅值nπ)2(21)一次谐波的波形2)一、二次谐波合成的波形3)一、二、三次谐波合成的波形4)一、二、三、四次谐波合成的波形5)一、二、三、四、五次谐波合成的波形(3)画出周期方波信号的幅度谱四、实验分析1、合成之后的信号与理论信号是否相同,是什么原因造成这些不同?答:不完全相同,因为对周期方波信号和周期半波信号进行傅里叶级数分析时, 本次实验采用的是用有限项(此处采用5项)谐波分量(不含直流信号)的叠加来近似表示原信号。

信号与系统 第三章 周期信号的傅里叶级数展开

信号与系统 第三章 周期信号的傅里叶级数展开
1 T
2 n 2

T1
f (t ) dt

F ( n1 )
左边是周期信号f(t)在一个周期里的平均功率(即单位时间内的能量)
2 2 1 1 2 jnt F ( n ) e dt F ( n ) dt F ( n ) 而同时有 T 1 1 1 T1 1 T1 T1
n 1
——余弦形式
x(t ) d 0 d n sin( n1t n )
n 1
——正弦形式
(1). f (t ) a0 an cosnt bn sin nt
n1

三角函数形式
(2). f (t ) A0 An cos(nt n )
而无物理意义。将来可以看出,指数函数形式比正弦函数形式在数 学上处理起来要方便的多。
§3.2 周期矩形脉冲的谱线特点
x(t )
E

T1

t
2 2
T1
脉冲为 ,脉冲高度为E,周期为T1
1 21 1 E 1 jn1t jn1t 2 X (n1 ) T1 x(t )e dt E e dt e jn1t T1 2 T1 2 T1 jn1 jn jn 1 2E 1 1 2 2 e sin(n1 ) e jn1T1 2 n1T1 sin(n1 ) E E 2 Sa (n1 ) T1 n T1 2 1 2
电子信息与电气工程学院
本章内容
连续时间周期信号的傅立叶级数表示 周期矩形脉冲的谱线特点
§3.1 连续时间周期信号的傅立叶级数表示
{1, cos n1t ,sin n1t} n=1,2, , 是一个完备的正交函数集

周期函数的傅里叶级数

周期函数的傅里叶级数

2
f (t) a0
A e e n jn 1t n
j n1 t n
2 n1 2
§ 周期信号的傅立叶级数
又A-n
A(A 是n的偶函数)
n
n
n
(n n是n的奇函数)
b0 0,A0
a2 0
b02
a, 0

f (t)
1 2
Ane
n
j n1
t
n
1 2
Ane
n
j
n
e jn1 t
f t
Fne jn1t 用FS分析是对周期信号进行谐波分解,即
用谐n波 加权和来合成信号,因此,FS分析又称为谐波分析。
周期信号的对称性与付立叶系数的关系。
f (t)的对称条件
展开式中系数特点
f (t)
f (t),纵轴对称(偶函数 )
bn
0,an
4 T
t0
T 2
t0
f (t) cos n1tdt
nT
2
n
n
0
Sa( n1 ) 0
2
即 Fn>0
Sa( n1 ) 0 即 Fn<0
2
F e n
1 2
An
j n
§ 周期信号的傅立叶级数
此例中F n
A
T
Sa( n
2
)为一实数。幅度频谱与相位频谱可以合
画在一张图上。
c n
1 2
A n
-4
2
2
4 A
T
1 213141 51
101
第四步:讨论频谱结构与 、T 的关系
§ 周期信号的傅立叶级数
An

周期信号的傅立叶级数展开

周期信号的傅立叶级数展开

mn mn0
信号与系统
一、周期信号的傅立叶级数
2
指数函数集
{e
jn 0 t
}(n 0, 1, 2, }
T
0
在区间 (t , t T ) 内也是一完备正交函数集。 0 0 正交性:(m 和 n 都是整数)
t0 T

e
j n0t
e
jm0t
dt
t0 T
e
j ( n m )0t
n 1, 2,3, n 1, 2,3,
信号与系统
一、周期信号的傅立叶级数
例: 将图示周期矩形脉冲信号展成指数形式傅立叶级数
f t
A

解: 直接代入公式有
T 2

T


2

2
T
t
n sin 0 1 1 2 - jn0t A 2 = A Sa n 0 Fn f (t )e - jn0t dt Ae dt n 0 T T T T T 2 2 2 2
2
c
信号的有效频带宽度或带宽,即矩形脉冲的频带宽度为
2 0~ 包含信号主要频谱分量的 这段频率范围称为矩形脉冲
Bf
1


B
2

信号与系统
二、周期信号的频谱与功率谱
周期信号频谱的特点: (1)离散性——谱线是离散的而不是连续的,因此称为离散频谱; (2) 谐波性——谱线所在频率轴上的位置是基本频率的整数倍; (3) 收敛性——谱线幅度随
直接代入公式有
an
2 T
T 2


f (t ) cos n0 tdt
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b = 或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n na a ϕπ>⎧=⎨<⎩ (2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑ 0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=< (2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ= 幅频函数和相频函数 (2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

六.抽样定理(1)抽样过程抽样脉冲p(t)为冲击序列或周期矩形脉冲(2) 数学表达式()()()s f t f t p t =⋅(3) 时域波形 (4) 频谱表达式:()[]1()[()]2s F w F w F p t π=* ()11()22n n F w p w nw πδπ∞=-∞⎡⎤=*-⎢⎥⎣⎦∑1()()n nsn n p F w nw p F w nw ∞∞=-∞=-∞=-=-∑∑其中:周期T ,基波频率1w =抽样频率s w 即:抽样信号频谱()s F w 将原信号频谱()F w 在频率轴上进行周期延拓(5)理想抽样:δT (t)()()()s T f t f t t δ=⋅()()1s s n F w F w nw T ∞=-∞=-∑(6)实际抽样:fs(t) 其中: ()()()s f t f t p t =⋅()()s nsn F w p F w nw ∞=-∞=-∑其中1()2n E p Sa nw Tττ=(7)信号恢复: (8)抽样定理:连续时间信号()f t ,抽样周期为T ,抽样频率s w 其频谱为()F w ,m w w ≤,抽样信号的频谱为()s F w ,且:()()1s s n F w F w nw T ∞=-∞=-∑,即:抽样信号频谱()s F w 将原信号频谱()F w 在频率轴上进行周期延拓。

当2s m w w ≥时()s F w 频谱不发生混叠,当2s m w w <时频谱发生混叠。

习题课:1. 已知[()]()F f t F w =,求下列信号的傅里叶变换:(1)()df t t dt(2)(25)f t -解:(1)()()f t F w ↔ (2)5(25)(2())2f t f t -=-()()df t jwF w dt↔ ()()f t F w ↔1(2)()22wf t F ↔()[()]df t d jwF w jt dt dw-↔5211(25)()22j w f t F w e --↔2. 系统如图所示:y(t)c t)其中:输入为x(t),其频谱X (w )如图所示,输出为y(t),且w c >>w m求:输出y(t)解:1()()cos()()2ccjw t jw tc y t x t w t x t e e -⎡⎤=⋅=⋅+⎣⎦[]1()()()2c c Y w X w w X w w =-++3.画出(100)Sa t 的频谱л-100 100 w4.证明: 傅里叶的积分特性:[()]()F f t F w =()()[()](0)t F w F f t dt F w jw πδ-∞=+⎰证明:由于 ()()()tf t dt f t u t -∞=*⎰()1[()]()()t F f t dt F w w jwπδ-∞=⋅+⎰()()(0)F w F w jwπδ=+ 5. 求下列频谱函数所对应的时间信号 (1)()5w δ- (2)2w解:(1)512j te π(2)()1t δ↔()()2t jw δ''↔(3)()5050Sa t π6. 已知f(t)波形如图所示:求:(1)(0)F (2)()F w dw ∞-∞⎰解:(1)(0)()4F f t dt ∞-∞==⎰(2)()2(0)4F w dw f ππ∞-∞==⎰。

相关文档
最新文档